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Outline of thesis

This thesis consists of a synopsis and five publications. Therefore, it has
two parts. Part I outlines the topics covered in the publications, referred
to as Papers 1–5, and also discusses some previously unpublished results.
The publications are reproduced in Part II.

My thesis is devoted to the numerical study of the two-dimensional
spin- 1

2 Heisenberg antiferromagnet with defects. Namely, large-scale com-
puter simulations were performed in order to determine how some de-
fects, such as impurities and lattice boundaries, affect the magnetic prop-
erties of the Heisenberg host model. Part of the computational investiga-
tions were undertaken in order to test analytical predictions. Some of the
background issues are touched upon in Chapter 1.

Chapter 2 deals with Papers 1 and 2. They report on the efforts I
was involved in to determine the magnetic response of a single static
spin-S impurity in a magnetically ordered Heisenberg system. In brief,
a classical-like Curie prefactor—S2 instead of S(S + 1)—was numerically
confirmed for the low-temperature impurity susceptibility, which, to some
surprise, also turned out to have a previously overlooked contribution. A
detailed narrative of those events can be found in my licentiate thesis [1],
and, hence, the discussion is kept quite short in the present work. How-
ever, Paper 3 is a direct continuation of that work, albeit for a quantum
critical Heisenberg model. In that case, our numerical data pointed to-
wards a most curious behavior, as if the response of the impurity was
that of a spin with irrational S, as, indeed, had been predicted by others
on theoretical grounds. These events are summarized in Chapter 3. A
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viii OUTLINE OF THESIS

collaboration with the field-theoretical efforts of S. Sachdev resulted in
Paper 4. Combining numerical data with analytical techniques, it deals
with the spatial magnetic structure around said impurity at zero temper-
ature. Mainly the numerical part of that story is covered in Chapter 4,
which also presents results for the case of a magnetically ordered host
model. Paper 5 pays attention to the role played by system boundaries:
Free, completely smooth edges were found to impede the bulk magnetic
susceptibility, which did not occur in the case of rough edges. That line of
investigation is discussed in Chapter 5. Chapter 6 summarizes the work.
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Chapter 1

Introduction

1.1 Background and method

Many of the currently most exciting topics within the field of quantum
condensed matter physics are about phenomena arising from the collec-
tive behavior of a vast number

(
≈ 1023) of strongly interacting particles.

High-temperature superconductivity is the most famous example. Other
examples are the colossal magnetoresistance effect and heavy fermion
materials, to name a few. However, in some of the cases a swift experi-
mental progress, towards possibly very important applications, is unfor-
tunately marred by the element of trial and error. This is because suffi-
cient knowledge of the effective microscopic mechanisms, which give rise
to the unusual macroscopic properties, is missing.1

A major reason for this lies in the fact that the theoretical models of
strongly correlated electron systems pose formidable mathematical chal-
lenges, which mostly lack exact solutions. Existing analytical approaches,
then, while relying on assumptions and approximations to some degree,
may arrive at contradicting conclusions. Computational methods, on the
other hand, can produce essentially exact numerical solutions—in other
words, results that are unbiased—but do not on their own provide an

1See, e.g., Science 314, 1072 (2006); High Tc: The Mystery That Defies Solution by A. Cho.
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intuitive picture of the effective mechanisms involved. Most often both
approaches are called for in order to shed light on the complex model
systems.

The present thesis deals with the outcome of a large-scale computer
simulation study with the intent to numerically address some current
problems concerning the magnetic effects of defects in antiferromagnetic
host systems. That high-quality numerical results can, indeed, be a most
valuable complement to analytical results is exemplified in Chapters 2
and 3. The availability of bench-mark numerical data is also a prerequi-
site when developing alternative numerical strategies—for checking test
results against—and in cases where the theoretical models have direct
physical realizations the data can be compared to experimental results. A
drawback of computer simulations is that they deal with finite-size sys-
tems exclusively, and that the data have to be extrapolated to the thermo-
dynamic limit. However, as affordable computer power continues to in-
crease, ever larger systems can be handled, and the problems previously
deemed either too time consuming or too large to handle may become
feasible with time.

For the numerical simulations in the present work, an established
quantum Monte Carlo (QMC) method has been used—the stochastic se-
ries expansion (SSE) technique. It is one of the numerical methods avail-
able for evaluating thermodynamic expectation values for some classes
of quantum lattice models. The algorithm is approximation-free: The ba-
sic idea is to first power-expand the density matrix operator, after which
the partition function can be importance sampled. The algorithm and its
application to models considered in the present work [2, 3] were outlined
in the author’s licentiate thesis [1] and will not, therefore, be repeated
here. Currently, the most complete description of the method is found
in Reference [4]. More background matter, references, and a very useful
pedagogical tutorial can be found in the web pages2 of A. Sandvik, who
conceived the method.

2http://physics.bu.edu/∼sandvik/



1.2. MODEL 5

1.2 Model

This thesis is dedicated to the numerical study of the two-dimensional
(2D) S = 1/2 Heisenberg antiferromagnet. It is a special case of the
general Heisenberg model, which is the simplest archetypical model for
microscopic magnetism: it describes the effective interaction between the
spin degrees of freedom of immobile electrons. Although an old model,
dating back to the early days of quantum mechanics, it is of current rele-
vance due to the more recent discoveries of experimental strongly corre-
lated electron systems. For example, the 2D Heisenberg antiferromagnet
proved very accurate in describing the magnetic properties of the un-
doped parent compounds of the original high Tc copper oxide supercon-
ductors [5]. These compounds, such as La2CuO4, contain CuO2 layers in
which the valence electrons are found localized to the Cu sites—one-on-
one—on a square lattice.

The Heisenberg model has been studied intensely for the past two
decades, in a wide range of contexts and using all conceivable meth-
ods. The challenge lies in finding out what macroscopic properties the
collective behavior of a large number of spins will lead to. Although
no exact mathematical solution is known, the bulk physics of the 2D
Heisenberg antiferromagnet, defined on a square lattice, has mostly been
established [2, 5, 7–10]. For example, in determining the nature of the
antiferromagnetic ground state, numerical results [6] played a vital role.
Mathematically, the model is defined by the Hamiltonian

H = ∑
〈i,j〉

JijSi · Sj, (1.1)

where 〈i, j〉 denotes a pair of nearest-neighbor spins, Si is the quantum
operator for the spin at location i, and Jij is a coupling constant between
spins i and j. For Jij > 0 the interaction is called antiferromagnetic—
neighboring spins minimize their mutual energy by pointing in oppo-
site directions. Being the simplest model for quantum magnetism, Equa-
tion (1.1) is a reasonable and useful starting point for theoretical studies
of the yet uncharted areas of strongly correlated electron physics.
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One example of an emerging context for studies of strongly correlated
systems is the subject of quantum phase transitions (see, for example, the
textbook of Reference [11] or the review article in [12]). It is a compre-
hensive theoretical framework that deals with the concept of competing
ground states and the corresponding elementary excitations, in order to
describe the different phases of the systems. For example, in the model
defined by Equation (1.1), a zero temperature phase transition can be
realized by using two different nearest-neighbor couplings (J1, J2) in a
pattern that favors singlet formation on dimers. For J1 � J2, say, the
system is characterized by a paramagnetic ground state with a gap to
particle-like S = 1 excitations. At some critical value of the coupling ra-
tio g = J1/J2 the system transitions to an antiferromagnetically ordered
gapless ground state with spin-wave excitations. In between these two,
at finite temperatures, the quantum critical regime fans out. Here, the
elementary excitations cannot be described by any simple semiclassical-
like analogy [11]. The subject of quantum phase transitions is beyond the
scope of this thesis but has to be mentioned because it is tangential to the
present work: In Chapters 3 and 4 an impurity is utilized to probe some
of the magnetic properties in the exciting quantum critical regime.

1.3 Defects

In studies of strongly correlated systems, a specific set of problems deals
with the role played by defects, such as impurities and boundaries. Ex-
perimental systems consist of finite-size parts with edges of some sort,
and impurities are inherent to all samples. In some cases the effect of im-
purities is drastic; superconductivity in the cuprates is brought on by in-
tentional doping, which also destroys the antiferromagnetic order found
in the normal state of the parent compounds. (For a review of the doping
effects in the cuprates, see Reference [13]) At very low concentrations the
impurities are not expected to lead to such dramatic changes, and the sig-
nal from sample edges is presumably very weak in systems with a small
edge to bulk ratio. In fact, the exact extent to which minor imperfections
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effect the outcome of experiments is often not known. However, small yet
detectable changes in response functions due to defects can be useful too,
because they inevitably reflect aspects of the host system. Hence, system-
atic theoretical studies of defects in prototypical model systems, such as
the Heisenberg antiferromagnet, are important: For establishing the mag-
nitude of various effects in order to interpret experimental data, as well
as for shedding light on the fundamental aspects of strongly correlated
states.

The strategy of using doping as a means for probing low-dimensional
antiferromagnetic systems has been utilized successfully in a multitude
of experiments [14–20]. For example, when nonmagnetic ions, such as
Zn, are used as dilute dopants in the cuprates, NMR measurements re-
veal enhanced staggered magnetic moments with net S = 1/2 around
the impurity sites in the CuO2 planes [17–19]. This behavior has been
reproduced theoretically in spin-gapped Heisenberg models, where the
impurity induced moments are strongly localized [21–24]. Also in gap-
less systems enhanced antiferromagnetic correlations around a vacancy
were observed [21, 22, 25, 26], but the spatial distribution of the impurity
moment was not established in detail. For a quantum critical system,
the problem had not been addressed. This, and many other aspects of
the theoretical problem of a single vacancy in an antiferromagnetic back-
ground have been considered in several ground state [21–29] and finite
temperature studies [23, 24, 30–35], and a coherent picture is emerging. A
related problem, beyond the scope of this thesis, is the question of what
happens when there is a dilute impurity concentration [36]. Some aspects
have been studied, for example, by Wang and Sandvik [37], but overall
sufficient numerical data as well as a general theory is missing.

In quasi-one-dimensional systems, such as the spin chain compound
Sr2CuO3, vacancies can cut the chains into segments with free ends. The
resulting boundary effects have largely been established [20, 38–41]. For
example, the broad background observed in NMR spectra was accounted
for by a large alternating local susceptibility, which increases in ampli-
tude with the distance from the end of the spin chains [20, 38]. The role
played by boundaries in 2D systems has not been paid much attention to.
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This may partly be due to the fact that edge features are not expected to
be distinguishable from the bulk signal in most experiments. However,
as sample sizes approach the nanoscale, the boundary physics should
become more prominent.

Recently, in a prestigious quantum field-theoretical study by Sachdev
et al. [24], the low-temperature theory of an arbitrary quantum spin-S
impurity in a 2D antiferromagnetic host system was developed. It culmi-
nated in detailed predictions for the magnetic response of the impurity, in
the different finite-temperature regimes associated with a quantum phase
transition occurring in the host; from a quantum disordered spin-gapped
paramagnet to a gapless antiferromagnet. The said study has been a vital
source of inspiration for the present work: a substantial part of the nu-
merical investigations presented here was inspired by those far-reaching
conjectures. For example, the inquiries outlined in Chapter 2 were un-
dertaken in order to check the validity of some of the predictions. The
efforts elaborated on in Chapter 3, in turn, were made to extract accurate
numerical values on some quantities, which on analytical grounds had
been predicted to be of importance.

1.4 Description of papers

Papers 1 and 2 report on the numerical investigations undertaken to de-
termine the low-temperature magnetic response of a spin-S impurity cou-
pled to an antiferromagnetically ordered 2D Heisenberg host model. The
QMC results confirmed the theoretical prediction [24] of a leading-order
classical-like Curie response due to alignment of the impurity moment
with the local Néel order. Simple few-spin models were introduced for
the sake of a simple description of this mechanism. Furthermore, the
numerical data revealed that the impurity susceptibility has a sublead-
ing log diverging contribution, which was subsequently established on
theoretical grounds [31, 32]. Paper 2 is a more detailed account and it
considers additional impurities, such as an S = 1 impurity and some
bond impurities as well.
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Paper 3 continues with the analytical predictions of Reference [24]: in
a nearly critical host the magnetic response of an impurity was predicted
to have a Curie form with an anomalous (irrational) Curie constant. This
view was the matter of some controversy as it had been challenged in a
competing theory [29]. In order to settle the dispute, large-scale compu-
tations were performed and a value for the Curie constant was extracted.
The events are discussed in Chapter 3, which also presents data for an
alternate S = 1 impurity.

Paper 4 deals with the parallel efforts—a collaboration of numerical
and analytical methods—to determine the T = 0 spatial magnetic distor-
tion around the impurity in the critical 2D Heisenberg model with open
boundary conditions. The uniform and staggered magnetizations were
found to be delocalized across the entire sample with a universal func-
tional form. Chapter 4 outlines those events, and also describes the fate
of the magnetic structure in a magnetically ordered host system.

The question of boundary conditions had been touched upon in Pa-
per 4. In Paper 5, the magnetic effects of free edges are investigated. Near
smooth boundaries the magnetic response was found to be reduced from
the bulk value, leading to an impeded overall susceptibility. This some-
what counterintuitive effect—spins along an edge should naively fluc-
tuate more as they have fewer neighbors—was argued to be connected
to enhanced antiferromagnetic correlations observed at the edges in a
comblike pattern. The impeding effect was found to vanish when the
boundaries were ‘roughened’.
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Chapter 2

Impurity susceptibility

Consider Equation (1.1) defined on a 2D square L × L lattice, where
nearest-neighbor spins interact via J. With J > 0, attempting to mini-
mize the energy the spins line up antiferromagnetically as T → 0. For
even L, the ground state is then a checkerboard of spins ‘up’ and ‘down’
with total S = 0 due to an equal number of spins on each sublattice.
Removing or adding a single spin, for example, as shown in Figure 2.1,
creates an unbalance between the number of spins on the two sublattices,
which leads to a ground state with S = 1/2 [42] and doubly degener-
ate magnetization Mz = ∑i Sz

i = ±1/2 (with respect to some quantized
z-axis). The question arises; in what other ways and to what extent is
the system affected by such a minute impurity? Focusing on the mag-
netic effects, one strategy for obtaining an answer is to determine, for
example, the uniform magnetic susceptibilities of both ‘pure’ and defect
systems, whereafter the results can be compared. Specifically, by taking
the difference of the two, the so-called impurity susceptibility is obtained.
The impurity effects on other quantities, such as the internal energy and
specific heat, can be obtained in a similar fashion. The impurity suscepti-
bility is defined mathematically in the next chapter. Here, the discussion
is kept qualitative.

The above strategy had been used successfully by Sachdev and cowork-

11
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(b)

(a)

J

J

Figure 2.1: Heisenberg L × L lattices with antiferromagnetic nearest-neighbor
interactions. Using even L, the models with a vacancy (a) and an off-plane added
spin (b) are S = 1/2 impurity models due to an unpaired spin.

ers in their analytical work [24], where very detailed results for the im-
purity susceptibility were obtained within the broad context of quantum
phase transitions. The predictions in the quantum critical regime were
partly controversial [29, 43], which is the topic of Chapter 3. However,
less attention had been paid to the results in the case of a magnetically
ordered model. To be specific, for a spin-S impurity coupled to such a
host system, as T → 0 a Curie susceptibility had been obtained,

χz
imp =

S2

3T
+

2
3

C3

ρs
, (2.1)

where ρs denotes the spin stiffness of the bulk-ordered antiferromagnet
without impurities. The noteworthy classical-like prefactor—S2 instead
of the usual S(S + 1)—was explained to be due to the fact that the impu-
rity spin ‘gets stuck’ to the evolving local magnetic order at low T and,
therefore, it behaves like a classical magnetic moment. A universal value
was proposed for the constant C3.

Very much motivated by the elegant analytical work, we carried out
finite-T quantum Monte Carlo simulations in order to check some of the
predictions. The events are reported on in detail in Paper 1. In brief,
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we considered the S = 1/2 Heisenberg antiferromagnet on a 2D periodic
lattice with either a vacancy or an added spin impurity. The numerical re-
sults obtained for the impurity susceptibility confirmed the predicted [24]
leading-order Curie prefactor for both impurity types. For a simple expla-
nation of this ‘classical-like’ behavior, we constructed toy models—highly
simplified few-spin effective impurity models—which were able to repro-
duce the numerical results. Very recently, a detailed theoretical analysis
of the the leading-order behavior was conducted by others [35].

However, the data for the impurity susceptibility was observed to also
contain a low-T logarithmically divergent subleading contribution. This
behavior had not come up on analytical grounds, although a similar trend
had, in fact, been observed in a previous Green’s function study [26], and
a kind of anomaly had also been observed for the case of a finite impu-
rity concentration [36]. Ensuing theoretical efforts [31, 32], to explain our
numerical findings, found, indeed, a previously unnoticed log divergent
contribution. In a nonlinear σ model study [31] the impurity susceptibil-
ity was rewritten,

χz
imp =

S2

3T

[
1 +

T
πρs

ln
(

C1ρs

T

)
− T2

2π2ρ2
s

ln
(

C2ρs

T

)
+ O

(
T
ρs

)3
]

, (2.2)

where the unknown constants C1,2 are in general nonuniversal, but be-
come universal when a quantum critical point is approached. To the first
subleading term ∝ ln(1/T), which accounts for the log divergence, the
universal prefactor S2/3πρs was assigned. By adjusting the constants
C1,2, we verified that the new prediction agreed with our QMC data. An
alternative theory [32] was also qualitatively in line with the new results.

Encouraged by the course of events, we delved deeper into the nu-
merical investigations of the impurity problem, as reported on in Paper 2.
Two-vacancy models were considered, as well as a single vacancy in the
3D model, for which some analytical predictions had been made [32].
Also, a novel impurity model was constructed; a spin coupled ferromag-
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netically to its four nearest neighbors on the square lattice, with an ex-
pected S = 1 impurity moment. In this case also, the QMC data con-
firmed the predicted leading-order Curie prefactor, as well as the uni-
versal form of the first subleading log divergent contribution. Effectively
frustrating ferromagnetic interactions between nearest-neighbor spins at
the Cu sites had been suggested [45] to result from hole doping the par-
ent cuprate compounds. Therefore, we considered an impurity model
with a single frustrating ferromagnetic bond on the square lattice, and
compared it to a missing-bond model. In addition to calculating the im-
purity susceptibilities, some impurity effects on the specific heat and the
internal energy were also determined. The effective-model concept was
developed to some degree in Paper 2.



Chapter 3

Anomalous Curie response

In this Chapter, Equation (1.1) is applied to a periodic L× L bilayer lattice
as shown in Figure 3.1 (a). The Heisenberg Hamiltonian becomes

H = J ∑
〈i,j〉

S1,i · S1,j + J⊥∑
i

S1,i · S2,i, (3.1)

where the intra- and interlayer coupling constants are J and J⊥, respec-
tively. The indices 1 and 2 refer to the bottom and top layers, respectively.
Because there are intralayer couplings only in the bottom layer (a Kondo
lattice), the model will be referred to as the incomplete bilayer, which the
main results in this chapter are for. The closely related symmetric bilayer
has interactions J in both layers.

The antiferromagnetic bilayer models have attracted some attention,
not the least because they can be used to study quantum phase transi-
tions [43, 46–58]. When J⊥ � J, adjacent interlayer spins tend to form
singlets at low T, whereas for J⊥ � J the antiferromagnetic order domi-
nates among the spins that interact by J. The ratio g = J⊥/J serves as the
parameter that sets the phase of the model: A critical value g = gc sepa-
rates the gapless Néel ground state with spin-wave excitations for g < gc
from the spin-gapped disordered ground state with S = 1 excitations for
g > gc. In our calculations we used gc = 1.3888(1) for the incomplete

15
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(b)

(a)

J

J

J

J

⊥

⊥

Figure 3.1: Incomplete bilayer lattice with L = 3. Nearest-neighbor interactions
J between bottom layer spins (black) are absent among the top layer spins (white).
Interlayer couplings J⊥ are shown as grey. By removing a single spin from the
intact model (a), an S = 1/2 impurity model (b) is obtained.

bilayer model [gc = 2.5220(3) for the symmetric bilayer] [56], which at
finite temperatures gives a nearly quantum critical system.

3.1 S = 1/2

In Figure 3.1 (b), a single spin has been removed from the top layer of the
incomplete bilayer model. This effectively creates an S = 1/2 impurity
as there is an unpaired spin in the opposite layer. As in the previous
Chapter, the question is; how does the single impurity alter the bulk
response of the almost critical host model, or, conversely; what is the
susceptibility of the impurity itself? In order to answer that question,
addressed in Paper 3, the total susceptibilities of the critical systems with
and without vacancy were computed. They are defined as

χz
k =

J
T

〈(
Nk

∑
i=1

Sz
i

)2〉
, (3.2)
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with k = 0 for the intact model (N0 = 2L2) and k = 1 for the model with
the vacancy (N1 = 2L2 − 1). The difference between the two defines the
impurity susceptibility

χz
imp = χz

1 − χz
0. (3.3)

As χz
imp is the difference between two extensive quantities, which should

only differ with respect to the effects originating from the single vacancy,
it follows that very precise data for the individual susceptibilities are
called for. The use of improved estimators [59] is crucial.

In the field-theoretical work by Sachdev et al. [24], the impurity re-
sponse in an antiferromagnetic host system had been considered in a
broad context. For the impurity susceptibility a Curie form had been
found— χz

imp ∼ C/T as T → 0—with the Curie constant taking different
values depending on the parameter g:

C = S2/3, g < gc, (3.4)

C = C∗ = S̃(S̃ + 1)/3, S̃ 6= S, g = gc, (3.5)
C = S(S + 1)/3, g > gc, (3.6)

where h̄ = k = 1. For g < gc, that is, in the magnetically ordered regime,
the classical-like Curie constant [S2 instead of S(S + 1)] we had confirmed
numerically up to a log correction (Chapter 2). In a paramagnetic system,
g > gc, the usual prefactor is due to the strongly localized impurity mo-
ment in the spin-gapped state. The most remarkable prediction was for
g = gc; the critical Curie constant takes a universal and irrational value in
the range S2/3 < C∗ < S(S + 1)/3. For S = 1/2 we get 1/12 < C∗ < 1/4.
Moreover, according to Equation (3.5), the effective impurity spin S̃ 6= S is
neither integer nor half-integer but most likely irrational. However, these
remarkable results had been challenged in a competing Green’s function
theory [29], which claimed that S̃ = S and, hence, C∗ = C = 1/4 (for
S = 1/2). A previous numerical study [43] had left the matter unsettled.

Next, the numerical data for the impurity susceptibility are presented,
from which the critical Curie constant is obtained according to,

C∗ = lim
T→0

Tχz
imp. (3.7)
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Figure 3.2: QMC results for Tχz
imp for an S = 1/2 vacancy in the incomplete

bilayer. Panel (a) uses lin-log axes and shows results for different L. Only size-
converged data are shown in panel (b), where lin-lin x axes are used and the
straight line is a linear fit to the low T data. The inset shows size convergence of
results at two different T.

Figure 3.2 (a) shows QMC data for the temperature dependence of Tχz
imp

for different system sizes L. At high T the spins are independent and each
contribute 1/4T to the total susceptibilities. Since there is one less spin in
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the impurity model than in the intact system, the trend Tχz
imp → −1/4 as

T → ∞ is obtained (although not explicitly shown in the Figure). Mov-
ing towards lower T, the data for smaller systems deviate from those of
larger L due to finite-size effects. In the limit T → 0, one always gets
Tχz

imp → +1/4 for any L, due to the S = 1/2 (S = 0) ground state of the
impurity (intact) model. At intermediate T a local minimum is observed
in the finite-size behavior for L ≥ 16. Size-converged data, that is, results
representative of an infinite-size system, are obtained when data for L and
L/2, at given T, agree within statistical errors. Such data are shown exclu-
sively in Figure 3.2 (b), with examples of the size-convergence shown in
the inset. At low temperatures a linear behavior is observed and extrapo-
lation gives C∗ = 0.262(2). That the value exceeds 1/4, although only by
roughly 5%, is solid numerical support for the notion of an anomalous
Curie response, as predicted by theory in Reference [24]. That the value
does not fit within the conjectured range [1/12, 1/4] need not be viewed
as a controversy: The suggested range merely reflected a simplest intu-
itive scenario [60]. In fact, C seems to be a nonmonotonous function of
g.

In order to test the prediction of universality, that is, that the details of
the host are irrelevant for C∗, the calculations were repeated for the sym-
metric bilayer with an S = 1/2 vacancy. The results were found to agree
with those of Figure 3.2, but the numerical precision was insufficient for
an independent extrapolation of C∗. The symmetric bilayer has a higher
critical ratio gc and double the number of interactions J compared to the
incomplete bilayer. Therefore, it is roughly twice as demanding compu-
tationally.

3.2 S = 1

Next, results are shown for an impurity model with S = 1. Such models
can be realized, as shown in Figure 3.3, by making (a) one of the inter-
layer couplings in the incomplete bilayer ferromagnetic, J⊥ → −J⊥. In
the symmetric bilayer, this has to be done to all five couplings to a given
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Figure 3.3: S = 1 impurity models are obtained by turning a single interlayer
coupling in the incomplete bilayer (a) and all five couplings to a given spin in the
complete bilayer (b) into ferromagnetic (J⊥ → −J⊥), as shown with the dashed
lines.
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Figure 3.4: QMC data for the impurity susceptibility of an S = 1 impurity in
the incomplete bilayer. The line is a linear fit to the size-converged low T data.
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spin, as shown in Figure 3.3 (b). In both cases the finite-size impurity
systems lock into a S = 1 ground state as T → 0. The latter model was
considered in Paper 3, where the estimate C∗ = 0.663(2) was obtained
in the same manner as previously described. This value is slightly below
the ‘normal’ value 2/3, but the discrepancy was found to be too small
(compared to the statistical error) to be conclusive. Figure 3.4 shows pre-
viously unpublished results for the model in Figure 3.3 (a). The high- and
low-T finite-size behaviors are understood in the same manner as for the
S = 1/2 impurity model. At low T the size-converged data again become
linear in T (some finite-size effects are also shown). Extrapolation gives
C∗ = 0.671(2), which in this case is slightly above 2/3. Hence, higher
precision is required to definitely settle the fate of the S = 1 impurity.
However, what the results do show is that the anomaly is smaller than
for an S = 1/2 impurity.

This Chapter is concluded with a specific detail extracted from the
high-precision data underlying the results discussed above. According
to the theory of the nonlinear σ model [10], a critical system should ex-
hibit a universal linear low-T behavior in χz

0(T), with intercept 0. This
feature had been confirmed [48, 53, 54] for the intact (without impurity)
symmetric bilayer. However, for the incomplete bilayer a weak curvature
had been observed in a comparable temperature range [0.05, 0.2] [57].
Although not shown here, our QMC data reproduced that feature, but at
still lower T ∈ [0.01, 0.07] a linear χz

0 → 0 as T → 0 behavior was, indeed,
observed [61].



22 CHAPTER 3. ANOMALOUS CURIE RESPONSE



Chapter 4

Magnetization distribution

This Chapter continues with the model familiar from the previous Chap-
ter; the incomplete bilayer with a vacancy [Figure. 3.1 (b)]. Due to an odd
number of spins left, the ground state in the finite L system has S = 1/2.
The positive sector of the Mz = ∑i Sz

i = ±1/2 doubly-degenerate ground
state is considered here. The questions addressed in this Chapter are;
how is the T = 0 magnetization spatially distributed in the system,
and what is the influence of the phase of the host? In the spin-gapped
state, g > gc, the magnetic distortion is known to be found exponen-
tially close to the impurity, with the localization length scale set by the
inverse of the spin gap [21–25]. Hence, the effective behavior of a local-
ized impurity moment. For a Néel ordered model, g < gc, some results
had appeared [22, 62], but for g = gc, that is, in the quantum critical
phase, the issue had not been dealt with. We used Equation (3.1) with
J⊥/J = g = gc = 1.3888(1) [56].

4.1 Quantum critical model

For odd L, a vacancy can be placed at the exact center of the L× L× 2 lat-
tice. Using free edge, or open, boundary conditions, the spins at the end
of rows see no neighbors in that direction. In this way, the ground state

23
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J

J

⊥

Figure 4.1: Top view of an L = 5 incomplete bilayer model with a vacancy.
Free edge boundary conditions are used. The center gray spin constitutes ‘frame’
R = 0. The white and black spins belong to frames R = 1 and 2, respectively.
An analogous frame decomposition can also be applied to a single layer model.

magnetization can be studied using the strategy of Reference [22]: The
lattice surrounding the vacancy is decomposed into ‘frames’, as shown in
Figure 4.1. For each frame index R, which labels the distance from the
center, the uniform and staggered magnetization components are defined,
respectively,

M0(R) =

〈
s ∑

i∈R
(Sz

1,i + Sz
2,i)

〉
, (4.1)

Mπ(R) =

〈
s ∑

i∈R
(−1)xi+yi(Sz

1,i − Sz
2,i)

〉
, (4.2)

with the same notations as earlier. The factor s = 2Mz = ±1 is included
in order to make the contributions positive for both Mz = ∑i Sz

i = ±1/2
states. The corresponding integrated magnetizations are given by

Ik(R) =
R

∑
r=0

Mk(r), (4.3)



4.1. QUANTUM CRITICAL MODEL 25

0.01 0.1
R/(L-1)

0.125

0.250

0.500

I 0

L = 5
L = 9
L = 17
L = 33
L = 65
L = 129
L = 257

4 16 64 256
L

0.125

0.250

M
0(0

)

Figure 4.2: QMC data for the integrated uniform frame magnetization shown on
log-log axes. The L = 257 results almost completely hide smaller L data because
of the tight data collapse. The exponent η′, which is obtained from the power-law
behavior observed for the R = 0 magnetization shown in the inset, solely governs
the spatial magnetic structure, including I0.

where k = 0 or π. Of special interest is I0(R), which has to be exactly
1/2 at the edge of the lattice, that is, for Rmax = (L− 1)/2. The expec-
tation values in Equations (4.1), (4.2), and (4.3) were calculated for each
L considered, at sufficiently low T > 0 to ensure negligible temperature
effects.

Figure 4.2 shows QMC data for the integrated uniform frame mag-
netization I0, for different L, against R/(L − 1) on log-log axes. The L
dependent data is observed to collapse tightly onto a single curve, and a
power-law behavior is observed for small R/L. From the concurrent field-
theoretical efforts by Sachdev, predictions for the spatial scaling forms
were obtained: In the R/L → 0 limit, that is, far from the impurity and
system edges, both the uniform and the staggered magnetizations should
obey a power-law behavior governed by a single exponent η′. For in-
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Figure 4.3: L = 65 results for the incomplete bilayer with a vacancy. I0(R) data
for different values on the tuning parameter g are compared.

stance,

I0(R) ∝
(

R
L

)η′/2

. (4.4)

Using the R = 0 data, shown in the inset of Figure 4.2 [I0(0) = M0(0)],
the estimate η′ = 0.40(2) was obtained from the relation I0(0) ∝ L−η′/2.
That value has been used for the line in the main panel, and it was found
to work also for the staggered quantities, as predicted by Sachdev. A
numerical estimate in agreement with our η′ had, in fact, been obtained
previously in a time dependent context [43]. However, that the same
exponent would also govern the spatial impurity effects had not been
anticipated. The theory part of the matter was later developed in detail
in a study by Metlitski and Sachdev [63].

In Figure 4.3, L = 65 results for I0(R) for different g are compared.
The power-law behavior found for the critical results (gray symbols) in-
dicates that the magnetic distortion is delocalized over the entire system.
For example, at the impurity site, M0(0, g = gc) → 0 as L → ∞. In
contrast, for g > gc (white symbols) the total S = 1/2 magnetization is
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localized exponentially close to the impurity (within frame R ≈ 8 in Fig-
ure 4.3) and M0(0, g > gc) converges rapidly, with increasing L, to a g de-
pendent constant value. In the Néel phase (black symbols), addressed in
more detail in the next Section, the situation appears ambiguous: For any
L, I0 becomes 1/2 only at the very edge of the lattice, while M0(0, g < gc)
seems to converge to an almost g independent positive constant m0, say,
as L→ ∞. This would point to a scenario where part of the ground state
magnetization is localized to the impurity and the rest is spread out over
the entire sample. In fact, the nonmonotonous behavior of M0(0) as a
function of g somewhat resembles the one found for the Curie constant
in the previous Chapter.

4.2 Néel ordered model

Next, the ground state magnetic structure in a Néel ordered model is
determined. To that end, the Heisenberg Hamiltonian is applied to an
L× L single-layer lattice,

H = J ∑
〈i,j〉

Si · Sj. (4.5)

By choosing L odd (which gives odd N = L × L), the ground state has
the magnetization |Mz| = |∑N

i=1 Sz
i | = 1/2 and, hence, no actual impurity

is needed in this case. Open boundary conditions are used. The R de-
pendent expectation values defined in Equations (4.1), (4.2), and (4.3) are
computed as previously for the critical model.

The inset of Figure 4.4 shows L = 33 QMC data for the uniform frame
magnetization. Apart from the markedly higher value at R = 0, M0(R)
is observed to grow roughly linearly with R, with a slight decrease for
larger R. For the magnetization at the center of the lattice (R = 0), the
result M0(0) → m0 = 0.099(1) as L → ∞ is obtained. Only a few frames
away from the sample edge, an oscillating behavior escalates rapidly to
a maximum at R = Rmax. The consequences of the edges are discussed
in Chapter 5, here focus is on the large R and small R/L results, that is,
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Figure 4.4: Uniform magnetization distribution in the single layer, magnetically
ordered, Heisenberg antiferromagnet. Symbols show QMC data and the curves
are the functions of Equations (4.6) and (4.7)

far away from the system center and edges. Although not shown, when
plotted against R/(L− 1) the LM0 data for different systems L collapse
onto a single curve (apart from the behavior at R = 0 and very close to
the lattice edges). Hence, neglecting higher-order terms that appear to be
small, one is led to the relation,

M0(R)L = c0

(
R
L

)
, (4.6)

with c0 = 2.77(2) as the best estimate. The corresponding integrated
quantity should then be,

I0(R) =
c0

2

(
R
L

)2

+ m0, (4.7)

which agrees with the QMC results, as shown by the curve in the main
panel. Equations (4.6) and (4.7) are primarily for small R/L, but they are
quite accurate across the whole sample, as seen in Figure 4.4.
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Figure 4.5: Spatial distribution of the staggered magnetization in the single layer
Heisenberg antiferromagnet.

Figure 4.5 shows the spatial distribution of the staggered component,
as obtained in our QMC simulations. Apart from minor finite-size effects
for small systems, a data collapse is obtained by normalizing Mπ and Iπ

with L−1 and L−2, respectively. For the line in the inset and the parable
in the main panel, we have used the expressions,

Mπ(R)L−1 = cπ

(
R
L

)
, (4.8)

Iπ(R)L−2 =
cπ

2

(
R
L

)2

, (4.9)

where cπ = 0.803(2).
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Chapter 5

Edge effects

In numerical studies of spin lattice models, it is common practice to use
periodic boundary conditions in order to avoid effects stemming from
the system edges. An expected benefit is usually a faster convergence of
the system size (L) dependent data to the bulk limit L → ∞. Analytical
studies, on the other hand, consider infinite systems or also use periodic
boundary conditions. Why explicit edge studies have mostly been ne-
glected so far, may partly be due to the fact that in most experimental
contexts the possible edge effects are not expected to be relevant. An ex-
ception are the quasi-1D systems, such as Sr2CuO3, where experimental
effects of open-end spin chains have been established theoretically [38–
41]. In 3D and 2D systems, the effects from sample boundaries may
not be distinguishable from the bulk signal because of the small edge to
bulk ratio. However, with a further sample miniaturization the boundary
physics may become important.

In the latter part of the previous Chapter, the Heisenberg antiferro-
magnet, Equation (4.5), was considered. Open boundary conditions and
odd L were used in order to study how the ground state magnetization is
distributed on the L× L lattice, mainly far away from the boundaries and
center. In this Chapter, focus is on the edges. In order to investigate how
the boundary conditions affect the magnetic susceptibility of the bulk, ob-
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tained for a periodic model, finite-T QMC simulations were performed.
Using even L, the total magnetization Mz = ∑i Sz

i → 0 as T → 0, and
the 1/T divergent low T susceptibility associated with Mz = ±1/2 is
avoided. Both semiopen and completely open systems, shown in Fig-
ures 5.1 (b) and (c), respectively, were considered. The obvious difference
between the two is that the latter model has corners, which may give rise
to additional effects, possibly interesting in their own right.

5.1 Negative edge susceptibility

To start with, the individual uniform magnetic susceptibilities were com-
puted,

χk =
J
T

〈(
N

∑
i=1

Sz
i

)2〉
, (5.1)

where k is the number of open edges; k = 0 for the periodic system,
and k = 2 and 4 for models with semiopen and fully open boundaries,
respectively. In analogy with the impurity susceptibility of Chapter 3, an
edge susceptibility can be defined,

χE = (χk − χ0) /kL, (5.2)

where the normalizing constant in the denominator is included because
the difference in the responses is expected to scale with the total length
kL of the free edges. A first guess would be χE > 0, that is, the ‘dan-
gling’ edge spins should enhance the susceptibility and, hence, χk > χ0.
Surprisingly, at low temperatures this intuition turns out to be wrong.

Figure 5.2 shows QMC data for χE as a function of T/J for a semiopen
system. The fact that the results for different L are observed to coincide
as L grows, confirms the scaling assumption of Equation (5.2). At high
T/J, χE vanishes because there is an equal number of independent spins
in both periodic and free-edge models. In the limit T/J → ∞ we al-
ways eventually get χE → 0 (seen explicitly for L = 4 and 8) due to the
singlet ground state of even L models. That the data don’t change with



5.1. NEGATIVE EDGE SUSCEPTIBILITY 33
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Figure 5.1: Single layer lattices with L = 4. Using periodic boundary conditions
(a), all spins are equal. In the models with semiopen (b) and open (c) boundary
conditions, the white and black spins are at distances R = 0 and R = 1 from the
system edge, respectively.
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Figure 5.2: Temperature dependence of the edge susceptibility for a semiopen
system, using lin-log axes. Errorbars are smaller than symbols. The line shown
in the lin-log plot is a log fit to size-converged low T data
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increasing L is, once again, used as the criterium for size convergence.
Tracing the size-converged data from high towards lower temperatures,
the values increase (reaching a maximum at T/J ≈ 0.5) just as anticipated
on behalf of more susceptible edges. However, continuing towards still
lower T/J, the edge response decreases and, in fact, becomes negative in
a fashion consistent with χE ∝ −a log(J/T). For the line in Figure 5.2,
which uses lin-log axes, a = 0.019 has been used.

The calculations were repeated for the classical Heisenberg antiferro-
magnet, that is, the O(3) σ model. In that case χE was observed to con-
verge, as L → ∞, to a roughly T independent positive constant. Hence,
the negative edge susceptibility, as observed for the quantum model, is
somewhat surprising, not the least when contrasted to the one found
for the single-impurity susceptibility (Chapter 2); a 1/T divergence with
positive log corrections as T → 0. Although not shown, the QMC data
obtained for a fully open system completely overlap the semiopen results
for large L. Therefore, system corners seem to be irrelevant for χE in the
thermodynamic limit. (The effect per spin, L−2χE → 0, as L→ ∞.)

The uniform susceptibility of Equation (5.1) can be resolved spatially
by computing the response at site i,

χk(i) = β〈Sz
i Mz〉, (5.3)

with ∑i χk(i) = χk. In a periodic model the location i is irrelevant; χ0(i) =
χ0/L2. In a semiopen system the local response will depend only on
the perpendicular distance R from a free edge, χ2(i) = χ2(R) (because
the lattice has translational invariance in the parallel direction). At the
edge we define R = 0, and as one moves away from it, R = 1, 2, . . .,
as illustrated in Figure 5.1. In analogy with Equation 5.2, the position
dependent edge susceptibility is defined,

χE(R) = χ2(R)− χ0/L2. (5.4)

Figure 5.3 shows L = 64 QMC data for χE(R) at two different tempera-
tures for which results are roughly size-converged. At β = 1 (a temper-
ature for which χ2 > χ0 in Figure 5.2) one can see that the edge spins
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Figure 5.3: Position dependent edge susceptibility at distance R from the free
edge of a 64× 64 semiopen lattice. Inset shows how the R = 0, 1 data evolve
with temperature.

(R = 0) are, indeed, more susceptible than bulk spins at this temperature.
However, as the temperature is lowered χE(0) seems to go to zero, as ob-
served in the inset. In fact, to some surprise one finds that it is mainly
the spins next to the free edges, R = 1, that are responsible for the nega-
tive edge susceptibility at low T. The available data also suggest that the
response remains reduced for several R away from the edges.

5.2 Knight shift consequences

The site dependent susceptibility χz
2(i) of Equation. (5.3) can, in principle,

be obtained experimentally [20, 34]. The spectrum from a NMR measure-
ment represents the frequency distribution function of the Knight shift,
which is caused by the hyperfine interaction between nuclear and elec-
tronic spins and is, hence, proportional to the local response. For the
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Figure 5.4: Knight shift distribution at different β, as obtained from QMC data
for L = 64. The cumulative histogram is normalized to one.

Knight shift at site i one can use the expression [64],

K(i) = A‖χ2(i) + B ∑
δ

χ2(i + δ), (5.5)

with A‖ = −4B as an experimentally determined approximate relation
for Cu NMR. The first term is due to the onsite hyperfine coupling and the
sum is taken over the nearest neighbors, which are four for bulk spins but
three for edge spins in the semiopen model. The temperature evolution
of the distribution function for K(i)/B is shown in Fig. 5.4. The large
center peak at K(i) = 0 is seen to broaden as the temperature is lowered,
which is due to increasing site-to-site fluctuations in the response of the
bulk spins away from the edges. In addition, two ‘bumps’ of roughly
equal intensities are observed on both sides. The one to the left should
stem from the edge spins (R = 0), which, although more susceptible at
high T/J, assume the bulk response at low temperatures, as previously
discussed. Hence, the bump is observed to move towards the center peak
as the temperature is lowered. In the same process, the center peak is
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seen to devour the rightmost bump, which, in turn, should be due to the
spins next to the free edges (R = 1), for which the reduced response was
found compared to the bulk value. Whether these distinct edge features
can be observed experimentally is questionable. Samples consisting of
extremely small fragments are probably required to distinguish any edge
effects from the bulk signal. What is more, the fragments are probably of
irregular shapes and have uneven, or rough, edges.

As a first step towards a possibly more realistic description, models
with rough boundaries were realized in the following manner. While
traversing the edges of a fully open lattice, each edge spin is either re-
moved, coupled to an extra off-lattice spin, or simply left alone with
equal probability 1/3. In order to still have a ground state with S = 0,
the roughness was executed in a way that conserves the number of spins
on the two sublattices. The QMC data obtained for χE = (χ4 − χ0)/4L,
averaged over several hundred of random edges, were presented in Pa-
per 5. The results show, that in this case the size-converged data are
consequently positive, with a possible log divergent behavior. Hence,
boundaries can clearly have a profound impact: For the case of uneven
boundaries the intuition of dangling edge spins seems to be correct. In
the limit when the edges are made fully smooth, the negative edge sus-
ceptibility should be recovered. Others have embarked on systematic
investigations into the boundary roughness effects [65].

5.3 Spin correlations

It may be recalled from Chapter 1 that the enhanced antiferromagnetic
spin correlations surrounding a vacancy in an antiferromagnetic host are
accompanied by a classical-like impurity susceptibility with nontrivial log
corrections. In a periodic 2D lattice, a vacancy constitutes a sort of a 0D
boundary. Hence, one is tempted to suspect that the puzzling negative
edge susceptibility is linked to altered spin correlations, of some kind,
near the open boundaries.

To look into this matter, the nearest-neighbor spin correlations were
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Figure 5.5: The relative deviation of the nearest-neighbor correlations Cij from
the bulk value C0

ij is position (R) dependent. The QMC data is for a 64× 64
semiopen system at β = 32. Integer and half-integer R are for bonds ij parallel
and perpendicular to the free edge, respectively. The inset is a magnification of
the R ≥ 2 results.

computed,
Cij = |〈Si · Sj〉|, (5.6)

and then they were compared to the bulk value C0
ij. The deviation ∆Cij =

Cij − C0
ij should depend on R; integer and half-integer values for pairs

ij parallel and perpendicular to the free edges, respectively, were used.
Figure 5.5 shows QMC results for the relative deviation ∆Cij/C0

ij for a
64× 64 semiopen lattice at inverse temperature β = 32. It is seen that the
nearest-neighbor correlations of pairs ij along the the edge, R = 0, and
the first rung, R = 0.5, are enhanced by more than 10%. Moving to the
next spin line (R = 1) and rung (R = 1.5), the correlations are negative
(reduced from the bulk value) by a few percent. Moving one more step
away from the edge, the comblike pattern of enhanced correlations is
repeated, as shown in the inset. For R ≥ 4, the deviations seem to decay
rapidly to zero.
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In conclusion, in Paper 5 the comblike pattern was reproduced by
performing a variational valence-bond analysis. It was argued that the in-
creased tendency to local singlet formation on dimers is at the heart of the
negative edge susceptibility. In a concurrent field-theoretical study [66],
the observed correlation pattern was found to be purely a quantum effect,
and the negative edge response was explained to originate from low-lying
spin waves. The prefactor of the log divergence observed in the QMC data
of Figure 5.2 agrees reasonably with the analytical prediction [66].
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Chapter 6

Summary

This thesis has accounted for a numerical study of the 2D S = 1/2 Heisen-
berg antiferromagnet. In order to determine some of the magnetic effects
brought about by defects, such as single impurities and system bound-
aries, large-scale quantum Monte Carlo computer simulations were per-
formed.

Part of the problems addressed in this work originates from analyt-
ical studies, which, in the case of strongly correlated quantum systems,
rely on assumptions and approximations to some degree. One intention
of the computational investigations presented here has been to produce
unbiased high-quality numerical data against which such predictions can
be tested.

For a spin-S impurity coupled to a magnetically ordered host model, a
predicted [24] classical-like leading-order Curie susceptibility was numer-
ically confirmed [Paper 1, Paper 2]. In addition, the QMC data revealed
a T → 0 divergent contribution, which was subsequently established on
theoretical grounds [31, 32]. For a nearly quantum critical Heisenberg
model, the Curie prefactor of the impurity susceptibility was numeri-
cally obtained [Paper 3]. The fact that the value turned out to be anoma-
lous, in the sense that it corresponds to irrational S, settled an analyti-
cal disagreement [24, 29]. Furthermore, in a joint analytical and numeri-
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cal study [Paper 4], the spatial distribution of the impurity moment was
found to span the entire, nearly critical, host system. Finally, the influ-
ence of system edges was examined [Paper 5]. Open boundary conditions
(smooth edges) were found to impede the bulk susceptibility; particularly
the spins close to the edges were observed to have a reduced magnetic
response compared to bulk spins. In contrast, uneven (or rough) edges
were found to enhance the susceptibility. Based on these initial numer-
ical findings, the edge effects were examined on analytical grounds by
others [66].

In studies of strongly interacting systems, slight defects, such as single
impurities, have successfully been used in many previous studies to probe
various aspects of the complex host systems. This work has adapted this
strategy, using a powerful and established numerical procedure, to carry
out investigations concerning aspects of the magnetic response of the im-
purities. Impurity studies analogous to those presented here should, in
turn, be useful when applied to other relevant models, and such problems
have already been addressed by others [67].

It is obvious that theoretical single impurity problems cannot be di-
rectly related to the physics of a many spin system with, for example, a
finite impurity concentration, which clearly is an important, yet highly
challenging vista to explore. Sufficient numerical data for that problem is
currently missing. Also, systematic numerical investigations concerning
the effects of system boundaries, such as rough edges, should be impor-
tant from an experimental viewpoint. However, a detailed knowledge of
the behavior of one impurity should, at least in a naive sense, be a prereq-
uisite for understanding the effects of many impurities. To that end, as
an invaluable complement to analytical studies, computational strategies
have proved quite powerful and the numerical results vital.
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Svensk resumé

Många av de intressantaste fenomenen inom dagens materialfysik upp-
står ur det intrikata samspelet mellan ett stort antal elektroner. Det
mest berömda exemplet är högtemperatursupraledare. Varken klassiska
teorier eller modeller där elektronerna är oberoende av varandra kan
förklara fenomenen. Istället döljer sig förklaringen till de häpnadsväck-
ande makroskopiska effekterna i det kollektiva elektronbeteende som just
laddningarnas starka ömsesidiga växelverkan leder till.

I vissa kopparoxider, till exempel La2CuO4, är det känt att valenselek-
tronerna till följd av en stark ömsesidig växelverkan lokaliseras en och en
till kopparatomerna i föreningens CuO2 plan. Elektronernas inneboende
magnetiska moment—spinnet—får då en avgörande roll för systemets
elektroniska och magnetiska egenskaper. Om föreningarna dopas med
extra laddningsbärare kan de bli supraledande. Men exakt hur det går
till är oklart—en enkel mikroskopisk förklaring saknas.

De teoretiska modellerna för starkt korrelerade elektronsystem är för
det mesta ytterst invecklade matematiskt sett och de kan inte lösas exakt.
Därför har bland annat supraledning vid höga temperaturer inte kunnat
hittills härledas ur någon given matematisk modell som till exempel fa-
voritkandidaten Hubbard modellen. Däremot är det känt att den nära
besläktade Heisenberg modellen beskriver de odopade kopparoxidernas
elektromagnetiska egenskaper mycket bra. Det är den enklaste modellen
för mikroskopisk magnetism i allmänhet—den beskriver hur lokaliserade
spinn effektivt växelverkar.

Många av Heisenberg modellens egenskaper är väl kartlagda. Den
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har undersökts i otaliga studier som på senare tider ofta motiverats med
just kopplingen till högtemperatursupraledarna. Modellen är också en
användbar och populär utgångspunkt för studier av de fundamentala as-
pekterna hos starkt korrelerade spinnsystem. Trots ansträngningarna har
ingen exakt lösning funnits. De analytiska utredningarna bygger för det
mesta på antaganden och förenklingar vars inverkningar på slutresultatet
ofta är oklara. Numeriska studier i sin tur kan i vissa fall behandla mod-
ellen exakt, men närmevärdesresultaten är alltid för ett system av given
storlek och de måste extrapoleras till det makroskopiska. Oftast behövs
bägge tillvägagångssätten. En relevant fråga som inte utretts i detalj är
vad effekterna av orenheter är i Heisenberg modellen.

Min avhandling undersöker inverkan av olika defekter som till exem-
pel enskilda vakanser och öppna kanter på Heisenberg modellens mag-
netiska egenskaper. En beprövat effektiv numerisk metod har använts—
en kvantmekanisk Monte Carlo teknik—för att utföra omfattande dator-
simuleringar på två dedikerade Linux datorkluster som byggts för än-
damålet. Arbetet hör till området beräkningsfysik. En central strategi
har varit att numeriskt pröva om vissa analytiska förutsägelser gällande
modellen håller sträck.

För en spinn-S orenhet kopplad till en magnetiskt ordnad Heisenberg
modell hade en magnetisk respons om S2/3T förutspåtts vid låga tem-
peraturer. Våra numeriska resultat bekräftade detta men påvisade också
att det finns ytterligare ett bidrag—en med temperaturen logaritmiskt
divergerande trend—som teorin inte förutsett. I den så kallade kvant-
kritiska fasen kunde vi på basen av mycket noggranna numeriska data
avgöra att responsen i det fallet är besynnerlig, som om orenheten ef-
fektivt hade spinn olika S. I samarbete med analytiska ansträngningar
kunde vi utröna att den av orenheten inducerade magnetiseringen förde-
las över hela det kritiska värdsystemet. Slutligen undersöktes inverkan av
öppna kanter på Heisenberg modellens magnetiska suskeptibilitet. Nå-
got överraskande visade resultaten att spinnen nära kanterna uppvisar en
minskad respons på grund av förändringar i korrelationerna mellan de
närmaste grannarna.
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