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ABSTRACT 
 
The control of coating layer properties is becoming increasingly important as a 
result of an emerging demand for novel coated paper-based products and an 
increasing popularity of new coating application methods. The governing 
mechanisms of microstructure formation dynamics during consolidation and 
drying are nevertheless, still poorly understood. Some of the difficulties 
encountered by experimental methods can be overcome by the utilisation of 
numerical modelling and simulation-based studies of the consolidation process. 
 The objective of this study was to improve the fundamental 
understanding of pigment coating consolidation and structure formation 
mechanisms taking place on the microscopic level. Furthermore, it is aimed to 
relate the impact of process and suspension properties to the microstructure of 
the coating layer.  

A mathematical model based on a modified Stokesian dynamics particle 
simulation technique was developed and applied in several studies of 
consolidation-related phenomena. The model includes particle-particle and 
particle-boundary hydrodynamics, colloidal interactions, Born repulsion, and a 
steric repulsion model. The Brownian motion and a free surface model were 
incorporated to enable the specific investigation of consolidation and drying. 

Filter cake stability was simulated in various particle systems, and 
subjected to a range of base substrate absorption rates and system temperatures. 
The stability of the filter cake was primarily affected by the absorption rate and 
size of particles. Temperature was also shown to have an influence. The 
consolidation of polydisperse systems, with varying wet coating thicknesses, 
was studied using imposed pilot trial and model-based drying conditions. The 
results show that drying methods have a clear influence on the microstructure 
development, on small particle distributions in the coating layer and also on the 
mobility of particles during consolidation. It is concluded that colloidal 
properties can significantly impact coating layer shrinkage as well as the 
internal solids concentration profile. Visualisations of particle system 
development in time and comparison of systems at different conditions are 
useful in illustrating coating layer structure formation mechanisms. 

The results aid in understanding the underlying mechanisms of pigment 
coating layer consolidation. Guidance is given regarding the relationship 
between coating process conditions and internal coating slurry properties and 
their effects on the microstructure of the coating. 
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Stokesian dynamics. 
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ABBREVIATIONS 
 
ABS   Absorption 
ASD   Accelerated Stokesian Dynamics 
CD   Cross Direction 
CC   Covercarb 
CSC Center for Scientific Computing (a.k.a. Finnish IT Center 

for Science) 
DEM   Discrete Element Method 
DLVO   Derjaguin, Landau, Verwey, Overbeek 
DPD   Dissipative Particle Dynamics 
EVA   Evaporation 
FCC   First Critical Concentration 
FEM   Finite Element Method 
GCC   Ground Calcium Carbonate 
HC   Hydrocarb 
HLL   High-Low-Low 
HND   Hiorns and Nesbitt’s Deposition 
ICC   Inter-Critical Concentration 
KCL   Keskuslaboratorio-Centrallaboratorium 
LB   Lattice-Boltzmann 
LID   Lyons and Iyer’s Deposition 
LLH   Low-Low-High 
LWC   Light Weight Coated 
MCD   Monte-Carlo Deposition 
MD   Machine Direction 
MWC   Medium Weight Coated  
OpenGL  Open Graphics Library 
PiMP   Particle Mobility Program 
RDF   Radial Distribution Function 
SCC   Second Critical Concentration 
SD   Stokesian Dynamics 
SDD   Steepest Descent Deposition 
SEM   Scanning Electron Microscopy 
VTT   Technical Research Centre of Finland
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NOMENCLATURE 
 
Roman symbols 

HA  Hamaker constant 
a  Particle radius 

chara  Characteristic particle size 

c  Ion concentration 
D  Diffusivity (Brownian motion) or particle diameter 
d  Particle diameter 

( )hf  Particle penetration length (Free surface model) 
H  Characteristic length scale 
h  Particle penetration height (Free surface model) 
K  Boltzmann constant 

21 , KK Steric force model parameters 

CollK  Hydrodynamic/ colloidal force ratio  

BrownK  Scaling constant in Brownian motion model 

fk  Filter cake permeability 

AN  Avogadro’s constant 

capP  Capillary pressure 

extP  External pressure 

Pe  Peclet number 
( )dp  Probability of particle diameter in particle size distribution 

R  Universal gas constant 

pRe  Particle Reynolds number 

T  Temperature 
t  Time 
u  Velocity 

charu  Characteristic system velocity 

surfu  Velocity of surface approaching particle 

AV /  Dewatered liquid volume per area 
z  Valence of ions 

0
a  Randomly determined unit vector (Brownian motion model) 
m  Particle mass vector 
F  Force vector 

BF  Force giving rise to the Brownian motion  
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HF  Hydrodynamic force and torque matrix 
H

fspF −  Hydrodynamic force between particle and free surface 
H

sbpF −  Hydrodynamic force between particle and solid boundary 

STF  Surface tension force 
PF  External or internal deterministic particle forces and torques 
P

collF  Particle force by colloidal interactions 
P

elF  Electrostatic repulsive force (DLVO model) 
P

vdwF  Van der Waals attractive force (DLVO model) 
P

stF  Steric particle force 
st

elF  Steric repulsion model elastic force component 
st

osmF  Steric repulsion model osmotic force component 
∞M  Mobility matrix 

R  Resistance matrix 
U  Velocity vector 

x  Mean Brownian displacement vector 
 
Greek symbols 
β  Boundary/ particle centre separation or particle pair size difference 
∆  Surface separation distance 

surf∆  Increase in liquid surface length due to boundary penetration 

sterδ  Thickness of adsorbed polymer layer 

µ  Viscosity of the liquid phase 

dµ  Mean particle diameter 

lρ  Liquid phase density 

σ  Surface tension coefficient 

0ε  Permittivity of vacuum 

rε  Continuous phase dielectric constant (pure water at NTP) 
φ  Coating colour solids volume fraction 

fφ  Filter cake solids volume fraction 

κ/1  Double layer thickness 
λ  London characteristic wavelength 

dσ  Standard deviation in particle diameter 

ψ  Particle surface potential 
ζ  Zeta potential 
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Ω  Rotational velocity of particle relative to surrounding medium
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1. INTRODUCTION 
 
The paper industry plays an important role in Finnish society. It provides, either 

directly or indirectly, employment for 200,000 people within Finland, and 

100,000 in Finnish companies abroad. Its share of Finnish exports is about one-

fifth (2004). The annual global consumption of paper in 2007 reached 400 

million tonnes, or 59 kg per capita. The Finnish forest industry is currently the 

sixth-largest producer of paper and board, with exports reaching 15 % of the 

world market.  

Currently, industry finds itself in a time of transition, facing ever 

increasing global competition and decreasing profit margins. Industry is 

attempting to offset the competition by improving product quality, increasing 

production process efficiency and by developing broader and more 

technologically advanced applications for paper products. In more recent times, 

attention has been directed towards novel applications in various fields such as 

intelligent packages including sensoring techniques, printed electronics and 

even biomedical applications. The utilisation of paper in such products puts 

greater demand both on the paper itself and on its surface treatment. 

Throughout the production chain, there is an increased need for tailoring the 

properties of the paper in order to obtain optimum performance. There is clearly 

a need for a deeper understanding of fundamental mechanisms taking place 

during the papermaking process and how these influence the properties of the 

end product. 

The production speed and inherent properties of the pigment coating 

process make experimental studies extremely challenging and in many cases 

practically impossible. This is especially so when focusing on the dynamic 

behaviour of the coating suspension. The paper web speed in a modern coating 

process can be up to 2,000 m/min (≈ 30 m/s), the size scale of the pigment 
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coating layer is only a few µm. Furthermore the paper is subjected to extreme 

pressure pulses and temperatures during the very short time scale, typically less 

than one second, between coating application and immobilisation. Most 

experimental studies have therefore focused either on the properties of the wet 

pigment coating slurry, macroscopic-type runnability aspects of the process, or 

the end-use properties of the coated paper. Very few studies have been able to 

capture the dynamics of the pigment coating process at the microscopic scale, 

since such research is both complex and expensive. Microscopic mechanisms 

suggested to take place in the pigment slurry during consolidation, have mostly 

been based on theories which remain challenging to confirm empirically.  

This work utilises a Stokesian dynamics-based modelling and 

simulation approach in studying pigment coating of paper. The focus is on 

simulating coating consolidation mechanisms at the particle level. This is done 

by linking deterministic particle interactions and the physical behaviour of 

particle systems to microstructural development of the coating layer. The 

objective was to identify possible microscopic structures that arise in pigment 

coating layers during consolidation. In this way, the fundamental understanding 

of pigment coating consolidation mechanisms taking place at the microscopic 

level can be improved. Furthermore, the impact of wet state structure, process 

and suspension properties, as well as the drying strategy on the consolidation 

and structure of the coating layer can be predicted.  
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2. BACKGROUND  
 

2.1 Pigment Coating of Paper 

 
Pigment coating is the surface treatment of paper by application of an aqueous 

suspension of pigments, binder and other additives to the surface of a base 

paper substrate. The intention behind surface treatment is to produce a paper 

with desirable properties given its end use. Depending on the application, the 

coating on the paper might influence its optical, mechanical, physical, barrier or 

printing properties (Santos, Velho 2004; Parpaillon et al. 1985; Lepoutre 1989; 

Prall et al. 2000). 

Coating can be applied to the paper by a number of different methods, 

the most common being jet or roll application combined with blade, roll, rod or 

air-jet metering. The interest in novel methods of contact-free application, 

curtain or spray coating, has also increased (Lehtinen 2000; Mendez, Morita 

2001; Hämäläinen 2003). Depending on the application and metering method, 

coating suspension properties and the coating process parameters, coating 

layers of different thickness can be obtained. Typical coat weights and coating 

layer thicknesses for different coated paper grades are shown in Table 1 

(Linnonmaa, Trefz 2000). Although not mentioned by Linnonmaa and Trefz, 

the relationship between coat weight and coating layer thickness is not 

necessarily equivalent. The thickness may vary depending on the particle size 

distribution, additives and porosity.  

Application and metering are followed by a drying system, which may 

include Infra Red (IR), air flotation or cylinder dryers. The drying strategy, i.e. 

the intensity, duration and number of drying steps, is known to significantly 

influence the microstructure and other properties of the coating layer and coated 
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paper (Rajala et al. 2002; Rajala 2004). A pilot coater system, including pre-

heating of the paper web, applicators, IR and air foil dryers, is shown in Figure 1.  

 

 
Figure 1. Pilot coater at VTT (formerly KCL) in Espoo, Finland. Reproduced with 
permission.  

 
After drying, the coating layer is typically already immobilised. However, to 

further improve surface smoothness and other such properties, the coated paper 

can be run through a single- or multi-nip calender. The calender can be either 

online or offline and composed of hard and soft nips in a number of different 

configurations (Kilmartin 1990).  

 

Table 1. Typical coat weights (per side) and coating layer thicknesses in manufactured 
coated paper 
Paper grade Coat weight [g/m2] or 

Coating layer thickness [µm] 
Lightweight coated (LWC) 5 - 10 
Single-coated, medium weight (MWC) 8 – 16 
Double-coated 14 - 26 
Triple-coated 24 - 40 
 
 

2.2 The Pigment Coating Suspension 

 
A coating suspension is a complex system of minerals, organic and inorganic 

additives. The properties of the coating suspension and dry coating layer are 

determined by the components of the suspension, their interactions, processing 
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parameters and macroscopic properties such as the dry solids content. This 

chapter discusses the components and properties of the coating suspension, as 

well as the interactions between particles within the coating.   

 

2.2.1 Components of the coating suspension 

 
Coating suspensions are typically composed of pigment, binder, and additives 

in an aqueous medium. The most common pigments used are ground or 

precipitated calcium carbonate, kaolin, talcum, titanium dioxide, gypsum or 

combinations thereof. Pigment particles can, depending on the processing 

method and inherent mineral properties, be of a number of different shapes. 

These shapes can range from roundish to platy, rodlike, or cubic. Pigments can 

also be of different sizes and comprise broad or narrow size distributions. These 

may in turn also influence the maximum solids content in the dispersion. The 

coating suspension is typically prepared with as high solids concentration as 

possible, though pumping and coater runnability problems still need to be taken 

into consideration. By example, for ground calcium carbonate (GCC), which 

can be fairly broad in its size distribution, solids contents of between 65 and 78 

wt-% are common. Depending on the type of mineral, the density is normally 

2.3 to 4.0 kg/dm3 and with most particles being of size 0.1 to 5 µm. Calcite, 

GCC, which is one of the most common pigments, are low aspect ratio 

roundish, cubic or prismatic-shaped with most particles being 0.5 to 2 µm in 

size and with a density of 2.7 kg/dm3. A comprehensive summary of the 

physical properties of coating pigments is presented, e.g., by Lehtinen (2000) 

and Eiroma and Huuskonen (1983).  

Binder is used for a number of different purposes, the most important of 

which is the binding of pigment particles to each other and to the base paper. 

Binder also influences the pore structure of the coating, as well as coating 
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suspension properties such as water retention and viscosity. The most common 

binders include latexes and starch. Latex particles can be considered relatively 

spherical in shape and are typically 100-200 nm in diameter. The density of 

latex binder is close to that of water, i.e. 1.0 kg/dm3. 

In addition to pigments and binder, a number of different additives can 

be used to improve the end properties of the coating layer, the runnability of the 

pigment system on the coater, or the properties of the coating suspension. Such 

additives include thickeners, dispersants, water retention agents, optical 

brighteners, lubricants and rheology modifiers (Heikkilä et al. 2000).    

 

2.2.2 Coating particle interactions 

 
Forces on particles in a coating suspension and the interactions between them 

originate from a multitude of physical and chemical phenomena. Such 

phenomena might be velocity or position dependent, but also vary with solids 

concentration or pH. In a suspension of moving particles, equilibrium between 

the repulsive and attractive interparticle, boundary-particle, and macroscopic 

forces and torques determines the individual as well as collective behaviour of 

the particles. Macroscopically measurable properties, such as viscosity, also 

relate to these interactions. For example, particle aggregation may result from 

the balance between repulsive and attractive colloidal forces. The dominant 

particle interactions are discussed below. They are selected in order to capture 

the essential physics of the system, including the movement and distribution of 

particles in a coating suspension. 
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Hydrodynamic interactions 

Hydrodynamic forces on particles in suspension arise as a result of the 

macroscopic flow of the liquid, movement of nearby particles and the 

movement of particles relative to a solid boundary or to the liquid free surface. 

Due to the viscosity of the liquid phase, particles approaching each other 

experience a pressure build-up resulting in a flow of liquid away from the gap 

between the particles. Similarly, if particles are moving apart, liquid is required 

to flow into the developing gap. These hydrodynamic interactions can therefore 

generate either interparticle attraction or repulsion, depending on the movement 

of particles relative to each other. Due to friction between particle surfaces and 

the liquid, the relative motions of particles can also give rise to torques. The 

relative motion can be divided into 4 main types; squeezing, shearing, pumping 

and twisting (Nopola 2004). The hydrodynamic interactions are further 

described in section 3. 

 

Colloidal interactions 

A colloidal suspension is often defined as a liquid medium containing particles 

of 1 nm to 1-2 µm in size. Due to the size scale of the particles in the coating 

suspension, the surface properties of the particles and the properties of the 

liquid medium, the wet coating suspension can be considered a complex 

colloidal system (Grön 1998). The balance between the repulsive and attractive 

components of the colloidal forces will determine the behaviour of the 

suspension.    

It is well known that uncharged colloidal particles in a suspending liquid 

with a different dielectric constant compared to the particles will aggregate. 

Particle aggregation is essentially due to van der Waals interaction forces. In the 

case of electrically charged particles, the interaction between them will be 

composed of an attractive van der Waals component and electrostatic repulsion. 
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The dominating theory for describing such systems is referred to as DLVO 

(from Derjaguin, Landau, Verwey, Overbeek), which simply combines the two 

contributing elements to net force or interaction energy between the particles. 

Due to differences in distance dependence between the repulsive and attractive 

components, a primary and secondary interaction energy minimum can be 

obtained. The minima are separated by energy barriers, which may vary in 

magnitude. This results in relatively complex behaviour of the particle-liquid 

system (Hiemenz 1986; Shaw 2003; Grön 1998). Some examples are given in 

Figure 2, which plots the interparticle potential energy versus particle surface 

separation.  

 

 
Figure 2. DLVO potential energy curve for a model suspension at a few different double 
layer thickness and particle surface charge settings (the radii of the interacting particles 
are 500 nm). 

 

A third repulsion force, Born repulsion, comes into play when particles are in 

close contact. This strong repulsive force originates from overlap of electron 

clouds. Although Born repulsion is not considered an colloidal force, it causes a 

primary energy minimum when integrated into the DLVO interaction curve. If 

only taking into account the van der Waals attraction and electrostatic 
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repulsion; infinite attraction would result at a zero surface separation distance 

(Lyklema 2005a). 

 

Steric stabilisation 

Polymer can be added to the coating suspension as a stabiliser, since polymer 

adsorbed to the surfaces of pigment particles give rise to a steric barrier that 

counteracts particle agglomeration. There are two basic processes which may 

take place; interpenetration (overlapping of the polymer layers) and mixing 

(osmotic pressure) or compression of the polymer layers. The mechanisms 

depend on the segment density distribution as well as the dynamics of the 

adsorbed layers (Grön 1998). In general, a steep segment density distribution 

and high density of the adsorbed polymer layer can be expected to result in 

compression, while interpenetration and mixing is likely to occur in dilute 

layers. At high degrees of interpenetration, polymers adsorbed to one particle 

can reach the surface of another particle. Compression may also occur in dilute 

adsorbed layers. Figure 3 illustrates the steric repulsion force as function of 

interparticle separation, utilising both osmotic and elastic force components 

(Vincent et al. 1980, 1986; Einarson, Berg 1993; Toivakka et al. 1997). 

The thermodynamics of two polymer layers mixing and overlapping is 

comparable to the mixing of polymer solutions. The increasing polymer 

concentration results in a loss of mixing entropy, which causes repulsion 

between the layers. The effect is also opposed, however, by favourable 

polymer-polymer contact interaction energies, as stated in the Flory-Higgins 

theory (Napper 1983). 
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Figure 3. Steric repulsion force, as described by a combined osmotic and elastic repulsion 
component. The interparticle separation is normalised with the polymer layer thickness.  

 

Bridging flocculation 

Bridging flocculation results from the mutual attraction between coating 

particles with adsorbed polymer provided the same polymer chain or system of 

polymer chains attaches to more than one particle at the same time. It is 

considered that an optimum dosage of polymer should be present in the coating 

suspension for bridging flocculation to be effective. This effect is closely 

related to the saturation level and surface coverage of polymer adsorbed on 

pigments. At low coverage, adsorbed polymers lie relatively flat on the surfaces 

of particles, which reduces the probability of adsorption onto other particles. If 

particle surfaces are saturated with polymer, there is no further possibility for 

polymer tails to find free sites for adsorption onto adjacent pigment particles. It 

is estimated that around 50% surface coverage results in optimally high 

bridging flocculation (Napper 1983; Grön 1998; Shaw 2003). 
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Depletion flocculation 

The addition of nonadsorbing polymer to a particle suspension is, under 

favourable circumstances, known to induce particle flocculation in the 

suspension. This is provided a critical volume fraction of polymer is exceeded. 

The critical volume depends on the molecular weight of the polymer and its 

volume fraction in the suspension. The mechanism is known as depletion 

flocculation and has been extensively studied since its discovery (Tadros 1987).   

There are several theories describing the mechanism of depletion 

flocculation. It is believed to take place when two suspension particles move 

closer to each other than the diameter of the nonadsorbing polymer coil. The 

polymer is then excluded from the region between the particles. This results in 

an attractive force, related to the lower osmotic pressure in the region between 

the particles (Tadros 1987). Other approaches assume depletion of chain 

polymers near nonadsorbing particles, which produce osmotic attraction 

between the particles when two depletion layers overlap (Napper 1983). 

 

Brownian motion 

The Brownian motion is a perpetual irregular motion of small particles in a 

fluid, due to fluctuations in the mean force exerted on them by the molecules of 

the suspension liquid. A Brownian particle is believed to experience as many as 

1021 collisions per second with molecules of the fluid. The influence of all these 

collisions will give rise to a random movement of the particle, as illustrated in 

Figure 4. The phenomenon owes its name to the botanist Robert Brown (1773-

1858), who observed the motion to take place for pollen grains in water (Van de 

Ven 1989). Brownian motion is believed to be of importance mainly for small 

coating particles and additives, e.g. latex (100-300nm) and thickeners (5-10nm). 

 Brownian motion is also linked with particle sedimentation under the 

influence of gravity. Essentially, smaller particles sediment more slowly than 
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larger ones. Small particles might in fact not sediment at all if the system 

temperature is sufficiently high. In this context it is important to note that due to 

the path the paper web takes in industrial coating processes, the direction of the 

gravity component is not straight-forward. Moreover, due to the very short time 

scale of the process, the influence of gravity and sedimentation on the 

microstructure can be considered insignificant.  

 

 
Figure 4. Brownian motion trajectory of a single particle. 

 

2.3 Coating Layer Consolidation 

 

The consolidation of a coating layer is defined as the gradual transition of the 

wet slurry applied onto the base substrate to a dry and immobilised structure. 

This results from the absorption of the liquid to the base substrate as well as 

evaporation from the top of the coating layer. The mechanisms of base paper 

absorption and evaporation can be considered as fundamentally different. The 

prerequisite for absorption is a flow of liquid from the coating layer into the 
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base substrate. Evaporation, on the other hand, can simply be comprehended as 

the expulsion of liquid from the surface of the wet coating. This expelling of 

liquid does not necessarily entail a flow of liquid phase to the surface of the 

coating. 

 The drying of pigment coating has been divided by Watanabe and 

Lepoutre (1982) into three phases, which are separated by a first and second 

critical concentration (FCC and SCC). The first critical concentration is reached 

as the loss of the liquid phase causes solid particles of the coating suspension to 

start to penetrate the liquid surface and initiate the formation of liquid menisci. 

This results in a sharp decrease in gloss. The second critical concentration 

defines the point when air starts to penetrate into the voids in the rigid particle 

network, giving rise to a sharp increase in reflectance. The first critical 

concentration is in industry often referred to as the immobilisation solids 

concentration (Salminen, Toivakka 2000; Lepoutre 1989). The applicability of 

this work ranges roughly from the start of consolidation until the point when 

particles begin to penetrate the liquid surface, i.e. some time between FCC and 

SCC. A third point, known as the inter-critical concentration (ICC), has also 

been suggested (Laudone et al. 2006). The inter-critical concentration is 

determined as the point when the porosity decrease is half-way between the 

FCC and SCC. This point is not as distinguishable as the FCC and SCC, but is 

argued to be relevant due to the importance for coating layer shrinkage taking 

place between these two points. The initiation of each of these phases is the 

starting point for different redistribution processes of the particles and liquid. 

These processes may influence the cross-structural solids concentrations and 

particle distributions (II; Sand et al. 2008a). 
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2.3.1 Filter cake formation 

 

The accumulation of pigment particles on the base substrate has been the 

subject of several investigations over the years (Eklund and Salminen 1986; 

Letzelter and Eklund 1993a; Lohmander et al. 2001; Engström 1986; Salminen 

et al. 1995). The structure of the filter cake will have influence on the final 

structure of the dry immobilised layer and therefore determine physical and 

functional properties of the coated paper. For instance, the absorptive properties 

and binder distribution in the coating layer will influence printability and the 

mechanical properties of the layer. Additionally, filter cake formation has 

influence on the runnability of the coater. Filter cake formation is a result of 

pressure-induced liquid penetration or capillary absorption of the liquid phase 

into the base substrate.  

Assuming at least some degree of coating holdout, a locally increased 

concentration of dispersed solids from the bulk coating suspension will form at 

the coating/ base substrate interface, Figure 5. The rate of solids accumulation 

will decrease as the flow of liquid becomes increasingly impeded by the high-

concentration solids region. At some point, equilibrium can be expected to arise 

between particles accumulating and particles escaping from the filter cake due 

to their thermal motion. 

 
Figure 5. Filter cake formation as result of base substrate absorption (Toivakka 1997). 
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However, the mechanism by which filter cakes form is complex and has been a 

cause of controversy within the research community. Two dominating theories 

have been proposed for explaining the mechanism of filter cake formation. 

Immobilisation through filter cake formation assumes there is a sharp solids 

concentration difference between the filter cake and the bulk coating 

suspension. Immobilisation through thickening, however, suggests the existence 

of a concentration gradient throughout the filter cake structure. The mechanisms 

have been debated in several papers (e.g. Lohmander et al. 2001; Engström 

1986; Salminen et al. 1995). An illustration of the two mechanisms is shown in 

Figure 6. 

 

 
Figure 6. Comparison between the two filter cake formation mechanisms proposed in the 
literature. 

 
Commonly, Darcy’s law-type (Darcy 1856) absorption profiles are used as an 

estimate of macroscopic liquid absorption given the simultaneous formation of 

a filter cake. An equation by Usher et al. (2001) 
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states that the dewatered amount, ( )AV , depends on the permeability of the 

filter cake, fk , the viscosity of the liquid phase of the coating, µ , the filter 

cake and coating colour solids volume fractions, fφ  and φ , the capillary and 
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external pressures, capP  and extP  and time, t . Both theoretical and experimental 

results comparable to the equation can be found in the literature (e.g. Letzelter, 

Eklund 1993a,b; Heikkilä 1993). 

 

2.3.2 Skinning 

 
A region of increased concentration of solids at the coating/ air interface is 

formed as a result of the evaporation of liquid from the coating layer. The 

coating layer shrinks as liquid is expelled from the air/ coating interface. If the 

evaporation rate is faster than the ability of solids in the coating to rearrange 

and even out any solids concentration gradient that may arise, a denser layer of 

solids will accumulate at the surface of the coating. This process of solids 

concentration increase due to drying is commonly termed skinning (Salminen, 

Toivakka 2000). A 2D illustration of skinning is given in Figure 7. The effect is 

also believed to be intimately linked with binder migration (Luo et al. 2008), 

which will be described in more detail in section 2.3.3. 

The mechanism of skinning has been studied numerically. The particle 

volume fraction in the skin depends on Peclet number. Furthermore, the 

formation of the skin at the top of a suspension film differs from conventional 

sedimentation, due to the domination of convection phenomena rather than 

diffusion (Routh, Zimmerman 2004). Particle deformation has also been found 

to be a factor in the formation of high solids concentration regions in particle 

systems. Such mechanisms have frequently been studied (e.g. Routh, Russel 

1999), but their simulation is too complex to be handled by most particle-based 

computational techniques.   
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Figure 7. Skinning at the coating/ air interface caused by evaporation (Toivakka 1997). 

 

2.3.3 Binder migration 

 
Binder migration is the redistribution, or, preferential accumulation of binder 

particles to some region of the consolidating coating layer. The phenomenon 

was studied as early as 1965 by Heiser and Cullen, who concluded that binder 

migration depend on the dry solids content of the coating slurry as well as the 

drying intensity during hot air drying. Kline (1993) also found binder mobility 

to depend on the coating system particle size distribution. At a relatively early 

stage, computer simulation was used to study the mechanisms of binder 

migration (Nowicki et al. 1991). Experimental work using advanced analytical 

methods such as SEM coupled with Osmium staining (e.g. Pöhler et al. 2006) 

or Cryo-SEM (Luo et al. 2008; Cardinal et al. 2009) has been reported in more 

recent years. 

The distribution of binder has an influence on the print quality of coated 

paper as well as the mechanical properties of the coating layer (Engström et al. 

1991; Engström 1994; Matsubayashi et al. 1992). The influence on print quality 

relates mostly to unevenness in the physical and chemical surface properties of 

the coated paper, resulting from a heterogeneous distribution of binder. The 

mechanical properties of the coating layer are related to the ability of the binder 

to glue pigment particles into a coherent structure, without significant variations 

in lateral or vertical direction mechanical properties (Whalen-Shaw 1993). The 
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presence and mechanism of binder migration is, despite extensive research, still 

under debate in the scientific community. 

 

2.4 Analysis of Governing Forces and Interactions  

 

The interactions and forces described above can be evaluated in order to 

determine which models are relevant to include in simulations. This is done by 

calculating the forces based on variables and parameter values typical for 

coating processes. By forming ratios between these forces, it is possible to 

identify the forces that dominate under specific process conditions.  

The mutual relevance of hydrodynamics, thermal motion and colloidal 

interactions are commonly described by the particle Reynolds and Peclet 

number. Similarly, a dimensionless expression can be formulated to assess the 

relative importance of the viscous (hydrodynamic) forces and the colloidal 

interaction forces. 

 Though these numbers indicate the relative influences of the three 

dominating force models, hydrodynamic, Brownian and colloidal forces, their 

values should only be considered as indicative. As a simulation is composed of 

a fairly limited number of interacting particles in a complex system with 

constantly changing conditions, many of the variables of the equations above 

will be particle pair specific and may also change with time. Considering that 

the particle system is generated with a size distribution, all other parameters 

being the same, the ratios will still be different for different particle size 

fractions.     
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2.4.1 Hydrodynamics 

 
The impact of the hydrodynamic forces of the suspending liquid on the particles 

can be described using the particle Reynolds number, Rep. The particle 

Reynolds number can be calculated using the equation 

 

µ

ρ charcharl

p

ua
=Re ,        (2) 

where lρ  is the density of the continuous (liquid) phase, chara  the characteristic 

particle size, charu  the characteristic velocity of the particles relative to the 

liquid and µ  the viscosity of the suspension (Brady et al. 1988). In the 

simulation technique used in this work, the particle Reynolds number plays an 

important role due to the lubrication approximation, which assumes particles to 

react instantaneously to the flow of liquid. This assumption is only valid, 

however, for small particle Reynolds numbers (also see 3.1). In pigment coating 

processes, it is possible to estimate the particle Reynolds number given the size 

scale of the suspended particles, the properties of the suspending liquid and the 

flow field. During typical consolidation processes, the particles are within the 

nm to µm size range. The suspending liquid phase is water and the flow rate of 

the liquid relative to the particles does not exceed a few tens of µm/s. Under 

these conditions, the particle Reynolds number will be in the order of 10-7 to 

10-11. Thus, viscous forces will completely dominate over inertial forces and the 

low particle Reynolds number condition applies. The above analysis applies for 

consolidation of coating colour after the metering process. Under and in the 

vicinity of the coating blade, the situation might be different due to high 

velocities and diverging streamlines in the flow. 
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2.4.2 Brownian forces 

 
The Peclet number, Pe , is used to compare the convective effect with the effect 

of particle diffusion. It can thus be utilised to in estimating the relative 

influence of hydrodynamic forces to diffusion. Convection in this work is 

driven by liquid absorption into the substrate and evaporation from the free 

surface, while diffusion results from the Brownian motion. For the current 

problem, the Peclet number can be expressed as 

 

kT

Hua
Pe charcharπµ6

= ,        (3) 

 

where µ  is the viscosity of the liquid phase, H  is the characteristic length 

scale of the system (coating layer thickness), k  is the Boltzmann constant and 

T  is temperature. charu  is the velocity of the particles relative to the liquid, but 

can in the case of evaporation also be the velocity of the receding free surface. 

The Peclet number can therefore be used both in predicting filter cake 

formation and skinning (Cardinal et al. 2009, 2010). Peclet numbers larger than 

one indicate that the effect of diffusion is negligible (Hiemenz 1986). 

 The calculation of the Peclet number is not straight-forward in pigment 

coating consolidation simulations, since many of the conditions change during 

the consolidation process. However, when considering values relevant to the 

simulations of the present work, it can be concluded that the Peclet number can 

vary significantly during the course of a simulation. For instance, its value can 

be close to 10,000 at the early stages of consolidation, and for large particles 

experiencing rapid dewatering/ evaporation. On the other hand, it can be below 

one for the smallest particles during minimal dewatering/ evaporation. The 

calculated ratios results from the parameters; chara  = 2 µm, H  = 5 µm,       
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charu  = 30 µm/s, T = 298 K and chara  = 0.2 µm, H  = 1 µm, charu  = 1 µm/s, T = 

353 K, respectively. The characteristic length scale above need to be chosen 

such, that movement of particles over this length scale would have a significant 

effect on the microstructure of the coating layer and its properties. The 

consideration above indicates that the effect of Brownian motion in simulations 

is mostly insignificant. However, it could possibly have an effect for the 

smallest particle size fraction at the late stages of consolidation. As previously 

discussed, pigment coating formulations can also include polymeric additives 

and soluble binders, for which the Peclet number would be even smaller. It 

should also be noted that the Brownian motion may have an effect on the 

structure formation by helping particles to rearrange and move past one another.       

 

2.4.3 Colloidal interactions 

 
The relative impact of hydrodynamics in relation to colloidal interactions can be 

formulated by an expression similar to the Peclet number. The expression, here 

termed collK , can be written 

 

P
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where values below 1 indicate a higher relative influence of colloidal forces. 

Estimating from the parameters of the simulations in this work, it can be 

concluded that this ratio can vary from 0.15 towards infinity. Typically, the 

relative influence of colloidal forces can be expected to dominate at the latter 

stages of consolidation while the hydrodynamics dominate at the beginning. 
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2.5 Simulation Methods 

 

There are a multitude of different particle dynamics methods available for 

investigating various particle systems. The selection of method is made 

depending on the type of system intended for simulation, where the size of the 

particles, the dominating forces and the properties of the system must be taken 

into consideration. For example, molecular and Brownian dynamics is 

commonly used in systems of nano-sized particles where molecular or atomic-

scale forces and Brownian forces dominate respectively. Granular dynamics is 

suitable for centimetre to metre-sized particle systems where mechanical forces 

and friction dominates. At the other end, planetary dynamics is utilised in 

simulating the transition of celestial bodies. Stokesian dynamics is used in 

simulating the behaviour of nm to µm sized particles suspended in a high-

viscosity (liquid) medium. Stokesian dynamics is similar to Brownian 

dynamics, with the exception that the hydrodynamic interactions in the latter 

are highly simplified. In the current section, different simulation methods that 

have been utilised in studying pigment coating are discussed. Emphasis is put 

on a qualitative discussion of the Stokesian dynamics technique and its 

applicability to pigment coating research. 

 

2.5.1 Simulation of pigment coating 

 

There are several factors which have necessitated the development and 

application of modelling and simulation methods as a means of studying 

coating processes. It is important to understand the behaviour of pigment 

coating systems in order to control both, the rheological properties of the slurry 

during application and the structure formation during drying. However, in 

industrial-scale paper coating processes, the coating layer consolidates very 
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fast, typically within one second. The short consolidation time in combination 

with the small size scales (µm to nm) and the complexity of the process, has 

rendered it difficult or impossible to conduct purely experimental studies of 

coating process dynamics. Conventional experimental studies on coating 

structures have focussed on the structure of already consolidated coatings (e.g. 

Engström et al. 1991; Engström 1994; Pöhler et al. 2006). The many theories on 

formation mechanisms reveal the need for phenomenological modelling 

(Watanabe, Lepoutre 1982; Lohmander et al. 2001). Despite the difficulties, 

some studies have made progress through experimental investigation of the 

dynamics of coating layer formation (Sheehan et al. 1993; Ming et al. 1995; 

Stanislawska, Lepoutre 1995;  Ma et al. 2004).  

Recent overviews of the development and progress of various particle 

methods for investigating pigment coating on the microscopic scale are reported 

by Vidal and Bertrand (2006) and Pianet et al. (2008). It can be differentiated 

between two basic types of models; probabilistic and deterministic. 

Probabilistic methods have traditionally been the basis of different types of 

random particle deposition methods, which have commonly been applied in the 

generation of model pigment packings or in simulating coating layer 

consolidation. Such methods include steepest descent deposition (SDD), 

Monte-Carlo deposition (MCD), Hiorns and Nesbitt’s deposition (HND), Lyons 

and Iyer’s deposition (LID) (Eksi, Bousfield 1997; Vidal et al. 2003a, b; 

Hiorns, Nesbitt 2003; Lyons, Iyer 2004). Deterministic models utilise physical 

models such as force balances and Newton’s laws of motion. The most 

commonly used deterministic models for simulation of particle systems include 

Stokesian dynamics (SD), the discrete element method (DEM), granular 

dynamics and the Lattice-Boltzmann method (LB) (Cundall, Strack 1979; 

Bilodeau, Bousfield 1998; Barbesta et al. 2001; Ladd, Verberg 2001; 

Raiskinmäki et al. 2001; Lyons et al. 2003; Bertrand et al. 2004; Bertrand et al. 
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2005; Hyväluoma et al. 2005; Pianet et al. 2008). There are also some examples 

of methods, e.g. dissipative particle dynamics (DPD), which can be considered 

as being semi-deterministic. These methods utilise deterministic laws of 

motion, but require non-deterministic elements in tuning the particle 

interactions to allow for larger timesteps (Hoogerbrugge, Koelman 1992; 

Koelman, Hoogerbrugge 1993; Nopola 2004; Martys 2005).   

 

2.5.2 Stokesian dynamics 

 

Stokesian dynamics (from Georges Gabriel Stokes, 1819-1903) was introduced 

by Brady and Bossis (Bossis, Brady 1984; Brady, Bossis 1988; Bossis et al. 

1988), partly using convergence expressions developed by e.g. Koliha (1973) 

and O’Brien (1979), as a simulation technique for studying many-body 

interactions in non-equilibrium suspensions. Already in 1987 it was presented 

by Barnes et al. as a potential tool for computer simulation of the behaviour of 

particle suspensions.  

Since its development, the technique with various modifications has 

been applied in the study of particle systems and their properties (Brady et al. 

1988; Durlofsky, Brady 1989; Lovalenti, Brady 1993a,b; Chang, Powell 1994; 

Jones, Kutteh 1999; Ball, Melrose 1997; Melrose, Ball 2004; Kulkarni, Morris 

2009). Improvements to the Stokesian dynamics method have during later years 

enabled the simulation of ever more complex systems. These systems include 

colloidal dispersions and the influence of temperature (Phung et al. 1996; Jones 

2001), as well as simple cases of non-spherical particles (Ziler, Bousfield 1991; 

Ziler, Bousfield 1992; Clayes, Brady 1993; Hase, Bousfield 1994; Meng, 

Higdon 2008a,b). A timeline showing some key developments and practical 

applications of the Stokesian dynamics technique is presented in Figure 8. 
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PRE-STOKESIAN DYNAMICS 

1973 
Koliha Convergence expressions and their 

generalisation 

1979 
O’Brien Absolute convergent expressions for particle 

interactions 

1984 
Bossis, Brady Method for simulation of hydrodynamic and non-

hydrodynamic interactions in particle suspension 

1987 
Durlofsky, Brady, Bossis General method for computing hydrodynamic 

interactions of N suspended particles 

STOKESIAN DYNAMICS 

1987 
Barnes, Edwards, 
Woodcock 

Describes Stokesian dynamics as a potential 
tool for the simulation of particle suspensions 

1988 Brady, Bossis First introduction as simulation method 

1988 
Brady, Phillips, Lester, 
Bossis 

Method for calculating hydrodynamic 
interactions in infinite suspensions 

1989 Durlofsky, Brady Solid planar boundaries 

1990 
Bousfield First application to coating of paper, introduction 

of lubrication approximation 

1992 
Toivakka, Eklund, 
Bousfield 

Surface-particle interaction, Mechanical 
interactions in 2D  

1993 
Lovalenti, Brady Force on single particle in small-amplitude 

oscillating and time-dependent low-Re flow fields 
1993 Claeys, Brady Simple non-spherical objects (ellipsoids) 
1996 Phung, Brady, Bossis Brownian motion/ Peclét numbers 

1997 
Toivakka Further modification of lubrication approximation. 

Colloidal, steric and Brownian forces 

1997 
Toivakka, Salminen, 
Chonde, Bousfield 

DLVO and steric forces 

2000 Foss, Brady Monodisperse hard spheres 
2001 Jones Linear shear flow 
2001 Sierou, Brady Accelerated Stokesian Dynamics (ASD) 

2001 
Barbesta, Bousfield, 
Rigdahl 

Boundary roughness in SD model 

2002 Sierou, Brady Application of ASD 
2004 Nopola Modifications to 3D, differently sized particles 

2008 
Pianet, Bertrand, Vidal, 
Mallet 

Stokesian dynamics/ DEM application for fluid 
flow feedback  

   

Figure 8. Some key events in the development and application of the Stokesian dynamics 
technique.  

 
Several improvements have been made to the traditional Stokesian dynamics 

technique in order to achieve greater computational effectiveness and to 

increase the size of the particulate systems. While the original technique 

allowed the simulation of no more than a few hundred particles, current 
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developments allow for efficient simulation of thousands to tens of thousands 

of particles (Sierou, Brady 2001). 

 Bousfield (1990) introduced the lubrication approximation in 

combination with a Stokes drag contribution from the liquid. This assumed that 

the long range hydrodynamic force could be approximated by Stokes law based 

on the bulk or base flow field without particles present. Conversely, the original 

Stokesian dynamics method subtracts the long range lubrication forces from the 

long range hydrodynamic interactions. Further modification was made to the 

lubrication approximation by Toivakka (1997), who applied algorithmic 

techniques common in molecular dynamics such as particle neighbour lists and 

a sparse matrix solver to further improve efficiency. An alternative approach 

towards reducing the computational cost of hydrodynamic force models was 

demonstrated by Sierou and Brady (2001). The method, named Accelerated 

Stokesian Dynamics (ASD), avoids the calculation of the far-field mobility 

matrix (see 2.2) by direct calculation of the far-field hydrodynamic force and 

utilisation of preconditioning schemes to reduce the cost of iterative matrix 

inversions. The ASD technique has been successfully utilised in several 

applications, e.g. studies on rheology and microstructure in non-colloidal 

suspensions (Sierou, Brady 2002) as well as in the implementation of Brownian 

motion (Banchio, Brady 2003).  

The estimation of computational expense as function of the number of 

particles is not straight-forward. It depends on which Stokesian dynamics 

approach is used, and which other improvements it may include. Alterations to 

the traditional technique, using preconditioning schemes and omitting 

interactions between distant particle pairs will radically change the 

computational effort. In fact, the concentration of particles in the system, or 

interparticle distances, will be more of a limiting factor than the number of 

particles simulated. The forces in the system, boundary conditions and the size 
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of particles, also play a role. The steepness of interparticle forces of 

neighbouring particles slows down time integration due to a small t∆ . 

Simulation of polydisperse systems subjected to consolidation, sedimentation or 

other particle agglomeration effects need to be planned with care. Even though 

the number of particles simulated is the same, both memory consumption and 

computational expenses can vary significantly over the time of a simulation.  

Nevertheless, some estimations are available in the literature, as summarised in 

Table 2 and graphically illustrated in Figure 9. 

 

1

10

100

1,000

10,000

100,000

1 10 100 1,000 10,000 100,000 1,000,000

Computational requirement

N
u

m
b

e
r 

o
f 

p
a
rt

ic
le

s

Lubrication+Neighbour list and ASD

Lubrication approximation

Traditional Stokesian dynamics

 
Figure 9. Approximate scaling between number of particles simulated and estimated 
computational requirement (unitless) for different SD approaches. 
 

Table 2. Comparison in computational expense using different modifications to the 
traditional Stokesian Dynamics technique 

Stokesian Dynamics Method Source Computation scaling 
Traditional Stokesian Dynamics Brady, Bossis 1988 O(N3) 
Lubrication approximation Bousfield 1990 O(N2) 
Lubrication technique + Neighbour list Toivakka 1997 O(N log (N))* 
Accelerated Stokesian Dynamics (ASD) Sierou, Brady 2001 O(N log (N))** 
* Additional computation time is needed to generate and update the neighbour list. 
** Additional computation time is needed to generate preconditioning scheme. 
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2.5.3 Stokesian dynamics simulation of pigment coating 

 

Bousfield was the first to apply Stokesian dynamics in the simulation of 

pigment coatings (Bousfield 1990). Later on, a method for simulating the 2D 

microstructure development and levelling of coating at different drying rates 

was presented by Toivakka et al. (1992). The most common fields of pigment 

coating studies using Stokesian dynamics has been on rheological properties of 

pigment slurries and the motion of pigment particles (Toivakka et al. 1995; 

Toivakka, Eklund 1996; Toivakka 1997). The models developed by Toivakka et 

al. included hydrodynamic interactions and also contained a free surface model, 

electrostatic and van der Waals (DLVO) forces, steric forces, the Brownian 

motion and mechanical interactions (Toivakka 1997). The work of Toivakka et. 

al. was continued by Nopola (2004), who extended the simulation domain to 

three dimensions and adaptated the interaction models to allow for simulation 

of particle size distributions. The hydrodynamic interaction models were 

compared to results of finite element analysis (FEM) in order to obtain more 

accurate expressions for particles with large size differences and interactions 

with planar boundaries. The modifications by Nopola were furthered in this 

work, e.g. by applying minor model adaptations and the inclusion of non-linear 

dewatering profiles.   
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3. METHOD 
 
The Stokesian dynamics technique provides a versatile means of studying the 

motion of particles subjected to various forces and torques. These can be 

defined by models and be progressively included into the calculation. The 

model is suitable for simulating colloidal suspensions, since colloidal particles 

are comparably much larger than the molecules of the surrounding liquid and 

the particle Reynolds number is less than one. 

 The main constraint to the original Stokesian dynamics technique is the 

computing power required to calculate long-range particle interactions. With 

the full range of possible particle interactions taken into account, the number of 

particles simulated has been, at maximum, in the order of a few hundred. Given 

the types of colloidal systems required for representatively simulating pigment 

coatings, this constraint is unacceptable. Both accurate representation of particle 

size distributions and the linking of micro-level mechanisms to macroscopic 

suspension behaviour require particle systems to comprise several thousands of 

particles. Modifications and simplifications to the original Stokesian dynamics 

technique are consequently needed in order to simulate larger system sizes. 

 In this chapter, the basic principles, interaction models and governing 

equations of the simulation technique is described. Time discretisation is briefly 

discussed, followed by a description of force and torque models deemed 

relevant to pigment coating processes.  

 
3.1 Time Integration 
 
The motion of particles in a fluid can be described by the coupled N-body 

Langevin equation (Brady, Bossis 1988) 
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.       (5) 

 

The equation is a variant of Newton’s second law of motion and simply states 

that mass, m , times acceleration, which is given by the translational and 

rotational velocity vector )(tU , is the arithmetic sum of all forces and torques 

exerted on the particle. These can include hydrodynamic forces and torques, 

HF , external or internal deterministic non-hydrodynamic forces and torques, 

PF , and stochastic forces and torques giving rise to the Brownian motion, BF . 

Given a small particle Reynolds number (Toivakka 1997; Nopola 2004), 

defined as 

 

1Re <<=
µ

ρ charcharl

p

ua
,       (6) 

 

a simplification can be made to equation (5). For small flow rates or for small 

particles, the inertia of particles can be considered insignificant as the time 

needed for the particle momentum to relax is much shorter than the time scale 

for any significant movement of particles (Kim and Karrila 1991). Therefore, if 

the particle Reynolds number is small, the left hand side of equation (5) can be 

set equal to zero (assuming that 0Re =p ). For pigment coatings, the liquid 

medium is most often water and the suspended particles are in the nm to µm 

size range. As the velocity of particles relative to the liquid typically does not 

exceed a few tens of µm/s, the small particle Reynolds number condition 

applies. Consequently, the hydrodynamic forces will balance the external forces 

and the total net force on a particle becomes zero. As the particle Reynolds 

number approaches zero, Equation (1) can be rewritten 
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BP FFRU −−= ,        (7) 

 

where the hydrodynamic force and torque vector, HF , is determined by the 

resistance matrix R  and the velocity vector U  (Toivakka 1997). The forces 

that are determined by both particle velocities and positions are defined in R . 

The external particle forces independent of particle velocities are defined in PF  

and the Brownian motion is defined in BF . Long range interactions are 

included as drag forces and torques according to Stokes law along the diagonal 

of the resistance matrix R . The Stokes drag contribution is used to take into 

account the influence of the liquid flow, when calculating the movement of 

particles. As the motion of particles does not influence the flow of the liquid, 

phenomena such as hindered settling (Yin, Koch 2007) are not taken into 

account. This can be a cause of inaccuracy especially in sedimentation-type 

simulations, but also to some extent when simulating drying. However, in 

consolidation simulations where the dominating mechanism of dewatering is 

liquid absorption into a base substrate, the induced error is expected to be small. 

As a result of this simple division of forces and torques it becomes relatively 

straight-forward to include additional interaction models, capturing new aspects 

of the physics of the systems under investigation.   

 During time integration for a particular simulation, first the right side of 

equation (7) is determined, after which the translational and rotational particle 

velocities are solved using Gaussian elimination or an iterative procedure. The 

particle positions can then be integrated in time with a small timestep, dt . The 

interparticle distances and magnitude of the forces and torques working on 

particles determine the timestep, dt , to be used.  
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3.2 Hydrodynamic Interactions 

 

The resistance matrix in the original Stokesian dynamics method (Brady, Bossis 

1988) is calculated as the sum of the reciprocal mobility matrix and the two-

body resistance matrix, 

 

( ) ∞−∞ −+= BB 22

1
RRMR  ,       (8) 

 

in which the far-field many-body interactions are included in the mobility 

matrix ∞M  and two-body interactions in the resistance matrix B2R  (Toivakka 

1997). The far-field two-body interactions, ∞
B2R , must be subtracted to avoid 

double counting. 

 In paper coating applications, the particle concentration in suspension, 

the volume fraction, is typically high, usually 0.4 ≤ φ  ≤ 0.6. Thus, the two-

body interaction forces are much greater than the forces resulting from far-field 

many-body interactions. Consequently, the resistance matrix can be 

approximated with short-range lubrication type interactions as 

 

B2RR = .         (9)  

 

An alternative approach to reducing the computational cost of hydrodynamic 

force models has been demonstrated by Sierou and Brady (2001). The 

expensive calculation of the far-field mobility matrix was avoided by a direct 

calculation of the far-field hydrodynamic force and the utilisation of a 

preconditioning scheme to reduce the cost of iterative matrix inversions. 

 The method applied in this work considers four basic types of 

hydrodynamic interactions; forces and torques imposed on a single particle, 
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between a pair of particles, between a particle and a solid boundary and 

between a particle and a free surface. Each of these interactions is addressed 

separately.  

 

3.2.1 Force and torque on a single particle 

 

The hydrodynamic drag force on a single spherical particle in a Newtonian fluid 

can be approximated according to Stokes’ law as 

 

uF aπµ6−=          (10) 

 

where µ  is the viscosity of the liquid phase, a  the particle radius and u  the 

particle velocity relative to the liquid surrounding it (Toivakka 1997). Similarly, 

the hydrodynamic torque influencing the particle can be approximated as 

 

ΩT 38 aπµ−= ,        (11) 

 

where Ω  is the rotational velocity of the particle relative to the surrounding 

liquid.  

   

3.2.2 Pairwise interactions 

 
Pairwise forces and torques between nearby particles are calculated using near-

field lubrication approximation type expressions. Thus, the net force and torque 

exerted on a particle result from the summation of hydrodynamic interactions 

with each of the nearby particles. 

The relative 3-dimensional motion of a pair of spherical particles can be 

described by four different types of relative motion; squeezing, shearing, 
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pumping and twisting (I; Nopola 2004). For each of these modes of relative 

motion, the interparticle force models can be derived from Kim and Karrila 

(1991). However, when comparing the expressions of Kim and Karrila (1991) 

with numerical simulation results from finite element analyses (I; Nopola 2004) 

the differences were in some cases found to be significant. This was typical for 

particle pairs with large size differences, 1.0<β , which is not covered by the 

expressions presented by Kim and Karrila (1991). Furthermore, several of their 

expressions did not asymptotically approach zero for large particle separations, 

which enables accurate representation of interactions only in systems 

comprising high solids concentration. 

The model described in the current work alleviates the constraints of 

Kim and Karrila (1991) by modifying the expressions where there were 

significant differences in the results. Thus, the theoretical expressions were 

modified to yield expressions in agreement with numerical results. The results 

of this work are presented in detail by Nopola (2004) and the expressions in 

combination with comparative examples are published by Sand et al. (I).    

 

3.2.3 Particle/ boundary interactions 

 

The hydrodynamic interaction between a particle and a boundary differs 

depending on the nature of the boundary. A free surface boundary at the particle 

suspension/ air interface allows for almost unconstrained lateral movement of 

liquid, while significant friction can be expected between the liquid and a solid 

boundary. The resulting differences in the liquid flow profile as result of the 

hydrodynamic interactions are illustrated in Figure 10. Two different cases of 

particle/ boundary interaction are described below.   
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Figure 10. Comparison between particle/ free surface (A) and particle/ solid boundary (B) 
liquid flow profiles. 

 
The hydrodynamic force on a particle moving towards a solid boundary can be 

obtained using the lubrication approximation (Toivakka 1991) as 
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where β  is the non-dimensional distance between the sphere centre and the 

free surface, made dimensionless by the particle radius. This approximation is 

in good agreement with Brenner (1961), who provided an analytical solution to 

the problem. The relationship between the analytical solution and the 

lubrication approximation has previously been shown e.g. in Toivakka et al. 

(1991) and Toivakka (1997). Similarly, Goldman et al. (1967a; b) derived 

expressions for the forces and torques on a spherical particle suspended in 

liquid and moving parallel to or rotating in the vicinity of a plane wall. 

 In this work, the hydrodynamic forces and torques between a particle 

and a solid boundary are modelled using virtual spheres as boundaries and 

calculating the pairwise forces accordingly. A virtual sphere is placed at the 
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point of minimum distance from the particle to the boundary, while ensuring 

that the virtual sphere surface coincides with the local gradient of the boundary. 

If the boundary object is a wall, the virtual sphere radius is defined as one 

hundred times greater that that of the suspension particle for which the 

interaction is calculated. Similarly, a corner is represented by a virtual sphere of 

radius equal to a×101 , where a  represents the radius of the suspension 

particle. This moreover allows for the simulation of non-planar boundaries. 

The interaction between a particle and the free surface of the liquid 

medium was modelled using a hydrodynamic force for submerged particles 

which was transformed to a surface tension force for particles penetrating the 

surface, as shown in Figure 11. This approach is only an approximation, since 

the free surface boundary is in reality able to deform. The interaction between a 

particle and a deformable free surface has been analysed by Geller et al. (1986), 

and is relatively complex. The interaction can be simplified by assuming the 

boundary to be non-deforming and enforcing of a transition between the 

particle-boundary interaction and the surface tension force.  

 

 
Figure 11. The free surface model, comprised of the hydrodynamic interaction (A) and 
surface tension model (B). B shows the increase in surface length caused by the particle 
penetrating it. 
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Assuming a non-deforming boundary, the hydrodynamic force component can 

be modelled according to the lubrication analysis of a sphere approaching the 

free surface. The free surface hydrodynamic force can be described as 
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where H

fspF −  is the hydrodynamic force on the particle caused by the free 

surface, µ  is the viscosity of the liquid phase, a  particle radius and surfu  the 

velocity at which the particle approaches the free surface. The free surface 

hydrodynamic force (13) differs from the solid boundary expression (12) by a 

factor of four, due to the assumption that liquid is allowed to flow freely at the 

free surface. Contrarily, a non-slip condition is assumed to apply in the solid 

boundary case (Toivakka et al. 1992; Toivakka 1997). 

 The surface tension force is modelled as a spring force, which is a 

function of the increase in particle surface above the liquid as the particle 

deforms the surface. The surface tension force is generally expressed by a 

capillary force, which requires the radius of curvature of the liquid film to be 

known. Due to the high concentration of particles, determination of the radius 

of curvature is not trivial. Therefore a spring force approach was used instead. 

The surface tension force is thus given by the equation 

 

surfSTF ∆= σ ,         (14) 
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where σ  is the surface tension component and surf∆  the elongation of the free 

surface by the particle deforming it (Toivakka 1997). The elongation can be 

expressed as 

 

( )( )ahaasurf /arccos2 −=∆ ,       (15) 

 

where a  is the radius of the particle and h  the distance the particle has 

penetrated above the free surface (also see Figure 11). The relationship between 

the surface tension and hydrodynamic forces is exemplified in Figure 12. Since 

the free surface hydrodynamic force is both velocity and position dependent and 

the surface tension force only depends on position, combining the models is not 

straight-forward. In this work, a fit between the hydrodynamic and surface 

tension force is obtained by assuming a particle surface roughness. Thus, the 

free surface hydrodynamic force is used until the distance to the surface 

corresponding to the given particle surface roughness. At this point, the force is 

transferred to correspond to the surface tension force. The procedure is also 

described by Toivakka et al. (1991).   
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Figure 12. The free surface force on a particle of radius 1 µm, approaching and 
penetrating the liquid/ air interface at a velocity of 10 µm/s. 
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3.3 Non-Hydrodynamic Interactions 

 

Accurate simulation of pigment coating systems necessitates the application of 

several different types of non-hydrodynamic interaction forces between 

particles. The background of each interaction phenomenon is described in brief. 

Each is followed by separate description of the interaction models including 

their constituent equations.   

The interaction between charged particles at the nm - µm scale in an 

electrolyte-containing suspension requires the inclusion of colloidal interaction 

models of DLVO (Derjaguin-Landau-Verwey-Overbeek) type. An additional 

mechanical interaction model for particles at close contact, mimicking Born 

repulsion, is needed to prevent particles from overlapping (Lyklema 2005b; 

Shaw 2003). 

 Polymer-based components are commonly added to the coating system 

in order to promote steric stabilisation, which is obtained through polymer 

adsorption onto pigment particles. The resulting steric barrier between particles 

can be described by a steric repulsion model. Pigment-polymer interactions are 

nevertheless not trivial, and attractive forces between particles have been 

known to arise as a result. Such attractive forces can be produced, for example 

by polymer bridging between pigment particles or depletion flocculation due to 

the presence of non-adsorbing free polymer in the suspension (Napper 1983; 

Shaw 2003). Attractive forces resulting from polymers are, however, not taken 

into account in the current model. 

 Brownian motion is needed to describe diffusion and particle 

redistribution phenomena taking place as result of the thermal vibration of 

particles, random collisions with molecules of the suspending medium, other 

particles and system boundaries (Shaw 2003). A Brownian motion model 

enables the simulation of sedimentation processes and diffusion phenomena 
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taking place in consolidating coatings, including its effects on the structure 

development of the particle systems. 

 Depletion flocculation and bridging can be of importance in particle 

systems containing liquid-suspended and adsorbed polymer. Despite the 

substantial influence these phenomena can have on the constitution of particle 

suspensions (Tadros 1987; Melrose, Heyes 1993; Fellows, Doherty 2006), they 

were not included as constituent models in this work. For consolidation-type 

applications, there is currently a lack of suitable models or difficulties in 

finding appropriate parameters.  

     
3.3.1 Colloidal interactions 
 

The colloidal interaction model can be expressed by a combination of 

electrostatic repulsion and van der Waals attraction forces. The resulting net 

colloidal force, P

collF , is of DLVO type, given by 

 

P

vdw

P

el

P

coll FFF += .        (16) 

 

The attractive and repulsive components are given in (17) and (19). 

The electrostatic repulsion component is expressed as a pairwise short-

range repulsive force (Dabros and van de Ven 1992; Suzuki et al. 1969), 
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where κ  is the reciprocal electrostatic double layer thickness, rε  is the 

dielectric constant of the continuous phase, 0ε  the permittivity of vacuum, 1ψ  

and 2ψ  the surface potentials of the interacting particles and ∆  the surface 
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separation distance. 1a  and 2a  are the radii of the particles. The reciprocal 

double layer thickness can, for a symmetric and asymmetric electrolyte, 

respectively, be approximated as 
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where z  is the valence and c  the concentration of the ions (Hiemenz 1986). 

The van der Waals attraction component can be estimated using an 

expression derived from Suzuki et al. (1969) (Dabros and van de Ven 1992; 

Toivakka 1997; Nopola 2004) as 
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where HA  is the Hamaker constant and λ  the London characteristic 

wavelength (Hogg et al. 1966). The colloidal interaction model is demonstrated 

in Figure 13, where the resulting force curves are shown for a few combinations 

of electrostatic double layer thicknesses and particle surface potentials. 
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Figure 13. Colloidal interaction forces between two particles of 1 µm in diameter at a few 
cases of different double layer thicknesses and surface potentials. The zero interparticle 
force corresponds to the secondary minimum of the particle interaction energy curve 
calculated by the DLVO theory. 

 
It is worth noting that a Born repulsion model, although not defined as a 

colloidal interaction, is needed to prevent particles from overlapping at close 

contact. A few considerations also need to be mentioned regarding the colloidal 

interaction model. In describing the surface potential of calcite in aqueous 

suspensions, the zeta potential, ζ , is traditionally used (Madsen 2002). The 

zeta potential measures the potential at a certain distance from the particle 

surface, it does not correspond directly to the surface potential, ψ . The surface 

potential and zeta potential relationship can be derived using the Stern model of 

the double layer. This model for charge distribution is, however, somewhat 

crude and not necessarily suitable for calcite surfaces in water (Hiemenz 1986; 

Eriksson et al. 2007).  
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3.3.2 Steric forces 

 
Steric forces between particles are modelled as an osmotic pressure difference 

for surface separation distances less than twice the thickness of the adsorbed 

polymer layer. If the distance is less than the thickness of the polymer layer, an 

additional elastic force comes into play. This additional force is assumed to 

result from the compression of polymer chains, if the steric boundary layers 

overlap. Thus, the steric force is described as 
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P

st FFF += ,        (20) 

 

the osmotic, st

osmF , and elastic, st

elF , components are calculated as 
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where ∆  is the surface separation, sterδ  the polymer layer thickness. 1K  and 

2K  are constants that depend on the effective volume fraction of polymer in the 

adsorbed layer and density, molecular weight and solvency of the adsorbed 

polymer (Vincent et al. 1980, 1986; Einarson and Berg 1993). 

 

3.3.3 Brownian motion 
 

The Brownian motion model is based on the Einstein equation for calculation of 

the mean Brownian displacement, x , of a particle as function of time, t , as 

 

Dtx 2= .         (23) 

 

Particle diffusivity, D , is calculated as 

 

AaN

RT
D

πµ6
= ,         (24) 

 

where T  is the system temperature, µ  the viscosity of the continuous phase, R  

the universal gas constant and AN  Avogadro’s constant (Shaw 2003). 

A force of random direction was applied to each particle at each 

timestep. The R250 random number generator (Vattulainen et al. 1994) was 

used in order to accelerate the generation of random numbers. The direction of 

the Brownian force was represented by a unit vector generated by uniformly 

distributed points on the surface of a unit sphere according to the algorithm 
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(a) Choose z  uniformly distributed in [ ]1,1−  

(b) Choose t  uniformly distributed in [ ]π2,0  

(c) Let 21 zr −=  

(d) Let )cos(trx =  

(e) Let )sin(try = . 

 

When the unit vector, 0
a , is determined by the algorithm, the random force is 

calculated as 

 

aaKF Brown

0= ,        (25) 

 

where a  is the particle radius and BrownK  an iteratively determined, system 

specific parameter that can be used in taking into account the system 

temperature and particle size range. The BrownK  parameter is derived from a 

fitting curve to provide such weight to the force equation that the resulting 

displacement distribution of a single particle in infinite dilution will be in 

agreement with the Einstein equation (23), coupled to (24). An example of such 

a curve is shown in Figure 14, where BrownK  is plotted against temperature.  
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Figure 14. KBrown parameter values as function of system temperature. 

 

The curve is non-linear due to the viscosity of the liquid phase being non-

linearly dependent on temperature. BrownK  decreases at increasing temperatures, 

since it corrects the force to correspond to the correct displacement. As the 

viscosity of the liquid phase rapidly decreases with rising temperature, less 

force is needed to obtain the theoretical displacement. Equation (25) scales the 

force to particle size. Thus, BrownK  should work over the full particle size range. 

It was noted, however, that the Brownian displacements will start to deviate 

from their theoretical values the more the particle size differs from the size at 

which BrownK  has been calibrated. However, over a narrow particle size range, 

this effect is insignificant. As this work considers particle systems where the 

size difference between the largest and smallest particles is 1:10, the error is 

expected to be less than 3 %. The parameter in Figure 14 is calibrated for a d = 

2 µm particle. Each of the four data points shows the average and standard 
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deviation of 25 simulations, with 45,000 particle displacements in each 

simulation.   

The model was tested and showed good compliance with analytical 

results, as shown in Figure 15. The left hand figure compares a displacement 

distribution of 49,900 individual displacements with a Gaussian and log-

Gaussian distribution. The right hand side shows the displacement of an 

individual particle calculated at different time intervals. The total simulation 

time was 50,000 s. Thus, the data point at 5 s is an average of 10,000 

displacements while the point at 480 s is an average of 100 displacements.  
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Figure 15. Comparison of analytical and model-produced Brownian displacements. 

 

3.4 Algorithmic Techniques 

 
There are several algorithmic techniques that allow reduction of the 

computational expense of costly particle dynamics simulations. The current 

application implements two of these methods; the neighbour list and sparse 

matrix techniques. 

 When the solid particle concentration in the suspension is high, particles 

are predominantly influenced by the interactions with their closest neighbours. 

If the interparticle separation distance is high however, the pairwise interaction 
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forces between particles approach zero. Consequently, a regularly updated 

nearby neighbour list for each particle is produced and only the corresponding 

interactions with listed particles are calculated. The computational expense can 

in this way be greatly reduced. The expense of updating the neighbour list is in 

most cases easily outweighed by the savings to avoid calculating interactions 

between distant particles. 

 The sparse matrix technique can be used due to the properties of the 

resistance matrix (Toivakka 1997). It was estimated by Nopola (2004) that the 

fullness ratio of the matrix is in the order of 37N-1. Particulate systems 

composed of thousands of particles, will thus result in a resistance matrix 

predominantly habituated by zero-elements. Furthermore, the symmetrical 

properties of the matrix require only half of the elements and their positions to 

be stored. Consequently, the current model utilises the HUTI iterative sparse-

matrix solver (Malinen 1997), provided by the Finnish Centre for Scientific 

Computing (CSC), in solving equation (25). 

 
3.5 Particle System Analysis 
 
Post-processing of the results of particle dynamics simulations is essential in 

gaining understanding of both consolidation dynamics and the development of 

macroscopic properties of the particle system. The output of Stokesian 

dynamics simulations is extremely versatile in the sense that the mesh free 

position and velocity of each individual particle is known at every timestep, 

thus giving vast opportunities for data analysis. The analysis methods include 

e.g. microstructure analysis both through filtered visualisations and calculated 

solids concentration and displacement distributions. The current section briefly 

describes the different possibilities for particle system analysis employed in this 

work.       
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3.5.1 Microstructure Analysis 

 
In this work, the microstructure is commonly considered as z-direction dry 

solids concentration profiles. The dry solids content is calculated by integrating 

the simulation domains into z-direction slices, for which the amount of solids 

measured in volume percent is calculated. The volume percent is then 

recalculated to weight percent assuming the liquid phase to have the density of 

pure water (1000 kg/m3) and the solids density to be that of calcium carbonate 

(2700 kg/m3). The monitoring of dry solids profile development during coating 

layer consolidation illustrates filter cake formation, skinning mechanisms and 

their time dependence. By filtering out and focusing on specific particle size 

fractions, phenomena such as small particle migration can be studied. Similarly, 

the distribution of large particles might be useful in detecting size segregation 

effects. Direct 3D visualisation of the particle system can in some cases aid in 

studying the above-mentioned effects, but is seldom productive in observing 

solids concentration gradients and their development in time.  

Regarding binder migration, it is important to note that the simulation 

software does not distinguish between binder and pigment particles neither in 

terms of surface properties nor density. However, given the low volume of 

small particles relative to their larger counterparts along with the inherent 

principles of the simulation method, such as the assumption of zero particle 

Reynolds number, this cannot be considered a critical drawback. Furthermore, 

the direction of gravity in pigment coating processes is not constant and the 

time scale is too short to allow for a significant sedimentation of particles.  

Thus, the results can also to some extent be regarded as valid for binder-

pigment systems.   
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3.5.2 Particle Motion  

 
Particle motion is commonly presented using trajectories, illustrating the 

displacement of a particle during a given time interval. As trajectories typically 

do not illustrate the velocity and dynamics of particle movement, mobility 

distributions of individual or batches of particles can also be useful. Mobility 

distributions generate normal distribution-type results for consolidating particle 

systems under the influence of Brownian motion. These can be calculated both 

as absolute displacements or divided into their lateral and vertical components. 

Another useful tool in understanding the movement of particles within a 

particle system is to colour particles depending on their velocities. It is possible 

to utilise either local or global velocity, where local velocity compares the 

relative velocities of particles within the same timestep while global velocities 

are calculated over the time interval of the entire simulation.  

 

3.5.3 Particle Agglomeration 

 
A simple indication of particle agglomeration can be obtained by calculating 

interparticle surface separation distances. In its most simple form, the surface 

distances can be calculated between all particles of a simulation and surface 

separation distributions can be calculated. As we are only interested in the 

closest neighbours of any given particle, the diameter of the smallest particle 

can be used as limit for expanding the separation distribution. In this manner, 

we can ensure that we only include neighbouring particles which do not have 

intermediary particles between them. Otherwise we can expect to obtain 

multiple peaks, as often experienced when using for example, radial distribution 

functions (RDFs). Radial distribution functions are common in metallurgical 

and crystalline matter applications (Gacsi et al. 2002), but are ill-conditioned 

for polydisperse particle systems such as GCC coatings.        
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It is possible to identify clustered regions of particles within the 

consolidating layers by using a relatively simple cluster calculation algorithm in 

conjunction with visualisations of particle system configuration. The algorithm 

calculates interparticle distances and generates clustered regions from groups of 

particles which in proximity are closer to each other than an input threshold 

value. The threshold values must be selected with care, as known from image 

analysis utilising manual single-point thresholding as separation schemes (e.g. 

Russ 1995; Chinga 2002). Therefore, this type of cluster visualisation should be 

used with an appropriate knowledge on particle separation distributions and 

interparticle energy potentials. Furthermore, they should preferably be 

introduced in conjunction with data such as dry solids concentration or particle 

distribution profiles.    

In visualisation, particles are thus identified as clustered or non-

clustered. Futhermore, particle clusters are assigned cluster identities, allowing 

the separation of one cluster from another using colour codes. The particle 

clustering tool is useful in illustrating the development of the skin and filter 

cake regions of consolidating coatings, as well as particle agglomeration 

mechanisms within the layer. 

 
3.5.4 Visualisation 
 
Particle structures simulated using the Stokesian dynamics technique were 

visualised using the MDGraph (Ala-Viikari 2004) and PiMP++ software, which 

were both programmed using the OpenGL platform. MDGraph originates from 

1998-2004, while PiMP++ was developed 2008-2009 during the course of and 

in response to the specific needs of the current work. Figure 16 shows a screen 

output of a consolidating polydisperse particle system. 
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Figure 16. Visualisation of particle layer in PiMP++. Particles are coloured according to 
their local velocity. Cutting planes can be used to illustrate cross-sections of the particle 
laye
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4. SUMMARY OF RESULTS 
 
The simulation technique described in section 3 was applied in several 

theoretical and phenomenological investigations related to coating 

consolidation. These included filter cake formation, structure formation of 

consolidating coating layers, particle mobility and migration mechanisms 

during coating as well as the influence of colloidal properties on structure 

formation. 

Efforts were made to make the simulation setup as realistic as possible, 

and moreover relevant to industrial coating processes. In some cases, however, 

it was found useful to also include model cases. Such cases are beneficial in 

promoting the fundamental understanding of behavioural mechanisms that are 

not trivial to identify in complex systems of interacting models and parameters. 

Parameter values were obtained from either pilot scale coating trials, laboratory 

measurements or the literature. In some cases, combinations of macroscopic 

modelling data and theoretical models were applied. These may include for 

example with respect to drying strategies.  

The modelling and simulation work presented herein constitutes an 

effort to replicate industrially relevant parameters and study their influence on 

different coating layer properties. However, it is also acknowledged that a full 

understanding of the model and parameters is not trivial and that a completely 

accurate representation of the process is not possible. Modelling and 

simulations should be considered a means of testing the feasibility of suggested 

theories and hypotheses. They can be useful in explaining the relative influence 

of different mechanisms and give a possibility for theoretical prediction how 

changes to process parameters can influence the macroscopic properties of the 

coating layer. 
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A schematic illustration of the principal simulation setup and boundary 

conditions is shown in Figure 17. This setup is valid for all consolidation 

simulations performed in this work, however, not in the study of filter cake 

stability. The simulation domain is restricted by a planar boundary at the 

bottom, which allows liquid to permeate while particles are deposited at the 

surface (i.e. impermeable for particles). It should be noted that this work 

assumes particles to be subjected to a long range Stokes drag force as a result of 

the absorption flow of liquid by the base substrate. Thus, since particles are 

subjected to a uniform flow field, the model underestimates percolation flow. In 

reality the flow would also have components directed towards any local pore 

openings, or would vary due to heterogeneities in the absorptive properties of 

the base substrate. This effect was not considered in this work. On the upper 

side of the domain, there is a receding free surface, which is permeable by 

particles but applies a surface tension force (see free surface model). As the 

simulations are not valid for particles fully permeating the surface, roughly 

referred to as FCC/ SCC in many experimental studies, some caution should be 

exercised when interpreting the results beyond the point of FCC/ SCC. 

Furthermore, when air enters the coating structure, capillary forces created by 

the liquid menisci result in large contracting forces, the modelling of which is 

also outside the scope of the present work. Both the free surface evaporation 

and base substrate absorption boundary conditions are determined by a time-

dependent dewatering profile and are not directly coupled to the solids 

concentration at the interfaces. Periodic boundary conditions are applied in the 

lateral directions.    
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Figure 17. Schematics of consolidating particle system, including boundary conditions. 

 

4.1 Filter Cake Stability and Structure 

    
The structure of the filter cake influences the final structure of the coating layer 

and thereby also determines many physical and functional properties of the 

coated paper. The understanding of its formation, structure and stability under 

different conditions is therefore of importance for the control of coating layer 

properties.  

The dynamic structures of filter cakes were characterised depending on 

the particle system properties and on externally applied conditions such as the 

dewatering rate and temperature. The study of filter cake stability and of 

structural properties takes a different approach as compared to the experimental 

studies presented in section 2 (e.g. Eklund, Salminen 1986; Letzelter, Eklund 

1993; Lohmander et al. 2001; Engström 1986). By studying the stability of 
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already consolidated filter cakes instead of their formation, their dynamic 

behaviour and stability can be characterised (Sand et al. 2006). Thus, the 

interplay between the absorption flow of the base substrate and particle 

diffusion can be linked to the structure of the filter cake.  

Monodisperse and polydisperse particle systems were simulated under 

the influence of Brownian motion and an absorption flow of continuous (liquid) 

phase into a base substrate. The absorption was a result of both capillary 

absorption and externally applied pressure. Filter cakes were formed through a 

strong initial absorption flow, which was applied to the particle-liquid 

suspension. The simulation time was 300 s, of which strong initial flow was 

applied for 20 s after which the parameters were changed and the simulation 

continued for another 280 s. This time scale is long compared to typical 

industrial paper coating processes. However, it was selected to be comparable 

to the experimental conditions of the laboratory-based work referenced in 

section 2.3.1 and above. A planar boundary was used to represent a base 

substrate, which provided a barrier to particles while allowing liquid to absorb. 

The influence of colloidal forces was not of interest here, but some electrostatic 

repulsion was applied to prevent the effect of particle agglomeration ( κ/1 = 5 

nm, ψ  = -25 mV). Following the formation of the filter cake, the flow rate was 

reduced to values in the range between 1 and 10 g/m2s. The structure 

development of the filter cakes was subsequently investigated at different 

temperatures and for various particle systems. Monodisperse particle size 

distributions, with particle diameters ranging between 200 nm and 2 µm were 

simulated. The size range was selected to cover particle sizes comparable to 

binders and calcium carbonate pigment particles. A polydisperse system with a 

particle size distribution resembling fine-grade GCC was also simulated. 

In the monodisperse system with d = 500 nm particles, Figure 18, the 

solids concentration gradient in the z-direction is illustrated at different 
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dewatering rates. The results show that the absorption rate had a significant 

influence on the structure of the filter cakes. Both mechanisms proposed in the 

literature; filter cake formation and thickening (also see Figure 6); were found 

to be realistic. However, they appeared to depend greatly on the simulation 

parameters. This might also be the reason for the contradictions found between 

different experimental investigations.  

 

      
Figure 18. Filter cake structures illustrated at dewatering rates of 1, 5 and 10 g/m2s after 
280 seconds.  

 
The filter cake structure and its deterioration was influenced by the size of the 

particles in the monodisperse systems, Figure 19. It was shown that the smallest 

particles, d = 200 – 400 nm, were able to diffuse against the base substrate 

absorption flow even at dewatering rates of 10 g/m2s. This dewatering rate can 

according to the macroscopic modelling results, be considered normal in 

industrial coating processes (Timofeev et al. 2006). Thus, in practice, it can be 

possible for small pigment particles or binder to migrate against the absorption 

flow of the base substrate, if given sufficient time to do so.  
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Figure 19. Filter cake thicknesses at different particle sizes, studied at different 
dewatering rates. Comparison between initial thickness and after 280 seconds illustrates 
the rate of filter cake deterioration. 

 
Studies of the polydisperse particle size distribution, Figure 20, showed that the 

structure of the filter cake could be influenced by particle segregation effects 

and to some extent also small particle migration. As can be seen in the figure, 

size segregation effects take place at higher dewatering rates. It was also found 

that solids concentration gradients in some cases may arise as a result of filter 

cake surface roughness rather than the proposed thickening mechanism. This is 

also supported by later investigations on clustering effects in consolidating 

particle suspensions (see article VI and Sand et al. 2009a). 
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Figure 20. Side (above) and top (below) view of the polydisperse particle size distribution 
filter cake, with absorption rates of 1, 5 and 10 g/m2s. Situation after 280 s of simulation. 

 
Increasing the temperature of the system promotes the Brownian motion of 

particles both by increasing the kinetic energy of the particles and by reducing 

the viscosity of the continuous phase (see Equation 24). It can thus be expected 

that an increase in temperature will reduce the density of the filter cake and 

promote the formation of concentration gradients.  

The impact of temperature on the structure of the filter cake was 

examined for two different particle sizes and under temperatures ranging from 

20 to 80 °C. The results are shown in Figure 21.  
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Figure 21. The influence of temperature on filter cake solidity profiles (after 280 s of 
simulation). 

 
It was concluded that temperature had a rather small influence on large particles 

at high absorption rates. However, there was a notable effect on the filter cake 

structure in the monodisperse system with the smallest particle size, d = 200 

nm, and at the lowest liquid flow rate. 

 The results show that the structure of the filter cake depends both on the 

properties of the particle system and on external conditions, such as dewatering 

flow and temperature. Ambiguous results published in the literature regarding 

the mechanisms controlling its structure, could be explained in the light of this 

study. For conditions that are close to typical industrial paper or board coating 

processes, a sharp filter cake structure can be expected. During the 

consolidation of the coating layer, this effect is expected to be most visible in 

situations where the applied amount of coating is high and the dry solids 

content of the coating suspension is low. Given the experimental setup and the 

selection of system properties, both thickening and sharp-solids concentration 

filter cake structures could be observed in simulations. The results provide a 

deeper understanding of coating process mechanisms.   
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4.2 Drying Strategy 

 
The microstructure of the coating layer has been shown to have a strong impact 

on print quality, as well as many other properties related to the physical and 

functional attributes of the coated paper. This study aims to provide 

fundamental knowledge on the dynamics of microstructure development during 

consolidation. The investigation of consolidation at different drying strategies is 

useful in linking post-application process parameters to their impact on coating 

layer structure. 

In order to investigate the influence of drying strategy on the structure 

formation and consolidation, a set of dewatering strategies (defined as time-

dependent drying and base paper absorption profiles) were tested. Particle 

dynamics simulations were coupled with external data input from macroscopic 

modelling using VTT/Coatman and pilot coating trials performed at KCL, 

Espoo (Timofeev et al. 2007). Liquid evaporation rates, calculated from the 

coated and uncoated sides of the paper were used to generate dewatering 

profiles that were subsequently used as boundary conditions for simulations. 

Two drying strategies based on these preferences were investigated. A High-

Low-Low case (HLL), which included intense initial drying followed by mild 

drying at the later stages, and a Low-Low-High case (LLH) with mild initial 

drying followed by more intense later stage drying. In addition to the 

macroscopic modelling-based dewatering strategies, two theoretical dewatering 

strategies were used in the comparison; pure absorption without evaporation 

(ABS) and pure evaporation without absorption (EVA). All the drying 

strategies were planned so as to produce the same amount of liquid dewatered, 

albeit at different rates versus time and with different a relationship between 

absorption and evaporation. The drying strategies are illustrated in Figure 22. 

 



Summary of results 
 

79 

Low-Low-High Drying

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Time [s]

D
e
w

a
te

ri
n

g
 [

g
/m

²s
]

Evaporation

Absorption

High-Low-Low Drying

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Time [s]

D
e
w

a
te

ri
n

g
 [

g
/m

²s
]

Evaporation

Absorption

Absorption only

0.0

4.0

8.0

12.0

16.0

20.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Time [s]

D
e

w
a
te

ri
n

g
 [

g
/m

²s
]

Evaporation

Absorption

Evaporation only

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Time [s]

D
e

w
a
te

ri
n

g
 [

g
/m

²s
]

Evaporation

Absorption

  
Figure 22. Drying strategies produced from macroscopic modelling (Timofeev et al. 2006) 
and simplified model cases (II). 

 
In the simulations, paper coating temperature was estimated by adjusting the 

Brownian motion of particles and the viscosity of the liquid phase. To closely 

replicate the conditions typically found in industrial coating processes, a 

polydisperse particle size distribution resembling a fine-grade ground calcium 

carbonate was used (CoverCarb-75, Omya, Switzerland). The distribution 

satisfied the log-normal distribution described by the equation 
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where the mean particle diameter, dµ , was 1.5 µm and the standard deviation, 

dσ , 10.0 µm. Limitations in computation time and memory consumption 

disallowed a quantitative representation of the full binder-sized particle 
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fraction. However, roughly 50% of the particles simulated were represented by 

particles smaller than 300 nm in diameter and were thus comparable to the size 

of binders. A size fraction cut-off was applied for particles below 0.25 and 

above 2 µm in diameter. A comparison between the simulated and an 

experimental size distribution is shown in Figure 23, where normalisation is 

obtained by the size fraction cut-off described above. 

The initial dry solids concentration of the slurry was 65 wt-% and the 

post-metering thickness of the coating layers was set between 10 and 30 µm. 

This covers a typical thickness range between LWC and double or triple coated 

paper (e.g. board coating). Colloidal suspension properties were selected based 

on experimental measurements by Eriksson et al. (2007) and parameters 

reported in the literature (II; Ackler et al. 1996; Vanni, Baldi 2002). The 

electrostatic double layer thickness, 1−κ , was set to 5 nm, the Hamaker 

constant, HA , estimated as 1.0 ⋅ 10-21 J and the surface potential of interacting 

particles, 1ψ  and 2ψ  was set to -25 mV. 

The base substrate was described by a boundary-plane which allowed 

liquid absorption. The boundary does not allow penetration of solid particles, 

thus assuming a complete coating holdout.   
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Figure 23. Simulated and experimentally measured cumulative weight distribution of fine-
grade GCC (Sand et al. 2008b).  

 
Based on consolidation simulations and using the different drying strategies 

described previously, the solids concentration profile development and coating 

layer formation could be monitored in time. Additionally, it is possible to track 

the redistribution of the binder-sized particle fraction and coating layer 

shrinkage. Coating layer immobilisation times could be identified by observing 

the stabilisation of the coating layer mass distribution, as exemplified in Figure 

24. Depending on their thickness and the drying strategy, the coatings were 

typically immobilised within 0.3 to 0.5 seconds at around 85 wt-% dry solids, 

Figure 25. 
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Figure 24. Mass centre location versus time for two different coating layer thicknesses. 
Results can be utilised in estimating immobilisation time.  

 
The immobilisation point is traditionally defined as the point when water begins 

to form menisci on the coating layer surface (Lepoutre 1989), and is also known 

as the first critical concentration (FCC). This view on immobilisation naturally 

originates from a difficulty in monitoring internal structure formation of the 

coating layer during experimental studies on consolidation. The simulation-

based approach does not experience these constraints. Thus, the definition of 

coating immobilisation used in this work differs from the traditional one 

(Lepoutre 1989). Immobilisation is here assumed to take place when the mass 

displacement within the layer evens out. 

 As is already suggested in Figure 24, the thinner coating layer 

consolidated more rapidly as compared to the thicker coating. To gain an 

understanding of the structure formation, the dry solids concentration profile 

was monitored in the z-direction for the same case as reported above. The 

results are presented in Figure 25. Thus, the structure formation is compared at 

different coating layer thicknesses but for the same drying strategy. The thinner 

coating layers consolidated very rapidly, and were typical in that there were no 

significant cross-structural solids concentration gradients arising as result of 

filter cake formation or skinning. The thicker coating layers on the other hand, 

showed a clear filter cake formation during the early stages of consolidation.  
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Figure 25. Structure formation in the 30 µm and the 10 µm layer, compared at the same 
drying strategy.  

 
The difference in structure formation varied significantly as a function of the 

drying strategy, Figure 26. In all the cases except that of pure evaporation, filter 

cake formation initially dominated. Immobilisation was very fast in the HLL 

and pure absorption cases, while being significantly slower in the LLH and pure 

evaporation cases.  
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Figure 26. Solids structure development of the 25 µm coating layers compared at different 
drying strategies.  
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The drying strategies with strong initial evaporation, exhibited clearly 

observable skinning. The effect was significant in the HLL drying strategy, but 

also existed to some extent in the EVA case. In the mild initial drying case 

(LLH), the coating layer was already sufficiently dewatered at the initiation of 

the more intense drying stage to not allow skin formation. Z-direction 

concentration gradients arising as result of the drying strategy used, normally 

persisted up until several tenths of a second before immobilisation, at which 

point the concentrations evened out. 

Particle distribution in consolidating coating layers was characterised by 

the number distribution and volume fractions of particles as a function of the z-

direction position in the coating layer. The number distribution is the relative 

number of particles of a given size range in a specific position interval of the 

coating layer. The volume fraction, on the other hand, reports on the volume of 

particles of a certain size range divided by the total volume of solids within the 

specified position. Thus, the volume fraction is a way of normalising the 

particle distribution to the total solids concentration. 

 It can be assumed that in absorption-dominated dewatering profiles, 

with the prerequisite of at least some degree of coating holdout, there will be a 

gradual accumulation of small particles at the coating/ base substrate interface. 

Normalised to the higher solids content, it becomes less evident that there 

would be preferential accumulation of any particular size fraction in the filter 

cake region. However, it can also be expected that some particles are able to 

penetrate through voids between larger particles to generate a higher relative 

concentration of small particles. This should also be put in context with the 

particle size segregation that typically takes place in dynamic polydisperse 

particle systems (e.g. Williams 1976; Rosato et al. 1986). Similarly, 

evaporation dominated drying strategies can be expected to produce small 
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particle accumulation at the top of the coating layer. The distribution of 

particles in the 25 µm coating layers, reported as particle fraction, is shown in 

Figure 27. 
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Figure 27. Redistributions of 250 nm particles over time, represented as particle fractions. 

 
As was predicted theoretically, small particles accumulated in the filter cake 

when dewatering strategies including base substrate absorption was applied. 

Therefore, if the base substrate has an open structure, a loss of small pigment 

particles and binder to the base substrate can be expected. This has been 

reported for low solids content spray coating colours (Hämäläinen et al. 2002). 

In strategies where evaporation dominated, especially in the HLL case, there 

was a strong accumulation of small particles close to the surface of the coating. 

Such effects result when the surface tension and free surface hydrodynamics 

accumulate pigment particles faster than the Brownian motion allows them to 

redistribute in the coating layer. It was observed, however, that slowly 

dewatering coating layers had sufficient time to allow particle redistribution and 
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obtain a relatively even distribution profile in the z-direction. This was the case 

for the LLH and evaporation drying strategies. As the evaporation also causes 

local accumulation of larger particles, normalisation to the total dry solids is 

necessary for elucidating any preferential redistribution of small particles. 

When normalising the particle distribution to the dry solids concentration to 

show small particle distribution as volume fractions, Figure 28, the distribution 

profile was found to be almost constant throughout the layers. The even profiles 

are a sign of that small particles distribute according to the overall distribution 

of solids, without any significant deviations.  
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Figure 28. Redistributions of 250 nm particles over time, represented as volume fractions. 

 

An accumulation of small particles could be observed when using HLL or 

evaporation drying, some 25% more than in the LLH and absorption cases. This 

might indicate that drying strategies including strong initial dewatering through 

evaporation can have an influence on the redistribution of binder-sized particles 
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in consolidating coating layers. Conversely, small particle accumulation was 

not observed in the filter cake region, even if the dewatering strategy would be 

dominated by absorption. Additionally, filter cake formation takes place much 

faster than skinning, and does not allow sufficient time for the particles to 

rearrange to any preferred location. 

 The drying strategy was concluded to have a clear influence on the dry 

solids concentration profile during consolidation. The solids profiles did, 

however, not persist until full immobilisation. It should also be noted that the 

use of thickeners or other additives to the coating suspension might lead to 

earlier immobilisation. This could in turn “freeze” solids concentration 

gradients into the structure. Consequently, regions of low porosity could result 

at either the base substrate or top of the coating, or both. Conversely, a region 

of high porosity would be formed in the bulk of the coating. The findings 

regarding the small particle distributions were ambiguous, though there were 

some signs of preferential accumulation either to the filter cake or skin side of 

the coating.  

This part of the work furthers existing knowledge on coating 

consolidation mechanisms and structure formation during drying. The results 

can aid in the tuning of the drying strategy depending on the desired 

microstructure. By example, controlling the porosity of the top of the coating 

can be useful in obtaining a coated paper with desired printing properties. The 

distribution of small particles in the coating layer depending on drying 

conditions, might improve current understanding of binder migration.    

 
 

 
 



Summary of results 
 

88 

4.3 Particle Mobility 
 
Understanding of particle mobility in consolidating coating layers is paramount 

for the study of displacement mechanisms, which could explain phenomena 

such as particle migration and redistribution. The dynamics of particle motion 

in consolidating coating layers was tracked for various dewatering strategies 

and complements the study performed on the influence of drying strategy on 

coating layer structure formation. 

 The configuration of particle systems and simulation conditions are 

equivalent to that of the structure formation study at different drying strategies 

(II). This study however, focuses only on the mobility of small particles (D ≤ 

300 nm). This size is roughly comparable to the size of binders, although it 

should be noted that limitations in computation time and memory usage 

disallowed a quantitative representation of the binder fraction in a typical 

coating formulation. Direct visualisation of particle systems, including 

colouring either by their local (relative to each other at a given timestep) or 

global (relative to each other as calculated over the entire simulation time) 

velocities, allows for a qualitative observation of particle mobility. Such an 

example is shown in Figure 29, where particles are coloured according to their 

global velocities. 
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Figure 29. Visualisation of particle mobility utilising the LLH drying strategy (30 µm 
thickness, ψ = 50 mV, 1/κ = 5 nm). Particles are coloured according to their (global) 
velocity, where red is fastest and blue slowest. 

 

Particle displacement distributions can be utilised as an indication of particle 

mobility and potential redistribution during consolidation. By reporting on 

separate displacements in the lateral and vertical directions, it is possible to 

distinguish between particle mobility in z-direction and the machine (MD) and 

cross directions (CD). In this work, movement in z-direction is referred to as 

vertical motion. 

   To illustrate the nature of particle mobility in various positions of the 

coating layer, the displacement distribution is illustrated at four different z-

positions in Figure 30.  
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Figure 30. Displacement distributions of small particles at various z-direction positions 
utilising the HLL dewatering profile (10 µm coating thickness at 0.05 s).  

 
A sharp peak of high displacement at the coating layer surface shows that the 

flow of liquid, both through absorption and evaporation, dominates over 

particle interactions and diffusion effects. Already somewhat below the surface 

level, the distribution can be seen to broaden as the interactions between 

particles increase. In the bulk suspension, the displacement distribution begins 

to resemble an undulating normal distribution, which indicates a strong 

influence of particle interactions as well as particle movement as result of 

Brownian motion. At the base substrate/ coating interface, the distribution is 

tilted towards shorter displacements. This is believed to result from a higher 

degree of particle pinning, either due to contact with the base substrate or 

within the high particle concentration region arising in the filter cake. 

 The displacement distributions were also separated into their x-, y- and 

z-direction components to enable an investigation of differences between the 

vertical and lateral motion of particles. The lateral motion of particles is defined 
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as the average between the x- and y-direction vectors. For instance, studying the 

directionwise displacement distributions of the 10 µm coating layer dried using 

the HLL strategy, lateral displacement dominated at the substrate/ filter cake 

boundary, Figure 31. This is believed to be a result of pinning of particles from 

movement in the z-direction, caused by the weak absorption flow of liquid into 

the base substrate. 

Directionwise Displacement Distribution: 
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Figure 31. Displacement distribution for 250 nm particles in the 10 µm layer, separated 
into their vertical and lateral direction components. 

 
The same effect could also be observed at the top of the coating layer during the 

early stages of consolidation. The z-direction displacement of particles was 

dominated by the absorption flow of liquid caused by hydrodynamic 

interactions with the free surface. When comparing the different drying 

strategies, Figure 32, it was found that particle mobility was enhanced in the 

drying cases, which resulted in higher solids concentration caused by skinning. 

For example, the HLL drying strategy produced skinning at the top of the 

coating and 82 wt-% solids, while the LLH case did not produce skinning and 

reached only 68 wt-% solids. Simultaneously, the lateral direction mobility was 

significantly higher in the HLL-case. 
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Figure 32. Directionwise (lateral and vertical, respectively) displacement distributions of 
250 nm particles in the 25 µm layer close to the free surface after 0.2 s of consolidation.  

 
This difference in lateral mobility between the drying strategies cannot be 

explained by similar z-direction pinning as is argued to be the case in the filter 

cake. Instead, it could possibly be a result of a laterally directed force on 

particles caused by the electrostatic repulsion component of the DLVO model. 

Another influential factor could be the hydrodynamic force between particles as 

the solids concentration is initially directionally dependent, due to the 

absorption and evaporation flows generating a denser layer in z-direction. The 

concentration difference between the lateral and vertical directions 

consequently needs to be evened out by lateral-direction redistribution of 

particles, as is illustrated schematically in Figure 33.   
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Figure 33. Schematic illustration of the lateral movement of particles in the top layer of 
the coating. Electrostatic repulsion and hydrodynamic interactions produce a laterally 
directed force. 

 
Comparing the two model cases, pure absorption and pure evaporation, the 

mechanisms for consolidation are fundamentally different. As the absorption 

case entails rapid initial filter cake formation, the layer will dewater much faster 

than is the case in evaporation. Thus, following the same argument as in the 

discussion above, the absorption case can be expected to exhibit greater lateral 

mobility due to the higher solids concentration. This is confirmed by the results 

in Figure 34. The z-direction mobility is also higher, as result of the dewatering 

rate being higher in the absorption case and due to the absorption flow of liquid 

which does not take place during evaporation.  
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Figure 34. Directionwise (lateral and vertical, respectively) displacement distributions of 
250 nm particles in the 25 µm coating layer close to the free surface (after 0.2 s of 
consolidation). 

 
By studying the dynamics of particle mobility inside consolidating coating 

layers, the fundamental knowledge of phenomena related to particle migration 

is improved. Furthermore, some insight may also be provided regarding the 

vertical and lateral distribution of coating components. The results offer a 

deeper understanding of structure formation and particle distribution within the 

coating layer.  

 

4.4 Colloidal Interactions  

 
In order to understand the relevance of colloidal interactions on the structure 

formation of the coating layer, coating layer consolidation was simulated by 

including colloidal interaction models in conjunction with a range of different 

DLVO-parameters. The behaviour of colloidal suspensions is governed by the 

balance between the colloidal, external and hydrodynamic forces between 

particles. Given that the colloidal forces can be influenced by chemical 

additives, simulation of particle interactions can be useful in understanding and 

linking the microscopic and macroscopic behaviours of the suspensions. The 

objective of this study was to increase current understanding on how the 
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chemical properties of the pigment suspension influence the consolidation and 

microstructure of the coating layer. Furthermore, to give guidance as to how 

chemical additives may can be useful in producing a coating layer with 

desirable microstructural properties.   

Colloidal interaction model parameters deemed realistic for coating 

suspensions, Table 3, were obtained from experimental measurements 

(Eriksson et al. 2007) and the literature (Vanni, Baldi 2002; Ackler et al. 1996). 

Coating layers of 20 to 30 µm were simulated, as these thicknesses were in the 

earlier studies found most useful in investigating cross-structural solids profile 

development (Sand et al. 2008a). The particle system setup was identical to the 

previous studies using polydisperse GCC-resembling particle size distributions. 

 

Table 3. Colloidal interaction model parameters 

Symbol Value      Description 
Electrostatic repulsion parameters 

rε  80 Continuous phase dielectric constant (water) 

0ε  8.85 × 10-12 C2/Nm2 Permittivity of vacuum 

1ψ , 2ψ  -50 to +50 mV Surface potential of interacting particles 

κ/1  2.5 to 10.0 nm Double layer thickness 
   
Van der Waals attraction parameters 

HA  1 × 10-21 J Hamaker constant 

λ  100 × 10-9 m London characteristic wavelength 

 
 

Double layer thicknesses, κ/1 , of 2.5 to 10 nm and surface potentials, ψ , 

between -50 and +50 mV were tested. It should be noted that the electrostatic 

repulsion model, which calculates the repulsive forces resulting from charged 

particle interactions, does not differentiate between positive and negative 

potentials.    
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Surface potentials of calcite in aqueous suspensions are, as also 

represented in Eriksson et al. (2007), typically described by the zeta potential, 

ζ . It can be measured by a number of different techniques (Madsen 2002), but 

as it measures the potential at a certain distance from the particle surface it does 

not directly correspond to the surface potential, ψ . The relationship between 

the surface potential and zeta potential can be derived using the Stern model of 

the double layer. However, given the surface potential range of this study, it is 

believed that the results are well applicable to calcite/ water dispersions.  

The dielectric constant of the continuous phase (water/ electrolyte) was 

estimated to be constant, although other studies have reported variations 

depending on electrolyte concentration. As the solubility of calcite in water is 

low at high pH, and the concentration of other ions is also expected to be 

relatively low, the influence of changes in the dielectric permittivity on 

electrostatic repulsion can be considered negligible (Navarkhele et al. 1998). 

The influence of the continuous (liquid) phase viscosity on the structure 

formation of coating layers was studied for a few select cases. The viscosity of 

coating slurries can be altered by several different mechanisms, including 

bridging effects of adsorbed polymers, depletion flocculation, or simply by an 

increase of the viscosity of the liquid phase. The influence of increasing the 

viscosity of the liquid phase was illustrated by simulating consolidations at 3 

different viscosities and comparing the differences in the microstructures, 

Figure 35.  
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Figure 35. Solids structure depending on continuous phase viscosity (20 µm layer, κ/1 = 
10 nm, ψ = -50 mV at 0.2 s). 

 
An increase in viscosity slowed down the consolidation of the coating layer. If 

the immobilisation time is the same, a higher viscosity could thus hinder 

levelling of the solids concentration in the z-direction. This could also result in 

reduced shrinkage of the coating layer. A consequence of this would be a more 

porous coating structure along with persisting solids concentration gradients 

both towards the base substrate and, depending on drying strategy, also at the 

top of the coating layer. 

 As illustrated in Figure 36, the particle surface potential was shown to 

have a significant influence on the shrinkage of the coating layer. Particle 

surface potentials between 0 and 10 mV produced much thicker coating layers 

when compared to particle surface potentials above 10 mV. 
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Figure 36. Coating layer thickness versus particle surface potential at different times (30 
µm layer, κ/1 = 10 nm). 

 
It was also noted that the particle surface potential did not have any significant 

systematic impact on the internal coating layer structure, Figure 37. Reduced 

electrostatic repulsion did thus not yield denser structures. This can be seen as 

somewhat counterintuitive, as the van der Waals attractive forces will increase 

in significance. The effect can be explained however, by the attractive forces 

that promote the generation of loosely packed particle aggregates (flocculation) 

that hinder particles from arranging into denser structures. 
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Figure 37. Solids structure in the z-direction of the 30 µm coating layer ( κ/1 = 10 nm at 
0.2 s) when applying different particle surface potentials. 

 
As can be concluded from Figure 38, the consolidation and shrinkage of the 

coating layer proceeded at roughly the same rate regardless of the particle 

surface potential.  
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Figure 38. Coating layer shrinkage at different particle surface potentials (30 µm layer, 

κ/1 = 10 nm). 
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Particle arrangement within the coating layer can be quantified and illustrated 

using surface separation distributions as well as particle cluster visualisation. 

The radial distribution function is produced by calculating the surface 

separations from each particle to its nearby neighbours. The resulting 

probability distribution at the given colloidal parameter settings, is an indication 

of the average interparticle separation and its standard deviation. Strong particle 

clustering is revealed by a sharp peak at short interparticle separation, while 

more loose structures are seen as broad distribution regions at longer surface 

separation distances. The surface separation distribution in some simulations 

with different colloidal parameter selections are shown in Figure 39. 
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Figure 39. Surface separation distributions at different colloidal parameter settings. 

 
It can be observed that the low particle surface potential is a strong promoter of 

particle agglomeration, while particles are more capable of moving and 

rearranging at high surface potentials and double layer thicknesses. Using 

cluster analysis, it is possible to confirm the effect of particle agglomeration in 

the low surface potential layers, as shown in Figure 40.      

 



Summary of results 
 

101 

 
Figure 40. Cluster analysis of the 50 and 0 mV particle surface potential cases at 0.2 s. The 
clusters are shown in colour according to relative size (red=largest, blue=smallest), while 
non-clustered particles are grey. The A subfigures represent particle clusters, while the B 
subfigures show interparticle connections. The threshold value for clustering is 50 nm.   

 
Figure 40 shows that even though a 0 mV particle surface potential produces a 

relatively thick coating layer, the particles are still strongly agglomerated. This 

is in contrast to the 50 mV case, which mainly exhibits clustering in the filter 

cake and the skin. Lateral redistribution of particles in the 0 mV layer (the 

visualisation does not include particle wrapping due to the periodic boundary 

condition) also illustrates the higher rigidness of this structure. 

 The impact of double layer thickness on structure formation was studied 

using values ranging from 2.5 to 10 nm in the simulations. The minimum 

double layer thickness was 2.5 nm due to the steepness of the interaction energy 

curve. Numerical difficulties and the exponential increase in computation time 

disallowed simulation at lower values. It has been reported however, that 

double layer thicknesses in calcite particle slurries can be expected in the 5 to 

10 nm range (Hiemenz 1986). The solids structure of the 30 µm coating at 

different double layer thicknesses is shown in Figure 41.  
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Figure 41. Dry solids structure in the 30 µm coating layer at different double layer 
thicknesses (ψ = 25 mV). At time 0.1 s left, and 0.2 s right.  

 
The double layer thickness had only a slight influence on the thickness of the 

coating layer. Internally however, it appeared that lower double layer 

thicknesses strongly promoted the formation of z-direction cross structural 

solids concentration gradients. The effect was observed both in the filter cake 

formation and skinning at the top of the coating layer.  

An alternative possibility for illustrating structural differences in the 

coating layer is to plot the cumulative dry solids content as a function of the z-

direction position in the coating layer. This mode of illustration evens out solids 

concentration fluctuations and helps to accentuate and identify systematic 

differences in the structures. Figure 42 shows the cumulative solids content at 

0.2 seconds, which corresponds to the illustration on the right side in Figure 41. 
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Figure 42. Cumulative dry solids content in the 30 µm coating layer (ψ = 25 mV). The full 
coating layer to the left and an enlargement of the filter cake region to the right. 
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Figure 42 shows the double layer thickness to mainly influence the structure 

development of the filter cake, but also to a lesser extent in the skin. The 

difference in dry solids concentration between the highest and lowest double 

layer thicknesses in the filter cake was about 5 wt-%, while being only around 2 

wt-% in the skin. These differences are relatively small and do not necessarily 

have practical importance. It should nevertheless be noted that evaporation 

might help to decrease the thickness of the electrostatic double layer and 

possibly also aid in coagulating the system into the primary minimum of the 

interaction energy curve.  

Similarly to the study on particle surface potentials, it is also possible to 

illustrate differences in the internal coating layer structure using cluster 

visualisation tools. For the same simulation as described above, coating layer 

formation and particle agglomeration mechanisms are illustrated in Figure 43.  

 

    
Figure 43. Consolidation visualisation at two different double layer thicknesses; 2.5 and 10 
nm (ψ = 25 mV, HLL drying). The threshold for clustering is set to 20 nm. 
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Although the coating thickness is the same at corresponding simulation times in 

both cases, there is an observable difference in the internal coating structure 

development. For the 10 nm double layer thickness, the structure forms quite 

evenly, while tending to exhibit local particle agglomeration in the filter cake 

and skin in the 2.5 nm layer. 

 The colloidal interaction parameters had an influence on both the 

microstructure formation of the coating and its thickness. In coating 

suspensions, the particle surface potential of pigments is influenced by 

adsorbed chemicals on their surfaces and the double layer thickness is reflected 

by the ion concentration in the continuous phase. Thus, the results may aid in 

the dosing of chemical additives to control the properties of the coating 

suspension and producing coating layers of desired porosity and structural 

properties.   

 

4.5 Particle Clustering Mechanisms 

 
The same simulations as performed and analysed in terms of drying strategy, 

particle mobility and influence of colloidal interaction were further investigated 

using the particle clustering algorithm. Cluster analysis and visualisation of 

coating structures can be a useful tool in highlighting and explaining solids 

concentration differences and particle agglomeration in particle systems. It also 

enables a direct observation of clustering mechanisms that can have an impact 

on the macroscopic properties of the coating layer.   

The consolidation process at LLH drying is illustrated at the 50 mV and 

0 mV particle surface potentials, Figure 44. The results in this case show that no 

skinning takes place at the higher particle surface potential. This can also be 

concluded from the earlier studies on drying, Figure 26. The mild drying rate 

from the surface of the coating therefore allows the base substrate absorption to 
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dominate the dewatering of the coating layer. The more intense drying step at 

the later stages of consolidation takes place at a point where the layer is already 

fully clustered, which radically reduces the potential for skinning. 

Consequently, rapid filter cake growth continues until the layer is fully 

clustered at around 0.4 seconds. Note that even though the layer is fully 

clustered, shrinkage of the coating can still continue. However, the possibility 

for z-direction solids concentration gradients to be formed at this late stage in 

the consolidation is low. Identically to the HLL drying case in Figure 40, the 

absence of electrostatic repulsion between particles causes full agglomeration of 

the layer already at an early stage of consolidation. The inflexibility of the 

system due to attraction between particles impedes shrinkage. This can only 

proceed by a strenuous and relatively slow rearrangement in the lateral 

directions. In practical consolidation, adjustments to the surface potential might 

thus be useful in controlling the porosity of the coating layer. By adjustment of 

the drying strategy in combination with colloidal parameters, it is also possible 

to produce coating layers with desirable z-direction concentration profiles. 
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Figure 44. Consolidating particle layers at 50 mV particle surface potential (left) and 0 
mV (right), applying the LLH drying strategy (1/κ = 5 nm, clustering threshold 50 nm).  

 
The electrostatic double layer thickness has only a slight influence on the 

thickness development of the coating layer. However, the internal structure can 

be made to vary significantly by adjusting the double layer thickness. At the 

LLH drying strategy, consolidation proceeds by fast filter cake formation in the 

thin double layer thickness case. If the electrostatic double layer is thick, the 

consolidation proceeds uniformly over the layer, until a point is reached where 

the whole structure begins to cluster, as shown in Figure 45. Comparing the 

consolidation of 10 nm double layer coatings in two drying strategies based on 

experiments, Figure 43 and Figure 45, it appears that adjustments to the 

colloidal properties of the coating formulation can to some extent be used to 

offset the impact of the drying strategy.     
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Figure 45. Consolidating particle layers (LLH drying) at 2.5 nm double layer thickness 
(left) and 10 nm (right). Clustered particles are dark, unclustered light (ψ = 25 mV, 
clustering threshold 20 nm). 

 
By using filtering, as well as interparticle cluster connections, it becomes 

possible to study particle agglomeration mechanisms that take place during 

consolidation. One such observation from the simulations was the emergence of 

“fingered” structures in the un-concentrated bulk coating. It is possible that 

such structures provide skeletal support to the microstructure in more porous 

regions of the coating during consolidation. This can have an effect on 

shrinkage and may also limit lateral redistribution of particles. An example of 

the fingering effect is shown in Figure 46, where the effect can be noted at 

around 0.2 seconds. The effect, which has typically been observed in 2D-

levelling of coating layers during drying (Toivakka et al. 1992) or rheological 

studies (Toivakka, Eklund 1994), therefore also seems to take place in 3D. The 

“fingered” structures arising in the coating layer could span over as many as 5-6 

particles, accounting for a third of the coating layer. The typical growth 

direction was from the filtercake side due to the high relative volume of liquid 

dewatered by absorption. However, it is fully feasible to find such fingering 
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taking place also from the skin, given a very intense drying strategy or high 

levels of evaporation relative to absorption. In their nature, finger structures can 

be expected to be fairly sensitive to abrupt changes during the process of 

consolidation.     

 
 

 
Figure 46. Consolidating of particle system, with arising “fingering” (HLL drying 
strategy, ψ = +25 mV, 1/κ = 2.5 nm, clustering threshold 20 nm). Visualisation of cluster 
connections (red = closer distance, blue = longer distance). 

 
Cluster visualisation can be a useful tool in highlighting and explaining 

concentration differences and particle agglomeration in particle systems. 

Clustering mechanisms influencing the macroscopic properties of coating layers 

could also be identified. The work illustrates the interplay between the 

properties of the pigment suspension and the drying strategy in forming the 

structure of the coating layer. Furthermore, the work aids in the dosing of 
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chemicals and tuning of the drying process to produce coating layers of 

desirable microstructure. 
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5. CONCLUDING REMARKS 
 
The current study employs a Stokesian dynamics-based technique in simulating 

the consolidation of particle systems that resemble pigment coatings. The 

model included full 3D particle motion, polydisperse particle size distributions, 

and interactions by hydrodynamics and colloidal forces. A novel Brownian 

motion model was included in the simulation technique. Particle dynamics 

simulations were performed, coupled to experimentally-obtained boundary 

conditions such as coating layer dewatering rates, colloidal interaction 

parameters and particle size distributions. The systems were designed to be 

relevant for practical coating processes, whilst still developing current theory on 

the mechanisms that take place. The focus was on the dynamical behaviour of 

coating suspensions during consolidation.  

 The stability of filter cakes was studied for a set of different base 

substrate absorption rates, particle sizes, size distributions and temperatures. It 

was found that the structure of the filter cake depended primarily on the 

absorption rate and particle size. The system temperature also appeared to have 

some impact. Filter cake concentration gradients in polydisperse systems were 

also found to be influenced by filter cake surface roughness as well as size 

segregation effects. Conflicting experimental results in the literature could in 

part be explained by differences in experimental conditions. In conditions 

typical for pigment coating of paper, a sharp filter cake can be expected.    

The influence of the drying strategy on the structure formation and 

small particle distribution within coating layers was studied using 4 pilot trial 

and model based dewatering profiles. The z-direction dry solids profile was 

shown to vary significantly depending on the drying strategy and both filter 

cake formation and skinning could be observed. Dry solids profiles arising 

during the early stages of consolidation tended to even out over time, while the 
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small particle distributions also tended to persist after immobilisation. 

Furthermore, the fundamental mechanisms of particle movement and 

redistribution were studied. The most important findings were the correlation 

between local solids concentration and particle mobility, and the influence of 

the drying strategy on particle mobility. 

The last part of the work investigated the influence of colloidal 

interactions on the consolidation of coating layers, including coating layer 

shrinkage, internal microstructure development, and particle agglomeration 

mechanisms (clustering). The particle surface potential was found to influence 

the thickness of the coating layer, while having a lesser effect on the internal 

microstructure. The thickness was influenced primarily by particle clustering 

phenomena that take place as a result of reduced electrostatic repulsion. Double 

layer thickness had a negligible influence on the shrinkage of the coating layer, 

but was found to impact the internal solids structure gradients of the coating 

layer. Both skinning and filter cake formation were accentuated at low double 

layer thicknesses. The results were also correlated with the drying strategy.    

 Since direct experimental verification of the simulation results in this 

work is difficult, if not impossible, caution should be exercised when drawing 

conclusions based on the simulations. The mechanisms identified should be 

interpreted in context of experimental observations of systems similar to those 

modelled in this work. Nevertheless, the work improves the current 

understanding of how processing conditions and suspension properties 

influence the consolidation of pigment coating layers. The results may find 

applicability both in tuning the drying strategy and chemical additives to the 

coating formulation, in order to produce a coated paper with a desirable 

porosity profile and cross-layer particle distribution. 

    



Suggestions for further work 
 

112 

6. SUGGESTIONS FOR FURTHER WORK 
 
While this study takes an applied approach to particle dynamics simulation of 

consolidating pigment coatings, there are several possibilities for developing 

the simulation technique, its constituent models, and to apply the current 

technique in studying as yet uninvestigated coating related phenomena. 

 The limitations of the model are related to the lack of back-coupling 

between particle movement and the flow of the liquid phase, limitations in the 

number of particles and invalidity of the model as air starts to enter the coating 

structure. However, increased simulation capacity and computational systems 

based on parallel processing might relieve some of the limitations in the future. 

There are also uncertainties in colloidal force parameters, considering the 

complexity of pigment coating systems where parameters change during the 

consolidation process. Depletion and bridging forces resulting from liquid 

phase or adsorbed polymers could be included. Furthermore, there is a need to 

generate more complex base substrate structures and liquid flow profiles based 

on system geometry. This possibility has to some extent been explored using 

the Elmer software (Nopola 2004), but there is still a need for more advanced 

simulation schemes to take dynamic changes in the system geometry into 

account. The inclusion of different particle properties (e.g. density and surface 

properties) in simulations could provide a more accurate understanding of the 

behaviour of pigment/ binder systems. The currently available hydrodynamic 

pairwise interaction force models are limited to a maximum size ratio of 10 

between particles. This does not allow simulation of nanoscale particles within 

the coating and thus leaves out particulate binders and thickeners smaller than 

100 nm. Furthermore, the limitation to spherical particles could in future work 

be relieved by “gluing” spherical particles together to form more complex 

shapes.    
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 Finally, there are still a wide range of simulations carried out in 2D, 

which with the current improvements to the simulation technique could also 

easily be carried out in 3D. Allowing 3D motion is essential, since it is 

otherwise impossible to capture percolation and filtration type phenomena. This 

is because small particles move in the porous network formed by the larger 

particles.      
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SWEDISH SUMMARY 
 
Pigmentbestrykning är den vanligaste metoden för vidareförädling av papper. 

Genom applicering av ett tunt skikt av finfördelat mineralpigment på papperet, 

kan dess utseende och tryckbarhet förbättras avsevärt. 

Utvecklingen av bestrukna pappersprodukter för nya ändamål, samt den 

tilltagande populariteten för nya applikationsmetoder för bestrykningssmeten, 

har gjort det allt viktigare att noggrant kunna kontrollera bestrykningsskiktets 

egenskaper. De styrande mekanismerna för mikrostrukturens dynamiska 

tillkomst i pigmentskiktet under konsolideringsfasen är dock fortfarande inte 

väl undersökta. Detta hänger samman med processens komplexitet; en 

storleksskala från µm- till nm-nivå, tidsperioder på under en sekund, samt 

extrema processförhållanden såsom höga temperaturer och tryckpulser. De 

svårigheter som uppstår i samband med experimentella undersökningar kan till 

stor del övervinnas genom tillämpning av numeriska modeller samt genom 

studier baserade på datorsimulering. Dessa metoder kan som sådana, eller i 

kombination med experimentella resultat, avsevärt öka förståelsen av de 

mekanismer som styr mikrostrukturens formation och pigmentskiktets 

makroskopiska egenskaper. 

 Målsättningen med detta arbete var att klargöra vilka mikroskopiska 

strukturer som uppkommer i bestrykningsskiktet under konsolideringen. 

Inverkan av den våta pigmentstrukturen, processförhållanden samt 

pigmentsuspensionens egenskaper på konsolideringen och mikrostrukturen hos 

bestrykningsskiktet undersöktes. Detta arbete syftar till att öka förståelsen för 

konsolideringsmekanismer, liksom kopplingen mellan pigmentsuspensionens 

egenskaper, processförhållanden och slutproduktens egenskaper. Resultaten kan 

även ge vägledning i valet och doseringen av tilläggskomponenter till 

bestrykningssmeten för att man ska uppnå ett bestrykningsskikt med önskvärda 

strukturella egenskaper. 
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En matematisk modell, baserad på en modifierad version av Stokesian 

dynamics-simuleringsteknik, vidareutvecklades och tillämpades i ett antal 

studier relaterade till bestrykningsskiktets konsolidering. Modellen beskriver 

tredimensionella partikelrörelser i polydispersa system. En sådan beskrivning är 

nödvändig för att man skall kunna förstå perkolationsfenomen och 

partikelmigrering som uppstår under konsolideringen. Partikelinteraktionerna 

omfattade partikelsuspensionens hydrodynamiska beteende, kolloidala 

interaktioner, Born repulsion, samt en sterisk repulsionsmodell för adsorberat 

polymert material. Den Brownska rörelsen samt en modell för den fria ytan, det 

vill säga gränsytan mellan pigmentsuspensionen och luften, inkluderades för att 

möjliggöra undersökning av konsoliderings- och torkningsfenomen. 

 Uppkomsten av en filterkaka, ett område av lokalt förhöjd 

partikelkoncentration, vid gränsytan mellan pigmentsuspensionen och 

bassubstratet, är ett grundläggande fenomen vid bestrykning av absorberande 

material såsom papper. Filterkaksstabiliteten undersöktes i ett flertal olika 

partikelsystem, på vilka applicerades varierande absorptionshastigheter för 

bassubstratet samt ett antal olika systemtemperaturer. Filterkaksstabiliteten 

påverkades främst av absorptionshastigheten samt partikelstorleken. 

Temperaturen visade sig även ha inflytande på filterkakans struktur. 

Konsolideringen av polydispersa partikelsystem undersöktes vid olika 

påläggsmängder, samt för ett antal torkstrategier baserade på pilotförsök och 

teoretiska avvattningsmodeller. Resultaten visade att torkningsstrategin 

inverkar kraftigt på mikrostrukturens utveckling, samt på fördelningen av små 

partiklar i bestrykningsskiktet. En tydlig koppling mellan torkstrategi och 

partikelrörlighet under konsolidering kunde även noteras. 

Pigmentsuspensionens kolloidala egenskaper hade ett starkt inflytande på 

bestrykningsskiktets krympning samt den interna fördelningen av fast material, 

det vill säga dess koncentrationsprofil i z-riktning. Visualisering av 

partikelsystemens konsolidering i tiden, samt jämförelser mellan system av 
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olika egenskaper och utsatta för olika processförhållanden, var användbart för 

illustration av olika strukturbildningsmekanismer. 

 Resultaten bidrar till förståelsen av de fundamentala mekanismer som 

driver konsolideringen av bestrykningsskikt. Vidare beskriver resultaten 

samband mellan processförhållanden och bestrykningssmetens inneboende 

egenskaper, samt dessa faktorers inverkan på bestrykningsskiktets 

mikrostruktur.                 
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