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Abstract

This Master’s thesis outlines the conversion process of CUDA (Compute Unified

Device Architecture) source code, originally designed for Nvidia hardware, to

code compatible with both Nvidia and Advanced Micro Devices (AMD) hard-

ware. The conversion is facilitated by AMD’s Heterogeneous-Computing Inter-

face for Portability (HIP).

Parallel computing using Graphics Processing Units (GPUs) has been a long-

standing practice, leveraging GPUs’ parallel capabilities, software support, and

speed. Nvidia has historically dominated the supercomputing market for GPUs.

However, with the emergence of Advanced Micro Devices (AMD) as a com-

petitor, a viable alternative for supercomputers now exists. Notably, the LUMI

supercomputer in Finland incorporates AMD GPUs in its GPU partition.

This Master’s thesis addresses the challenge of converting pre-existing CUDA

code, along with associated libraries, into HIP code, thereby enabling execution

on hardware from both manufacturers. This HIP conversion empowers develop-

ers to run their legacy CUDA programs seamlessly on Nvidia or AMD hardware.

A general method for the ’hipification’ of external libraries and own code was

developed.

The general method was tested on a Quasi-Minimal Residual method (QMR)

solver. The test data that the QMR solver is run with is from DREAM (Dis-

ruption and Runaway Electron Analysis Model). Quadruple precision was used

in order to achieve convergence in the QMR solver. The runtime of the QMR

program was measured for different GPUs resulting in comparable runtimes for

both AMD and Nvidia GPUs.

Keywords: AMD, C, CUDA, GPU, HPC, HIP, Nvidia, QMR, Quadruple

Precision, ROCm, SLEEF.
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Abbreviations

AMD (Advanced Micro Devices)

API (Application Programming Interface)

C/C++ (C/C++ programming language)

CPU (Central processing unit)

CUDA (Compute Unified Device Architecture)

GPU (Graphics processing unit)

HIP (Heterogeneous-Computing Interface for Portability)

LLVM (Low level virtual machine)

NVCC (Nvidia CUDA compiler)

QMR (Quasi-Minimal Residual method)

RAM (Random Access Memory)

SIMD (Single Instruction / Multiple Data)
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Chapter 1

Introduction

Everyday mathematical algorithms are in many cases solved with supercom-

puters. It is of paramount importance that these algorithms exhibit optimal

swiftness and precision, as fast programs not only conserve valuable time but

also mitigate financial expenditures. Nevertheless, harnessing the full spectrum

of available computational capabilities can be challenging. This task requires a

deep understanding of how to do calculations at the same time (in parallel), as

well as a nuanced expertise in the domain-specific intricacies associated with

Graphics Processing Units (GPUs). The utilization of pre-established software

libraries for problem resolution constitutes a prevalent and pragmatic approach,

particularly in the domain of computational mathematics and physics. There

is no rationale in re-inventing the wheel by rewriting existing algorithms. Pre-

viously, CUDA programs had to be recompiled for the new supercomputers.

Nowadays, the hardware support in new supercomputers may switch between

CUDA, HIP, and back to CUDA.

Parallel programming constitutes a programming paradigm in which a given

program is concurrently executed on multiple Central Processing Units (CPUs)

or multiple GPUs. The predominant benefit inherent to parallel programming

is the substantial increase in computational speed. When a program exhibits

parallelizability, the utilization of parallel computing methodologies becomes

advantageous. It is noteworthy that a single GPU can execute a considerably

greater number of parallel programs in comparison to a CPU containing dozens

of CPU cores, demonstrating the inherent performance advantage of GPU-based

parallelization.
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1. Introduction

1.1 Objectives

The thesis aims to facilitate the execution of pre-existing Compute Unified De-

vice Architecture (CUDA) code with external libraries on Advanced Micro De-

vices (AMD) GPUs. AMD has devised a conversion process that transforms

CUDA code into Heterogeneous-Computing Interface for Portability (HIP) code

that is compatible with both AMD and Nvidia hardware. The primary goal is

to empower CUDA code developers to execute their programs with external

libraries on either AMD or Nvidia hardware. By employing the general conver-

sion method outlined in this thesis, it becomes viable to convert and execute

CUDA programs alongside external libraries. This addresses a widespread chal-

lenge faced by researchers and programmers when new supercomputers are con-

structed with hardware configurations differing from those they are accustomed

to programming for directly. The generalized conversion process, specifically

described in the methods chapter, involves the transformation of CUDA code

present in both an external library and the source code into HIP code.

1.2 Structure of the thesis

The thesis starts with a literature review, providing background theory on

GPUs, parallel computing, and the significance of floating-point precision. The

central emphasis of this work is directed toward the orchestration of code exe-

cution employing external CUDA libraries on heterogeneous hardware configu-

rations. The following section presents and analyzes the research findings, with

an accompanying commentary.
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Chapter 2

Background

In the worldwide consumer GPUmarket, historically characterized by the promi-

nent duopoly of Nvidia and AMD, Intel has commenced its entry into this arena

as of the year 2022 [1]. Notably, within the domain of supercomputing, both

Nvidia and AMD GPUs are widely deployed. Nevertheless, there is a discernible

trend wherein an increasing number of supercomputing facilities are opting for

AMD hardware, encompassing both CPUs and GPUs.

Bailey and Borwein’s research on ”High-Precision Computation and Mathemat-

ical Physics” [2] highlights the crucial need for increased mathematical precision

in scientific fields such as quantum field theory and supernova simulations. Their

work underscores the significance of enhanced precision for advancing compu-

tational physics. They have demonstrated the necessity for quadruple precision

or higher in various illustrative instances. A common challenge faced in these

domains is the requirement to utilize third-party libraries to achieve elevated

levels of numerical precision. This thesis explores a gap in current research about

combining third-party CUDA libraries with existing source code. It focuses on

the need for converting and ensuring compatibility in the process.

In the upcoming Background chapters, the following topics will be presented:

CUDA and HIP history, the LUMI consortium and LUMI supercomputer, GPU

programming, the GPU memory model, AMD ROCm, Makefiles, Hipify, and the

quadruple-precision floating-point format using the external library SLEEF.

3



2. Background

2.1 CUDA and HIP history

CUDA has been the main software development environment in which to write

GPU programs up until AMD released its Heterogeneous-Computing Interface

for Portability library November 14, 2016 [3]. AMD is now a major competitor

to Nvidia. Many new supercomputers are using AMD GPUs; hence, there is a

need to convert existing CUDA source code that previously only ran on Nvidia

GPUs to run on AMD GPUs through ”hipifying” the source code with HIP.

The HIP API is very similar to the CUDA API, as can be seen in Table 2.1.

CUDA HIP

#include "cuda.h" #include "hip/hip runtime.h"

cudaMalloc(&d x, N*sizeof(double)); hipMalloc(&d x, N*sizeof(double));

cudaMemcpy(d x,x,N*sizeof(double),

cudaMemcpyHostToDevice);

hipMemcpy(d x,x,N*sizeof(double),

hipMemcpyHostToDevice);

cudaDeviceSynchronize(); hipDeviceSynchronize();

Table 2.1 Differences between CUDA and HIP API [4]

2.2 LUMI consortium and supercomputer

The LUMI supercomputer is hosted by the LUMI consortium, consisting of

11 European countries. The LUMI consortium is part of the European High

Performance Computing Joint Undertaking (EuroHPC JU) whose purpose is to

coordinate and pool compute resources in order to make Europe a world leader

when it comes to supercomputing. [5] [6]

The GPU partition LUMI-G consists of 2978 nodes, each node with one 64 core

AMD EPYC ”Trento” CPU and four AMD MI250X GPUs. The CPU partition

in LUMI is called LUMI-C. It has 2048 nodes with two AMD EPYC 7763 CPUs

per node for a total of 262,144 CPU cores. As of November 2023 LUMI is the

fifth fastest supercomputer in the world. The energy consumption of LUMI is

7.1 MW and noteworthy is that LUMI is using 100% hydro-powered energy.

Waste heat is used for district heating in the nearby area in Kajaani. The waste

heat produced accounts for 20% of the total district heating. [7] [8] [9] [10]
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2. Background

2978GPU Nodes × 4AMD MI250X GPUs × 2Dies = 23, 824 GPU dies total (2.1)

Equation 2.1 shows how the total number of GPU dies for the LUMI-G partition

is calculated.

Figure 2.1 LUMI Supercomputer

Figure 2.2 Overview of a LUMI-G compute node

5



2. Background

2.3 GPU programming

A GPU kernel is the program that executes on the GPU. The difference between

a GPU kernel and a CPU C function is that a GPU kernel can spawn orders

of magnitude more threads on the GPU than a CPU C function can on the

CPU. This makes GPUs a viable choice when it comes to parallel programming.

Software designers strive to make programs run fast; time is money. GPUs have

taken a central role in parallel computing during the last decade. A GPU can

execute thousands of programs or kernels at the same time. Noteworthy is that

a GPU executes the spawned kernels in any order. To be able to take advantage

of the parallelism in GPUs the program needs to be ”loop independent”. That

is, the result should be independent of the order in which the programs are run.

2.4 Loop independency

The inner part of a loop is a block considered independent when the computation

for index value i is independent of the computation for index value j ̸= i. One

method for checking if this holds is to run the loop backwards and check if the

results are the same. A matrix multiplication example on the CPU and on the

GPU with CUDA can be found in appendix [2].

6



2. Background

2.5 GPU Programming Model

A basic GPU programming model looks like this: Design the program to run

many independent threads, each operating on small amounts of data. The code

executed in each thread could be thought of as the inner code of a loop. Threads

are grouped into blocks, and blocks are grouped into a grid of blocks. The threads

are executed in groups called waves or warps. Nvidia uses 32 as its warp size

and AMD uses 32 or 64 as its wavefront size depending on the chip. [11] [12]

Figure 2.3 GPU programming model

7



2. Background

2.6 GPU Memory model

GPUs have their own memories. Data is explicitly transferred from and to the

host. The simplest approach is to use only global GPU memory, with the draw-

back of slower memory access times. Memory is first allocated on the host ma-

chine e.g. Random Access Memory (RAM), with calloc(). The contents of that

memory are then copied over to the GPU memory. The GPU runs the kernel

and then some GPU memory containing the result has to be copied back to

the host [15]. CUDA unified memory is another option that is a single memory

space for both the host CPU and device GPU [13]. For optimization purposes,

threads in the same thread block or thread block cluster may access the same

shared memory to gain execution speed. Registers only have a lifetime of one

thread. Thread Block Clusters were introduced in Nvidia Compute Capability

≥ 9.0.

Figure 2.4 CUDA Memory hierarchy
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2. Background

2.7 CUDA

CUDA is Nvidia’s API for programming and running programs or kernels on

the GPU. It is based on standard C code with a small number of extensions.

CUDA was first introduced in 2006 and it is widely used in the field of computer

science today. [14]

2.8 HIP

HIP is a C++ dialect designed for porting CUDA programs to portable C++

code. It is AMD’s GPU programming environment. It is possible to target both

Nvidia and AMD architectures with HIP. Example HIP code that adds a vector

can be found in appendix [13]

2.9 AMD ROCm

ROCm is AMD’s software stack designed for GPU programming mostly com-

prised of open-source software. ROCm is powered by HIP. It supports multiple

programming models such as OpenMP and OpenCL and frameworks e.g. Py-

Torch and Tensorflow and libraries such as hipBLAS, hipFFT and hipSPARSE.

[15]

2.10 Compiler

A compiler is a program that takes source code (C / C++ / CUDA / HIP) as

input and outputs byte code or machine code for the CPU or GPU to execute.

Two common compilers are GCC and Clang.

2.11 Makefile

Make is a build system used for compiling and building software projects. A

Makefile is a file that includes steps on how the source code should be compiled.

It can also keep track of which parts of the code that needs recompiling, short-

ening the total compile time. The makefile consists of variables and sections.

Each section performs a specific part of the compilation process. See Appendix

[7] for a complete Makefile.

9



2. Background

2.12 Hipify

The conversion from CUDA to HIP can partly be automated using the hipify

tools provided by AMD. The tool exists in two flavors. The simpler one is a

hipify-perl perl script that performs a find and replace on the project source

files. The second tool is hipify-clang which is a more sophisticated tool based

on Clang and Low level virtual machine (LLVM). [16]

The hipify tools try to convert CUDA API calls to HIP API calls. Some man-

ual work might be needed to get the HIP program to compile, such as header

includes and compiler flags.

2.13 Quadruple-precision floating point format

Normally, when coding with floating point numbers in C, floats with 6 significant

digits are used. However, if the program demands more precision, doubles with

15 significant digits are employed. These two data types in C occupy 4 bytes

and 8 bytes, respectively. A float128 occupies 16 bytes (128 bits) of memory and

has 33 significant digits. [2].

Quadruple-precision layout: IEEE 754 quadruple-precision format includes:

- Sign Bit (1 bit): The most significant bit represents the sign of the number,

where 0 denotes positive and 1 denotes negative.

- Exponent (15 bits): This portion encodes the exponent of the number,

allowing a wide range of values.

- Significand (Mantissa) (112 bits): The significand contains the fractional

part of the number, allowing a high degree of precision.

A quadruple-precision floating-point value can be created by combining three

64-bit components: sign, exponent, and significand. An over simplified version

of this can be found in Appedix: [8]. Extraction of these components can be

achieved with bit manipulations.

10



2. Background

The IEEE 754 standard defines floating-point arithmetic formats, operations,

and exception handling. If you want to ensure that float128 in C is IEEE 754

compliant, you need to consider various aspects, including arithmetic operations,

trigonometric operations, transcendental operations, and comparison.

Here are some key points to consider for IEEE 754 compliance:

1. Arithmetic Operations:

- Addition (+), subtraction (−), multiplication (∗), and division (/) should

follow the rules specified in IEEE 754, including proper handling of spe-

cial values such as infinity, NaN (Not a Number), and denormalized

numbers.

2. Trigonometric Operations:

- Trigonometric functions like sine, cosine, tangent, etc., should provide

accurate enough results according to the IEEE 754 standard.

3. Transcendental Operations:

- Functions like exponentiation (exp()), logarithm (log()), and square root

(sqrt()) should adhere to the IEEE 754 specifications, ensuring accuracy

and proper handling of special cases.

4. Comparison:

- Comparison operations (<,<=,==, ̸=, >,>=) should follow the rules

outlined in IEEE 754. This includes the handling of NaN values and

ensuring proper rounding modes.

11



2. Background

2.14 SLEEF

SLEEF stands for SIMD Library for Evaluating Elementary Functions. This

library implements quadruple-precision types and functions in C, adhering to the

standard IEEE 754 quadruple-precision floating-point format. This is the library

used in the implementation of this thesis for quadruple-precision numbers. In

SLEEF, a Sleef quad is defined as float128 on the CPU. If run on the GPU,

Sleef quadx1 is used. [17] [18] [19]

SLEEF API examples

Figure 2.5 SLEEF addition example with quadruple presicion numbers. From
appendix [9]

The numbers in the output [2.6] are double precision floating-point representa-

tions in C. The values are the exact value of their internal binary representation,

this will lead to the numbers looking funny due to the limitations of representing

real numbers in binary using floats or doubles.

12



2. Background

Figure 2.6 SLEEF addition example output.

Figure 2.7 SLEEF multiplication example with quadruple presicion numbers.
From appendix [10]

Figure 2.8 SLEEF multiplication example output.

13



2. Background

Figure 2.9 SLEEF implementation of printing high precision numbers with
quadmath. From appendix [11]

Figure 2.10 SLEEF printing example output.

14



Chapter 3

Method

This chapter presents the steps taken to obtain solutions to linear equations

of disruptions in fusion reactors of the Tokamak type using the Quasi-Minimal

Residual method (QMR). A more general approach to hipify external libraries

will also be presented. An introduction to iterative solvers is also introduced.

3.1 Iterative Solvers: General Overview

Iterative solvers are numerical techniques used to find approximate solutions to

linear systems of equations through a sequence of repeated steps. These methods

are particularly useful for large-scale problems where direct methods might be

computationally expensive or impractical for iterative solvers due to the size

and the sparsity of the linear system. A direct method often uses a dense matrix

as an intermediate step. This makes direct methods impractical for very large

matrices, of size 1 million × 1 million and larger.

Common Characteristics:

1. Iterative Refinement: Iterative solvers refine an initial guess for the

solution in a step-by-step fashion, continuously improving the approxima-

tion.

2. Krylov Subspace Methods: Many iterative solvers belong to the family

of Krylov subspace methods. The Krylov subspace methods construct a

sequence of subspaces derived from powers of the coefficient matrix.

15



3. Method

3. Convergence Criteria: Iterative solvers typically employ convergence

criteria to determine when the approximation is sufficiently accurate. Com-

mon criteria include reaching a specified tolerance or a maximum number

of iterations.

Define tolerance:

||Ax− b||
||b||

< tol e.g. = 10−10
(3.1)

The variables in the equation 3.1 are as follows:

• A represents the coefficient matrix of the linear system.

• x is the approximate solution obtained from the iterative solver.

• b is the right-hand side vector of the linear system.

• || · || denotes the Euclidean norm, which measures the magnitude of

a vector.

• tol is the tolerance level, representing the maximum allowable relative

error.

The equation 3.1 calculates the relative error between the current approx-

imation Ax and the actual right-hand side b of the linear system. The

tolerance tol sets the threshold for this relative error. If the relative error

falls below the tolerance level, the iterative solver is considered to have

converged to an acceptable solution.

For example, setting tol = 10−10 indicates that the solver should continue

iterating until the relative error is less than 10−10, providing a highly

accurate approximation to the solution. [20]

4. Applicability to Large and Sparse Systems: Iterative methods are

particularly well-suited for solving large and sparse linear systems that

arise in various scientific, engineering, and computational applications be-

cause sparse matrices can be represented and stored efficiently without

the use of elements with a value of zero.

16



3. Method

Examples of Iterative Solvers:

1. Conjugate Gradient (CG) method: One of the best known iterative

solvers. Efficient for solving sparse symmetric positive definite matrices.

Sparse symmetric positive definite matrices have mostly zero elements, are

symmetric across their main diagonal, and have all positive eigenvalues.

[20]

2. GMRES (Generalized Minimal Residual method): Suitable for

nonsymmetric matrices. It was introduced by Y. Saad and M. Schultz

in 1986. [21]

3. BiCGStab (Biconjugate Gradient Stabilized method): An exten-

sion of CG for nonsymmetric matrices with improved stability.

4. Jacobi Iteration: A simple iterative method updating each variable

based on an average of its neighbors.

5. SOR (Successive Over-Relaxation) method: Introduces relaxation

parameters to accelerate convergence, particularly for symmetric positive

definite matrices.

The idea behind relaxation parameters is to strike a balance between mak-

ing significant corrections to the current approximation and ensuring sta-

bility in the iterative process. By carefully tuning the relaxation parame-

ter, the iterative solver can converge more rapidly to the solution without

sacrificing accuracy or stability.

Applications:

• Scientific Computing: Used in simulations, computational physics, and

numerical modeling.

• Engineering: Applied in structural analysis, fluid dynamics, and finite

element methods.

• Image Processing: Used for image reconstruction and feature extrac-

tion.

• Optimization: Employed in optimization algorithms and linear program-

ming.

17



3. Method

Conjugate Gradient Method Example

Introduction

The Conjugate Gradient (CG) method is an iterative algorithm for solving sym-

metric positive definite linear systems. Given a linear system Ax = b where A

is symmetric positive definite, the CG method iteratively refines the solution x.

[20, 22]

Conjugate Gradient Method

The CG method iteratively refines the solution by updating the current approxi-

mation and search direction. The algorithm involves computing coefficients such

as αk and βk+1 in each iteration.

Initialization:

x0 (initial guess)

r0 = b−Ax0 (initial residual)

p0 = r0 (initial search direction)

Iteration (for k = 0, 1, 2, . . .):

αk =
rTk rk
pTkApk

(compute step size)

xk+1 = xk + αkpk (update solution)

rk+1 = rk − αkApk (update residual)

βk+1 =
rTk+1rk+1

rTk rk
(compute correction factor)

pk+1 = rk+1 + βk+1pk (update search direction)

Convergence criterion:

The CG method can be terminated based on individual criteria or their combi-

nation. It iteratively refines the solution until it achieves convergence or reaches

a specified number of iterations.

||rk|| < ϵ

Alternatively, the change in the solution between iterations can be compared

with the predefined tolerance:

18



3. Method

||xk+1 − xk|| < ϵ

The algorithm can also be terminated if the iteration count exceeds the maxi-

mum number of iterations:

k ≥ max iterations

These criteria can be used individually or in combination to determine when to

terminate the conjugate gradient method. The CG method iteratively refines

the solution until convergence or a specified number of iterations.

19



3. Method

3.2 QMR - quasi-minimal residual method

The Quasi-Minimal Residual (QMR) method is an iterative numerical technique

used to solve systems of general linear equations. An example of a linear equa-

tion can be found in appendix [14]. It is particularly useful for solving large,

sparse, and nonsymmetric systems commonly encountered in scientific and en-

gineering simulations. QMR is versatile because it does not assume any specific

characteristics about the linear system apart from being nonsingular (invert-

ible) matrices. It is an extension of the Minimal Residual (MINRES) method

and is designed to handle problems where other methods like Conjugate Gra-

dient (CG) may not be suitable, as CG requires the matrix to be symmetric.

The QMR method in our case necessitates the utilization of quadruple preci-

sion arithmetic in order to yield accurate and robust outcomes [23]. The goal

is to run our CUDA version of QMR on AMD GPUs. The need for quadruple

precision is not general. In our QMR problem with one million variables we are

not able to get QMR to converge with tolerance 10−22.
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3. Method

QMR pseudocode example

A is the nonsymmetric matrix.

b is the right-hand side vector.

xk is the current approximation of the solution.

rk is the residual vector.

vk is an auxiliary vector.

pk and qk are auxiliary vectors used in the iterations.

αk, βk, and ωk are scalar coefficients.

Appendices 3.1 QMR solver pseudocode.

1 Input: A (nonsymmetric matrix), b (right-hand side vector), x_0 (initial guess),

tol (tolerance)

2 Output: x (approximate solution)

3

4 Initialize:

5 r_0 = b - A * x_0

6 v_0 = r_0

7 p_0 = 0

8 q_0 = 0

9 beta_1 = ||r_0||

10

11 for k = 1 to max_iterations do

12 alpha_k = (v_{k-1}^T * r_{k-1}) / (v_{k-1}^T * A * v_{k-1})

13 p_k = r_{k-1} - alpha_k * A * v_{k-1}

14 q_k = A * p_k

15 beta_k = ||q_k||

16

17 if beta_k == 0 then

18 break // QMR breakdown, handle accordingly

19 end if

20

21 omega_k = (p_k^T * q_k) / (q_k^T * q_k)

22 x_k = x_{k-1} + alpha_k * v_{k-1} + omega_k * p_k

23

24 r_k = p_k - omega_k * q_k

25 v_k = A * r_k

26

27 if ||r_k|| < tol * ||b|| then

28 break // Convergence achieved

29 end if

30 end for

31

32 Output x_k as the approximate solution
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3. Method

3.3 HIP conversion and compilation

The QMR compilation process for HIP has been implemented through a Make-

file, involving a series of sequential steps. One step, namely the ’hipify sleef’ is

conspicuously left commented out in the Makefile. This particular step requires

the adaptation of external library source code to a format compatible with the

HIP platform; however, for the specific context of this implementation, such

a transformation was deemed unnecessary. The build process is initiated with

the removal of the prior build directory, followed by the creation of an empty

directory. Subsequently, the external library SLEEF is retrieved from its repos-

itory on GitHub. An important aspect to address in this procedure involves the

potential need to modify the source code of SLEEF to work with HIP. This re-

quires changing the build scripts and Makefiles to use the ROCm HIP compiler

(hipcc) instead of the Nvidia CUDA compiler (NVCC). Furthermore, adjust-

ments may be necessary to configure library paths and flags to ensure a smooth

integration with ROCm HIP libraries and their dependencies. Unfortunately,

this latter aspect requires a certain level of manual effort. In the final step of

the process, the Makefile proceeds to compile the source code of the specified

target.
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3. Method

3.4 Compiler flags

The hipcc / Clang compiler flag -ffp-contract=off was critical for achieving

the correct result when executing the QMR program.

FMA and Contractions

This compiler flag is crucial. It defines when the compiler is allowed to form

fused floating-point operations e.g. fused multiply-add (FMA). Contractions

are compiler optimizations aimed at improving performance by reducing the

number of instructions executed. Instead of executing separate instructions for

each operation (e.g. multiplication followed by addition), contractions allow the

compiler to merge these operations into a single instruction where supported

by the underlying hardware. If FMA and contractions is used the operations

are performed more quickly and the resulting total runtime is shorter [11]. In

certain numerical algorithms, particularly those involving iterative calculations

or computations with very small or very large numbers such as QMR, FMA op-

erations might introduce numerical instability or loss of precision and therefore

needs to be turned off.
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Figure 3.1 External library hipification with own code.

In the proposed general method for hipifying external CUDA libraries there are

five steps highligted in yellow in the flowchart 3.1. The library is hipified with

hipify-clang. In this general method the external library code build scripts are

updated to use the hipcc compiler. After the library has been hipified and built

successfully our own source code or target is hipified and compiled.

24



Chapter 4

Test Case

The test data that the QMR solver is run with is from DREAM (Disruption and

Runaway Electron Analysis Model). DREAM is a modeling of instable electrons

in a fusion reactor of the Tokamak type [24]. Under certain conditions, cascades

of runaway electrons are created, which disrupt the properties of fusion plasmas

and can lead to the dissolution of the plasma. The test data exists in the form

of two matrices, Disruptions A and Disriptions b.

- Disruptions A: 3 columns and 954401 rows (954401× 3)

- Disruptions b: 1 column and 87018 rows (87018× 1)

The matrix Disruptions A is given in the sparse matrix format: row, column,

and value. The largest row value for the matrix Disruptions A is 87017, and

the largest column value is also 87017, meaning the A matrix is a quadratic

sparse matrix of size 87017 × 87017 where rows and columns start at 0. The

advantage of using QMR compared to the methods used before in DREAM is

that QMR does not calculate A’s inverse (which would be dense), and therefore

we do not need to save a dense matrix in QMR. Additionally, we are using

quadruple-precision (128-bit floating point) instead of double precision (64-bit).

Properties of the Disruptions A matrix:

Number of rows: 87018

Number of elements: 954401

Number of zeroes: 93462

Number of nonzeros: 860939

Largest absolute value: A(40240, 86856) = +1.067052071992823800× 1026

Smallest absolute value: A(86744, 86759) = +5.305103115116799000× 10−75
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Results

The results are considered good if a program, depending on an external library,

compiled with HIP, has roughly the same run times on hardware from both man-

ufacturers, such as Nvidia and AMD. This is indeed the case with our QMR

HIP implementation: the runtimes for consumer-grade AMD cards are compa-

rable to those of an Professional-grade Nvidia Tesla V100-16GB, as illustrated

in Figure 5.1 below.

Professional-grade GPUs typically offer higher precision and accuracy not only

in floating-point arithmetic but also in other aspects such as double-precision

floating-point arithmetic, error correction capabilities, larger memory capaci-

ties, optimized drivers for professional applications, and specialized features for

compute-intensive workloads like scientific simulations, machine learning, and

rendering.
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5. Results

Figure 5.1 GPU performance comparison.

The results of the implementation are that it is now possible to hipify and

compile CUDA programs to run on either manufacturer’s hardware with ex-

ternal libraries that use CUDA. This opens up the possibility for developers

and researchers to run older CUDA code on newer hardware by following the

same process as outlined in this thesis. A process for hipifying CUDA code in

libraries included within the current project has been presented in the form of

a makefile, please see Appendix [7]. The porting or hipification will vary from

project to project. The files needed to be converted from CUDA to HIP vary

based on the project and the libraries used. This will need to be adjusted on a

project-by-project basis, as shown in the flowchart figure 3.1.
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Discussion

The QMR implementation, which relied on SLEEF, did not require hipification

to compile and run successfully; this was the expected easy path. The more

challenging path, as presented in the methods chapter, involves hipifying the li-

brary code before compiling our own source code. The general method discussed

in this thesis could potentially apply to other CUDA source code, as outlined

in Figure 3.1. However, due to the method’s generality, some manual porting

from CUDA to HIP-compliant source code will be necessary. It’s important to

note that the tool hipify-perl functions as a simple ”find and replace” script;

for hipifying a codebase, hipify-clang should be utilized instead. In the future,

automating the conversion of external libraries may be viable.
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Chapter 7

Summary

This chapter will serve as a summary about the topics covered in this thesis.

There is a need to convert and run old CUDA programs hardware-agnostically.

However, the process is not straightforward, and as of today, there does not exist

any standard method for converting old CUDA programs that rely on external

CUDA libraries to HIP.

In this master’s thesis a general method is presented for converting existing

CUDA programs that use an external library into HIP programs that can run

on either hardware (Nvidia or AMD). AMD has developed a compiler along

with conversion scripts that can take CUDA code and convert it into HIP code

automatically. The problem that this thesis solves is that it presents a gen-

eral method for converting existing CUDA programs that depend on a external

library into HIP code that can target either manufacturers hardware.

Manual conversion work will be needed in most cases in order to satisfy the

compiler (clang or NVCC through hipcc).
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Summary in Swedish - Svensk
sammanfattning

Konvertering av CUDA program för att köra p̊a
AMD GPU:n

Introduktion

Superdatorer är idag mer i användning än n̊agonsin, särskilt Graphics Pro-

cessing Units (GPU:n) allts̊a grafikkorten i dessa datorer. Till exempel kan

artificiell intelligens (AI) tränas p̊a GPU:n, och andra parallelliserbara algorit-

mer kan ocks̊a köras p̊a GPU:n. Parallellprogrammering utgör ett programmer-

ingsparadigm där ett givet program körs samtidigt p̊a flera centralprocessorer

(CPU:er) eller flera GPU:er. Den främsta fördelen med parallellprogrammering

är den avsevärda ökningen av beräkningshastigheten.

Denna avhandling utforskar en lucka i den nuvarande forskningen om att kom-

binera tredjeparts-CUDA-bibliotek med befintlig källkod. Behovet av kvadrupel-

precision är inte generellt, men i v̊art Quasi-Minimal Residual method (QMR)

problem med en miljoner variabler s̊a f̊ar vi inte QMR att konvergera med en

tolerans 10−22. En float128 i C med kvadrupelprecision upptar 16 bytes (128

bitar) minne and har 33 signifikanta decimaler.
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Syfte och motivering

Det primära syftet med denna avhandling är att möjliggöra för CUDA-kodutvecklare

att köra sina program med externa bibliotek p̊a antingen AMD- eller Nvidia-

h̊ardvara.

Metod och Test Case

I denna avhandling presenteras en generell metod för att konvertera existerande

CUDA källkod som använder sig av ett externt CUDA bibliotek till HIP kod

som g̊ar att köra p̊a b̊ade Nvidia och AMD grafikkort i superdatorer. I denna

metod ing̊ar hipifiering som är namnet p̊a AMD:s process för att konvertera

CUDA kod till HIP kod. Som test case kör vi ett QMR program som har input

data: elektron disruptioner i fusionsreaktorer av Tokamak typen. Denna data

ges i glesmatrisformatet: rad, kolumn, och värde.

Testdata som QMR-lösaren körs med kommer fr̊an DREAM (Disruption and

Runaway Electron Analysis Model). DREAM är en modell av instabila elek-

troner i en fusionsreaktor av typen Tokamak [24]. Under vissa förh̊allanden

skapas kaskader av elektroner som stör fusionsplasmats egenskaper och kan leda

till att plasmat upplöses (inte h̊alls ihop). Testdatan finns i form av tv̊a matriser,

Disruptions A och Disruptions b.

- Disruptions A: 3 kolumner och 954401 rader (954401× 3)

- Disruptions b: 1 kolumn och 87018 rader (87018× 1)

Disruptions A matrisens egenskaper:

Antal rader: 87018

Antal element: 954401

Antal nollor: 93462

Antal icke-nollor: 860939

Största absoluta värdet: A(40240, 86856) = +1.067052071992823800× 1026

Minsta absoluta värdet: A(86744, 86759) = +5.305103115116799000× 10−75
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Figure 8.1 Generell metod för hipifiering av externt bibliotek tillsammans med
egen källkod.

Den generella metoden 8.1 som togs fram i denna avhandling best̊ar av fem steg:

1. Ladda ner det externa biblioteket till ditt projekt.

2. Hitta alla CUDA filer med hjälp av Unix programmet find.

3. G̊a igenom alla Makefiler och byggskript och byt ut kompilatorn till ROCm:s

HIP kompilator som är: hipcc.

4. Hipifiera CUDA filer i det externa biblioteket med hjälp av: hipify-clang.

Bygg sedan det externa biblioteket med de updatterade byggskripten fr̊an

föreg̊aende steg.

5. Till sist s̊a skall den egna koden hipifieras med hipify-clang och kompileras

hipcc.
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Resultat

Resultaten anses vara goda om ett program, beroende av ett externt bibliotek,

kompilerat med HIP, har ungefär samma körtider p̊a h̊ardvara fr̊an b̊ada tillverkarna,

s̊asom Nvidia och AMD. Och s̊a är fallet med v̊art QMR program som har körts

p̊a b̊ade AMD och Nvidia h̊ardvara med liknande körtider.

Figure 8.2 GPU prestanda jämförelse.

Att körtiderna avviker n̊agot fr̊an varandra beror p̊a olika h̊ardvaruarkitekturer

samt mängden dubbelprecisionsenheter i GPU:n. Spel-GPU:er, som till exempel

AMD RX 6900 XT och Nvidia GeForce RTX 3080 Ti, fokuserar p̊a m̊anga enkel-

precisionberäkningsenheter för optimerad grafikrendering, medan vetenskapliga

GPU:er, som Tesla V100, prioriterar ett större antal dubbelprecisionberäkn-

ingsenheter som är avgörande för vetenskapliga beräkningar och högpresterande

databehandlingsuppgifter.
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Slutsats

QMR-implementeringen, som använde sig av kvadrupelprecisionsbiblioteket SLEEF,

krävde inte hipifiering för att kunna kompileras och köras framg̊angsrikt; detta

var den förväntade enkla vägen. Den mer utmanande vägen, som presenter-

ades i metodkapitlet, innebär att hipifiera den externa bibliotekskoden innan

vi kompilerar v̊ar egen källkod. Den generella metod som diskuteras i denna

avhandling kan potentiellt tillämpas p̊a annan CUDA-källkod, som beskrivs i

Figur 8.1 Dock kommer p̊a grund av metodens allmänhet, manuell konvert-

ering fr̊an CUDA till HIP-kompatibel källkod att vara nödvändig. I framtiden

kan det kanske vara möjligt att automatisera konverteringsprocessen för externa

bibliotek. S̊a att man inte m̊aste g̊a in manuellt i byggskripten för att byta ut

kompilatorn och rätta till alla fel som kan uppst̊a i.o.m. bytet av kompilator.
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Appendices 1 Example HIP program

1 #include "hip/hip_runtime.h"

2 // Inspiration and code snippets borrowed from my lecturer Doctor Jan Westerholm

at AAU.

3 // Victor Anderssen 2022 Fall

4

5 #include <hip/hip_runtime.h>

6 #include <stdio.h>

7 #include <stdlib.h>

8 #include <math.h>

9 #include <sys/time.h>

10 #include <inttypes.h>

11

12 long int MemoryAllocatedCPU = 0L;

13

14 #define gpuErrchk(ans) \

15 { \

16 gpuAssert((ans), __FILE__, __LINE__); \

17 }

18 inline void gpuAssert(hipError_t code, const char *file, int line, bool abort =

true)

19 {

20 if (code != hipSuccess)

21 {

22 fprintf(stderr, "GPUassert: %s %s %d\n", hipGetErrorString(code), file,

line);

23 if (abort)

24 exit(code);

25 }

26 }

27

28 /* @Note(Victor):

29 * All thread/kernel receives these four params as the dim3 type

30 *

31 * gridDim : gridDim.x, gridDim.y, gridDim.z

32 * blockIdx : blockIdx.x, blockIdx.y, blockIdx.z

33 * blockDim : blockDim.x, blockDim.y, blockDim.z

34 * threadIdx: threadIdx.x, threadIdx.y, threadIdx.z */

35 __global__ void measure_kernel_memory_transfer_overhead_kernel()

36 {

37 }

38

39 static int

40 get_device()

41 {

42 int deviceCount;

43 hipGetDeviceCount(&deviceCount);
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44 printf(" Found %d CUDA devices\n", deviceCount);

45

46 if (deviceCount < 0 || deviceCount > 128)

47 {

48 return (-1);

49 }

50

51 int device;

52 for (device = 0; device < deviceCount; ++device)

53 {

54 hipDeviceProp_t deviceProp;

55 hipGetDeviceProperties(&deviceProp, device);

56 printf("\tDevice %s = device %d\n", deviceProp.name, device);

57 printf("\tcompute capability = %d.%d\n", deviceProp.major,

deviceProp.minor);

58 printf("\ttotalGlobalMemory = %.2lf GB\n",

deviceProp.totalGlobalMem / 1000000000.0);

59 printf("\tl2CacheSize = %8d B\n", deviceProp.l2CacheSize);

60 printf("\tregsPerBlock = %8d\n", deviceProp.regsPerBlock);

61 printf("\tmultiProcessorCount = %8d\n",

deviceProp.multiProcessorCount);

62 printf("\tmaxThreadsPerMultiprocessor = %8d\n",

deviceProp.maxThreadsPerMultiProcessor);

63 printf("\tsharedMemPerBlock = %8d B\n",

(int)deviceProp.sharedMemPerBlock);

64 printf("\twarpSize = %8d\n", deviceProp.warpSize);

65 printf("\tclockRate = %8.2lf MHz\n", deviceProp.clockRate

/ 1000.0);

66 printf("\tmaxThreadsPerBlock = %8d\n",

deviceProp.maxThreadsPerBlock);

67 printf("\tmaxGridSize = %d x %d x %d\n",

68 deviceProp.maxGridSize[0], deviceProp.maxGridSize[1],

deviceProp.maxGridSize[2]);

69 printf("\tmaxThreadsDim = %d x %d x %d\n",

70 deviceProp.maxThreadsDim[0], deviceProp.maxThreadsDim[1],

deviceProp.maxThreadsDim[2]);

71 printf("\tconcurrentKernels = ");

72 }

73

74 hipSetDevice(0);

75 hipGetDevice(&device);

76

77 if (device != 0)

78 {

79 printf(" Unable to set device 0, using %d instead", device);

80 }

81 else
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82 {

83 printf(" Using CUDA device %d\n\n", device);

84 }

85

86 return (0);

87 }

88

89 int main(void)

90 {

91 printf(" Starting the program\n");

92 get_device();

93

94 struct timeval st, et;

95 struct timezone _tzone;

96 const unsigned long N = 1L;

97 gettimeofday(&st, &_tzone);

98

99 dim3 threadsInBlock(1, 1);

100 dim3 blocksInGrid = dim3(ceil((N + threadsInBlock.x - 1) / threadsInBlock.x),

101 ceil((N + threadsInBlock.y - 1) / threadsInBlock.y));

102

103 printf("====================================================================$\$n");
104 printf("blocksInGrid:\t{%d, %d, %d} blocks.\nthreadsInBlock:\t%d threads.\n",

105 blocksInGrid.x, blocksInGrid.y, blocksInGrid.z, threadsInBlock.x *

threadsInBlock.y * threadsInBlock.z);

106

107 const long int number_of_threads = (long int)(threadsInBlock.x *

((long)(threadsInBlock.y)) * threadsInBlock.z * ((blocksInGrid.x *

blocksInGrid.y) * blocksInGrid.z));

108

109 printf("number of threads: %ld\n", number_of_threads);

110

111 // Call the GPU kernel(s)

112 hipLaunchKernelGGL(measure_kernel_memory_transfer_overhead_kernel,

blocksInGrid, threadsInBlock, 0, 0);

113

114 gpuErrchk(hipGetLastError());

115 gpuErrchk(hipDeviceSynchronize());

116

117 printf(" Total memory allocated = %.1lf MB\n", MemoryAllocatedCPU /

1000000.0);

118 gettimeofday(&et, &_tzone);

119

120 int elapsed = ((et.tv_sec - st.tv_sec) * 1000000) + (et.tv_usec - st.tv_usec);

121 printf(" The program took %d microseconds\n", elapsed);

122 printf(" The program took %d milliseconds\n", elapsed / 1000);
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123 printf(" The program took %f seconds\n", double((double)elapsed /

1000000.0));

124 printf(" To execute the GPU kernel\n");

125

126 return (0);

127 }

Appendices 2 Loop independency in matrix multiplication in C and CUDA.

1 #include <stdio.h>

2 #include <cuda_runtime.h>

3

4 // CPU version

5 void matrixMultiply(float* A, float* B, float* C, int m, int n, int k) {

6 for (int row = 0; row < m; ++row) {

7 for (int col = 0; col < k; ++col) {

8 float sum = 0.0f;

9 for (int i = 0; i < n; ++i) {

10 sum += A[row * n + i] * B[i * k + col];

11 }

12 C[row * k + col] = sum;

13 }

14 }

15 }

16

17 // CUDA (GPU) version

18 __global__ void matrixMultiply(float* A, float* B, float* C, int m, int n, int

k) {

19 int row = blockIdx.y * blockDim.y + threadIdx.y;

20 int col = blockIdx.x * blockDim.x + threadIdx.x;

21

22 if (row < m && col < k) {

23 float sum = 0.0f;

24 for (int i = 0; i < n; ++i) {

25 sum += A[row * n + i] * B[i * k + col];

26 }

27 C[row * k + col] = sum;

28 }

29 }

30

31 int main() {

32 // Host code

33 // ...

34

35 // Function call

36 matrixMultiply(h_A, h_B, h_C, m, n, k);

37
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38 // CUDA kernel launch

39 matrixMultiply<<<grid_size, block_size>>>(d_A, d_B, d_C, m, n, k);

40

41 // Copy results back to host

42 // ...

43

44 // Cleanup

45 // ...

46

47 return 0;

48 }

Appendices 3 How to compile the Example HIP program

1 # Compile

2 hipcc main.cpp -o example_hip_program

3

4 # Run

5 ./example_hip_program

Appendices 4 Example program output

1 $ make

2

3 Cleaning

4 rm -r build 2> /dev/null || true

5 rm -r code/*.cu 2> /dev/null || true

6

7 Creating directories

8 mkdir -p build

9

10 Hipifying the Cuda C++ code to HIP C++ code

11 hipify-perl ./code/main.cpp -o ./code/main.cpp.hip.cu

12

13 Building the program

14 hipcc -O3 ./code/main.cpp.hip.cu -o ./build/gpu_signal_processing.out

15

16 Running the executable

17 ./build/gpu_signal_processing.out

18 Starting the program

19 Found 1 CUDA devices

20 Device AMD Radeon RX 6900 XT = device 0

21 compute capability = 10.3

22 totalGlobalMemory = 17.16 GB

23 l2CacheSize = 4194304 B

24 regsPerBlock = 65536
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25 multiProcessorCount = 40

26 maxThreadsPerMultiprocessor = 2048

27 sharedMemPerBlock = 65536 B

28 warpSize = 32

29 clockRate = 2660.00 MHz

30 maxThreadsPerBlock = 1024

31 maxGridSize = 2147483647 x 2147483647 x 2147483647

32 maxThreadsDim = 1024 x 1024 x 1024

33 Using CUDA device 0

34

35 ====================================================================

36 blocksInGrid: {1, 1, 1} blocks.

37 threadsInBlock: 1024 threads.

38 number of threads: 1024

39 The program took 156325 microseconds

40 The program took 156 milliseconds

41 The program took 0.156325 seconds

42 To execute the GPU kernel

43

44 The program has been built and run successfully!

Appendices 5 Download SLEEF from github shell script

1 #!/usr/bin/bash

2 if [ ! -d "./sleef" ]

3 then

4 # Clone if not existing

5 echo "Cloning SLEEF"

6 git clone https://github.com/shibatch/sleef.git

7 fi

Appendices 6 Install SLEEF locally shell script

1 #!/usr/bin/bash

2 cd sleef

3

4 mkdir -p build

5 cd build

6 pwd

7

8 cmake .. -L

9

10 cmake -DBUILD_INLINE_HEADERS=TRUE \

11 -DBUILD_QUAD=TRUE \

12 -DENABLE_CUDA=TRUE \

13 -DCMAKE_CUDA_ARCHITECTURE=86 \
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14 -DCMAKE_BUILD_TYPE=Debug \

15 ..

16

17 make

18 # make test

19 cd ../../

Appendices 7 A Build makefile

1 # print arbitrary variables with $ make print-<name>

2 print-% : ; @echo $* = $($*)
3

4 # define the C++ compiler to use

5 CC = hipcc # which is actually clang

6

7 # define any compile-time flags

8 CXXFLAGS := -O3 -march=native -ffp-contract=off # the flag -ffp-contract=off is

crucial !!!

9 CXXFLAGS += -I/usr/lib/gcc/x86_64-pc-linux-gnu/12.2.1/include

10 CXXFLAGS += -I./sleef/build/include

11 CXXFLAGS += -I/opt/rocm/include

12

13 # Linker flags

14 LDFLAGS := -lm -fopenmp -lquadmath

15

16 # Library includes

17 LDLIBS := # -L/usr/lib/aomp_15.0-3/lib

18

19 # Define the source and destination

20 SRC_DIR := ./code

21 OBJ_DIR := ./build

22 SRC_FILES := $(shell find ./code -name ’*.cu’)

23

24 # define the executable file, the program name

25 TARGET = a

26

27 .PHONY: clean

28

29 # all: clean dirs download_sleef hipify_sleef install_sleef hipify $(TARGET)
30 all: clean dirs download_sleef install_sleef hipify $(TARGET)
31 @echo

32 @echo The program has been built run successfully!

33

34 hipify_sleef:

35 @echo

36 @echo Hipifying Sleef

37 $(shell export HIP_PLATFORM=amd)
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38 $(shell export PLATFORM=amd)

39 $(shell export LD_LIBRARY_PATH=/usr/lib/aomp_15.0-3/lib)

40

41 # Take backups of the CUDA source files

42 mv ./sleef/src/quad-tester/qiutcuda.cu

./sleef/src/quad-tester/qiutcuda.cu.original

43 mv ./sleef/src/libm-tester/iutcuda.cu

./sleef/src/libm-tester/iutcuda.cu.original

44

45 # Hipify the CUDA source files, passing the compiler flags to hipcc.

46 hipify-clang -v ./sleef/src/quad-tester/qiutcuda.cu.original

-o=./sleef/src/quad-tester/qiutcuda.cu -- -Xclang $(CXXFLAGS) $(LDFLAGS)
$(LDLIBS)

47 hipify-clang -v ./sleef/src/libm-tester/iutcuda.cu.original

-o=./sleef/src/libm-tester/iutcuda.cu -- -Xclang $(CXXFLAGS) $(LDFLAGS)
$(LDLIBS)

48

49 download_sleef:

50 @echo

51 @echo Downloading Sleef...

52 ./download_sleef_from_github

53

54 install_sleef:

55 @echo

56 @echo Installing Sleef locally

57 ./install_sleef_locally

58

59 hipify:

60 @echo

61 @echo Hipifying the Cuda C++ code to HIP C++ code

62

63 # Slow method

64 # hipify-perl ./code/main.cu -o ./build/main.hip.cpp

65 # hipify-perl ./code/qmr.cu -o ./build/qmr.hip.cpp

66

67 # Fast method

68 hipify-clang ./code/main.cu -o=build/main.hip.cpp -v --print-stats -- -Xclang

$(CXXFLAGS) $(LDFLAGS) $(LDLIBS)
69 hipify-clang ./code/qmr.cu -o=build/qmr.hip.cpp -v --print-stats -- -Xclang

$(CXXFLAGS) $(LDFLAGS) $(LDLIBS)
70

71 $(TARGET):
72 @echo

73 @echo Building the program with hipcc

74 $(CC) $(CXXFLAGS) $(LDFLAGS) $(LDLIBS) ./build/main.hip.cpp ./build/qmr.hip.cpp

75

76 @echo
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77 @echo Running the executable

78 ./run_qmr

79

80 dirs:

81 @echo

82 @echo Creating directories

83 mkdir -p build

84

85 clean:

86 @echo

87 @echo Cleaning

88 rm -r build 2> /dev/null || true

89 rm a.out 2> /dev/null || true

90

91 run:

92 @echo

93 @echo Running the executable

94 ./build/$(TARGET).out

Appendices 8 Implementation of IEE754 quadruple precision with bit manip-
ulation

1 #include <stdio.h>

2 #include <stdint.h>

3

4 // Define masks for extracting components

5 #define SIGN_MASK 0x8000000000000000ULL

6 #define EXPONENT_MASK 0x7FF0000000000000ULL

7 #define SIGNIFICAND_MASK 0x000FFFFFFFFFFFFFULL

8 #define EXPONENT_BIAS 1023

9

10 typedef struct

11 {

12 uint64_t sign;

13 uint64_t exponent;

14 uint64_t significand;

15 } QuadruplePrecision;

16

17 // Convert a double-precision floating-point number to quadruple precision.

18 void doubleToQuadruple(double d, QuadruplePrecision *q)

19 {

20 // Extract the bit representation of the double-precision number.

21 uint64_t doubleBits = *((uint64_t *)&d);

22

23 // Extract and store the sign bit of the quadruple-precision representation.

24 q->sign = (doubleBits & SIGN_MASK);

25
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26 // Extract and store the exponent bits from the double-precision number and

adjust them for quadruple precision.

27 q->exponent = (doubleBits & EXPONENT_MASK) >> 52;

28 if (q->exponent == 0)

29 {

30 // Handle denormalized numbers by setting the quadruple-precision exponent

to 1.

31 q->exponent = 1;

32 }

33 else

34 {

35 // Adjust the exponent bias for quadruple precision.

36 q->exponent = q->exponent - EXPONENT_BIAS + 16383;

37 }

38

39 // Extract and store the significand bits and shift them to align with

quadruple precision.

40 q->significand = (doubleBits & SIGNIFICAND_MASK) << 11;

41 }

42

43 // Convert a quadruple-precision floating-point representation to a

double-precision number.

44 double quadrupleToDouble(QuadruplePrecision *q)

45 {

46 // Combine the sign bit, adjusted exponent, and significand to reconstruct the

bit pattern of a double-precision number.

47 uint64_t doubleBits = q->sign | ((q->exponent - 16383 + EXPONENT_BIAS) << 52)

| (q->significand >> 11);

48

49 // Interpret the bit pattern as a double-precision number and return it.

50 return *((double *)&doubleBits);

51 }

52

53 int main(void)

54 {

55 // Two double-precision numbers

56 double double1 = 1.337;

57 double double2 = 4.200;

58

59 // Declare quadruple-precision variables to store the converted values

60 QuadruplePrecision quadruple1, quadruple2;

61

62 // Convert the double-precision numbers to quadruple-precision

63 doubleToQuadruple(double1, &quadruple1);

64 doubleToQuadruple(double2, &quadruple2);

65

66 // Convert the quadruple-precision numbers back to double-precision
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67 double result1 = quadrupleToDouble(&quadruple1);

68 double result2 = quadrupleToDouble(&quadruple2);

69

70 // Add the double-precision numbers in quadruple-precision format

71 long double result = result1 + result2;

72

73 // Print the results with high precision

74 printf("Double 1: \t\t\t%.40f\n", result1);

75 printf("Double 2: \t\t\t%.40f\n", result2);

76 printf("Quadruple-precision result:\t%.40Lf\n", result);

77

78 return 0;

79 }

Appendices 9 SLEEF implementation addition with high precision numbers

1 #include <quadmath.h>

2 #include <stdio.h>

3 #include <sleef.h>

4 #include <sleefquad.h>

5

6 int main(int argc, char **argv)

7 {

8 printf("\n\tSleef Add example\n");

9

10 // Define two __float128 numbers

11 Sleef_quad NumberA = 1.337Q;

12 Sleef_quad NumberB = 4.200Q;

13

14 // Add the two __float128 numbers together

15 Sleef_quad Sum = Sleef_addq1_u05(NumberA, NumberB);

16

17 // Print the result

18 Sleef_printf("\tNumberA: %.40Pg\n", &NumberA);

19 Sleef_printf("\tNumberB: %.40Pg\n", &NumberB);

20 Sleef_printf("\tSum:\t %.40Pg\n", &Sum);

21

22 return (0);

23 }

Appendices 10 SLEEF implementation multiplication with high precision
numbers

1 #include <quadmath.h>

2 #include <stdio.h>

3 #include <sleefquad.h>

4
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5 int main(int argc, char **argv)

6 {

7 printf("\n\tSleef Multiply example\n");

8

9 // Define two __float128 numbers

10 Sleef_quad NumberA = 1.337Q;

11 Sleef_quad NumberB = 4.200Q;

12

13 // Multiply the two __float128 numbers together

14 Sleef_quad Sum = Sleef_mulq1_u05(NumberA, NumberB);

15

16 // Print the result

17 Sleef_printf("\tNumberA: %.40Pg\n", &NumberA);

18 Sleef_printf("\tNumberB: %.40Pg\n", &NumberB);

19 Sleef_printf("\tSum:\t %.40Pg\n", &Sum);

20

21 return (0);

22 }

Appendices 11 SLEEF implementation of printing high precision numbers with
quadmath

1 #include <stdio.h>

2 #include <quadmath.h>

3

4 int main(void)

5 {

6 // Define a known _Float128 value

7 _Float128 PI = acosq(-1.0Q);

8

9 // Buffer to hold the formatted string

10 char Buffer[100]; // Adjust the size accordingly

11

12 // Format the _Float128 value to a string with specific precision

13 int DecimalPrecision = 34;

14 int Result = quadmath_snprintf(Buffer, sizeof(Buffer), "%.*Qf",

DecimalPrecision, PI);

15

16 // Check if the formatting was successful

17 if (Result < 0)

18 {

19 printf("\n\t[ERROR]: Formatting failed!\n");

20 return (-1);

21 }

22

23 // Display the result with 33 decimal places
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24 printf("\n\tAsserted: acos(-1.0Q) with %d decimals of precision: %s\n\n",

DecimalPrecision, Buffer);

25

26 return (0);

27 }

Appendices 12 Build script for all the SLEEF API examples

1 #!/usr/bin/bash

2

3 # If the dir sleef does not exist run the block

4 if [ ! -d "./sleef" ]

5 then

6 # Create build folder if not existing

7 mkdir -p build 2> /dev/null || true

8

9 # Run the download_sleef_from_github bash script

10 /bin/bash ./download_sleef_from_github.sh

11 /bin/bash ./install_sleef_locally.sh

12 fi

13

14 # Set the CFLAGS environment variable to include the Sleef headers.

15 # define any compile-time flags

16 export CXXFLAGS="-O3 -Wattributes -I./sleef/build/include

-I/usr/lib/gcc/x86_64-pc-linux-gnu/13.2.1/include"

17 export LDLIBS="-L ./sleef/build/lib"

18 export LDFLAGS="-lquadmath -lsleef -lsleefquad -lm"

19 export LD_LIBRARY_PATH="./sleef/build/lib"

20

21 # Build the example with clang and link against the Sleef library.

22 gcc -o ./build/sleef_add_example $CXXFLAGS $LDLIBS $LDFLAGS sleef_add_example.c

23 gcc -o ./build/sleef_multiply_example $CXXFLAGS $LDLIBS $LDFLAGS
sleef_multiply_example.c

24 gcc -o ./build/sleef_print_example $CXXFLAGS $LDLIBS $LDFLAGS
sleef_print_example.c

25

26 # Run the examples

27 ./build/sleef_add_example

28 ./build/sleef_multiply_example

29 ./build/sleef_print_example
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Appendices 13 HIP Vector addition example.

1 // HIP Vector Addition

2 #include <iostream>

3 #include <hip/hip_runtime.h>

4

5 __global__

6 void vectorAdd(int *a, int *b, int *c, int size) {

7 int i = blockIdx.x * blockDim.x + threadIdx.x;

8 if (i < size)

9 c[i] = a[i] + b[i];

10 }

11

12 int main(void) {

13 const int size = 1024;

14 int a[size], b[size], c[size];

15

16 // Initialize input vectors

17 for (int i = 0; i < size; ++i) {

18 a[i] = i;

19 b[i] = 2 * i;

20 }

21

22 // Allocate device memory

23 int *d_a, *d_b, *d_c;

24 hipMalloc((void**)&d_a, size * sizeof(int));

25 hipMalloc((void**)&d_b, size * sizeof(int));

26 hipMalloc((void**)&d_c, size * sizeof(int));

27

28 // Copy data from host to device

29 hipMemcpy(d_a, a, size * sizeof(int), hipMemcpyHostToDevice);

30 hipMemcpy(d_b, b, size * sizeof(int), hipMemcpyHostToDevice);

31

32 hipLaunchKernelGGL(vectorAdd, dim3((size + 255) / 256), dim3(256), 0, 0,

d_a, d_b, d_c, size);

33

34 // Copy result from device to host

35 hipMemcpy(c, d_c, size * sizeof(int), hipMemcpyDeviceToHost);

36

37 hipFree(d_a); // Free device memory

38 hipFree(d_b);

39 hipFree(d_c);

40

41 for (int i = 0; i < 10; ++i) // Print result

42 std::cout << c[i] << " ";

43

44 return (0);

45 }
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Appendices 14 Linear equation example.

1 #include <stdio.h>

2 #include <math.h>

3

4 int main(void)

5 {

6 // Coefficients of the linear system

7 double CoefficientA11 = 2.0, CoefficientA12 = 3.0, ConstantB1 = 8.0;

8 double CoefficientA21 = -1.0, CoefficientA22 = 2.0, ConstantB2 = 3.0;

9

10 // Variables

11 double SolutionX, SolutionY;

12

13 // Solving the linear system

14 SolutionX = (ConstantB1 * CoefficientA22 - ConstantB2 * CoefficientA12) /

(CoefficientA11 * CoefficientA22 - CoefficientA12 * CoefficientA21);

15 SolutionY = (ConstantB2 * CoefficientA11 - ConstantB1 * CoefficientA21) /

(CoefficientA11 * CoefficientA22 - CoefficientA12 * CoefficientA21);

16

17 // Display the solution

18 printf("\tSolution:\n");

19 printf("\tx = %.2f\n", SolutionX);

20 printf("\ty = %.2f\n", SolutionY);

21

22 // Using mathematical constants

23 printf("\n\tSome constants:\n");

24 printf("\tPI = %.6f\n", M_PI);

25 printf("\tEuler’s number (e) = %.6f\n", M_E);

26

27 return (0);

28 }

Appendices 15 Shared memory example in HIP.

1 #include <iostream>

2 #include <hip/hip_runtime.h>

3

4 const unsigned long int N = 1000000UL; // Vector size

5 const unsigned int SHARED_MEM_SIZE = 1024;

6

7 #define gpuErrchk(ans) \

8 { \

9 gpuAssert((ans), __FILE__, __LINE__); \

10 }

11 inline void gpuAssert(hipError_t code, const char *file, int line, bool abort =

true)

12 {
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13 if (code != hipSuccess)

14 {

15 fprintf(stderr, "GPUassert: %s %s %d\n", hipGetErrorString(code), file,

line);

16 if (abort)

17 exit(code);

18 }

19 }

20

21 __global__ void vectorAdd(float *a, float *b, float *c)

22 {

23 int tid = threadIdx.x + blockIdx.x * blockDim.x;

24

25 __shared__ float shared_c[SHARED_MEM_SIZE]; // Shared memory for each block

26

27 shared_c[threadIdx.x] = 0.0; // Initialize shared memory to 0

28

29 while (tid < N) // Perform vector addition using shared memory

30 {

31 shared_c[threadIdx.x] += a[tid] + b[tid];

32 tid += blockDim.x * gridDim.x;

33 }

34

35 __syncthreads(); // Synchronize within the block before performing reduction

36

37 // Perform parallel reduction using shared memory

38 for (int stride = blockDim.x / 2; stride > 0; stride >>= 1)

39 {

40 if (threadIdx.x < stride)

41 {

42 shared_c[threadIdx.x] += shared_c[threadIdx.x + stride];

43 }

44 __syncthreads();

45 }

46

47 // Store the result to global memory for each block

48 if (threadIdx.x == 0)

49 {

50 c[blockIdx.x] = shared_c[0];

51 }

52 }

53

54 int main(void)

55 {

56 // Host vectors

57 float *h_a, *h_b, *h_c;

58
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59 // Device vectors

60 float *d_a, *d_b, *d_c;

61

62 // Allocate memory on the host

63 h_a = new float[N];

64 h_b = new float[N];

65 h_c = new float[SHARED_MEM_SIZE]; // Allocate enough space for each block’s

result

66

67 // Initialize host vectors

68 for (int i = 0; i < N; ++i)

69 {

70 h_a[i] = i;

71 h_b[i] = i * 2;

72 }

73

74 // Allocate memory on the device

75 gpuErrchk(hipMalloc((void **)&d_a, N * sizeof(float)));

76 gpuErrchk(hipMalloc((void **)&d_b, N * sizeof(float)));

77 gpuErrchk(hipMalloc((void **)&d_c, SHARED_MEM_SIZE * sizeof(float))); //

Each block has its own result

78

79 // Copy host data to device

80 gpuErrchk(hipMemcpy(d_a, h_a, N * sizeof(float), hipMemcpyHostToDevice));

81 gpuErrchk(hipMemcpy(d_b, h_b, N * sizeof(float), hipMemcpyHostToDevice));

82

83 // Configure the grid and block dimensions

84 const int BlockSize = 1024;

85 dim3 blockDim(BlockSize, 1, 1);

86

87 // Calculate the number of blocks needed

88 int NumBlocks = (N + blockDim.x - 1) / blockDim.x;

89

90 dim3 gridDim(NumBlocks, 1, 1);

91

92 // Print configuration

93 printf("\tGrid dimensions: %d x %d x %d\n", gridDim.x, gridDim.y, gridDim.z);

94 printf("\tBlock dimensions: %d x %d x %d\n", blockDim.x, blockDim.y,

blockDim.z);

95 printf("\tNumber of threads: %d\n", gridDim.x * blockDim.x);

96

97 // Ensure all kernel launches are complete

98 gpuErrchk(hipDeviceSynchronize());

99

100 // Launch the kernel

101 vectorAdd<<<gridDim, blockDim, SHARED_MEM_SIZE * sizeof(float)>>>(d_a, d_b,

d_c);
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102

103 // Ensure all kernel launches are complete

104 gpuErrchk(hipDeviceSynchronize());

105

106 // Copy the result back to the host

107 gpuErrchk(hipMemcpy(h_c, d_c, NumBlocks * sizeof(float),

hipMemcpyDeviceToHost));

108

109 // Ensure all kernel launches are complete

110 gpuErrchk(hipDeviceSynchronize());

111

112 // Perform reduction on the CPU side

113 float result = 0.0;

114 for (int i = 0; i < NumBlocks; ++i)

115 {

116 result += h_c[i];

117 }

118

119 // Verify the result

120 const unsigned long expected_result = N * (N - 1) / 2 * 3; // Sum of

arithmetic sequence

121 if (std::fabs(result - (float)expected_result) > 1e-1 * expected_result)

122 {

123 std::cerr << "\t\t[ERROR]: Verification failed!" << std::endl;

124 std::cerr << "\t\t[ERROR]: Expected result: " << expected_result <<

std::endl;

125 std::cerr << "\t\t[ERROR]: Actual result: " << result << std::endl;

126 std::cerr << "\t\t[ERROR]: Error: " << std::fabs(result -

(float)expected_result) << std::endl;

127

128 // Free allocated memory

129 delete[] h_a;

130 delete[] h_b;

131 delete[] h_c;

132

133 gpuErrchk(hipFree(d_a));

134 gpuErrchk(hipFree(d_b));

135 gpuErrchk(hipFree(d_c));

136

137 return (1);

138 }

139

140 printf("\tVector addition successful!\n");

141 std::cout << "\tExpected result: " << expected_result << std::endl;

142 std::cout << "\tActual result: " << result << std::endl;

143

144 // Free allocated memory
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145 delete[] h_a;

146 delete[] h_b;

147 delete[] h_c;

148

149 gpuErrchk(hipFree(d_a));

150 gpuErrchk(hipFree(d_b));

151 gpuErrchk(hipFree(d_c));

152

153 return (0);

154 }
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