
A practical survey of automatic unit test generation

for JavaScript applications

Niclas Ringbom, 40605

Master of Science (Technology), Master’s thesis in Computer Engineering

Faculty of Science and Engineering, Information Technologies

Åbo Akademi University

10/2023

Supervisor: Dragos Truscan



Niclas Ringbom

Abstract
Unit testing can and should be used during the software development

lifecycle in order to continually verify that each component functions

according to specifications. However, development hours are often more

preferably used to create additional features, rather than ensure that the

existing features are functioning properly. Automatic unit test generators

could provide the test suites, which would spare the developer from

exhausting development hours on writing exhaustive unit tests without

jeopardizing the quality of the software. Several unit test generators exist for

other programming languages such as Java, but few seem to support

Javascript. The purpose of this thesis is to evaluate the availability and

performance of automatic unit test generators for Javascript. Most of the tools

found had not been updated for several years, and as such, were unusable.

Out of the two seemingly capable tools, Ponicode was removed from the

public market, and Examin generated test suites averaging a line coverage of

30.19%. As such, unit test generators for Javascript are not advanced

enough to replace manual test writing

i



Abstract 2
1. Introduction 1

1.1. Research questions 2
2. Background 4

2.1. Javascript 4
2.2. Javascript frameworks 5

2.2.1. React 7
2.2.2. Angular 7
2.2.3. Express 7
2.2.4. Next.js 8

2.3. Software testing 8
2.4. Unit testing 10

2.4.1 Arrange, Act, Assert structure 12
2.4.2 Table-driven structure 13

2.5. Unit testing metrics 15
2.6. Mocking code for unit tests 17
2.7. Test oracles 19
2.8. Unit test generation 20
2.9 Unit testing frameworks in Javascript 21

3. State of the art 22
3.1. Literature survey 22
3.2. Survey of existing tools 24
3.3. Results 24

3.3.1. Ponicode 26
3.3.2. Examin 27
3.3.3. Artemis 27
3.3.4. JSEFT 28
3.3.5. Summary of survey 30

4. Evaluation 31
4.1. Test Generation Examples 32

4.1.1. Ponicode 32
4.1.2. Examin 36

4.2. Metrics 40
4.3. Benchmark 40

4.3.1. Applications 41
4.4. Experiments 41

4.4.1. Experiment details 42

ii



Niclas Ringbom

5. Results 43
5.1 Ponicode 43
5.2 Examin 44

5.2.1 Test Quality 48
6. Discussion 50
7. Conclusion 51
8. Swedish summary 53
9. References 57

iii



Niclas Ringbom

1. Introduction
Unit testing is an essential part of any good code base. It promotes reusable

and reliable code, improves the overall quality of the code as well as

simplifies integration and extension of the software. By using unit tests, we

can validate that the software performs operations in the manner it is

intended to.

Manually writing unit tests exhausts development hours that could be used to

further improve or extend the software, and is one of the main reasons why

unit tests are neglected [11]. This neglect opens up the software to faults, and

could eventually result in a costly restructuring of the code base. Automatic

test generators can be used to aid developers in ensuring that the software is

adequately tested, even during time-sensitive development phases.

Early identification of faults in code is essential, as the problem or fault is

fresh, which often leads to a quicker solution. This is due to the fact that the

developer does not need to reacquaint themselves with the code base. Since

testing can easily be ignored during the development process of a software

project, frameworks that could automatically generate unit tests would help

alleviate the issue of late refactoring due to software faults.

Automatic test generators allow the developer to forgo the creation and

design phases included in testing cycles, and provide the test author with the

resources needed to run the tests and validate the system under test. To

produce tests, the generators may rely on source code or a variety of

artifacts. These artifacts include resources such as class diagrams and

design specifications. Software testing can be automated at various levels of

the development life cycle.

1



Niclas Ringbom

The test cases written by the unit test generators are written separately for

each function or component of code, and can be modified or expanded upon.

This is essential for ensuring that the test suite created is able to test all parts

of the code and offers an acceptable degree of fault detection.

Javascript is the most commonly used programming language, for the tenth

year in a row, with a 65.36% usage during 2022 according to Stackoverflows’

survey [21]. Javascript is mostly used in browser environments, with 97.3% of

all websites using it as a client-side programming language [22]. In addition

to the popularity Javascript has as a client-side language, it can also be

utilized for non-browser usage [7]. These non-browser implementations are

often server-side deployments with Node.js or similar frameworks.

The purpose of this thesis is to evaluate the state of unit test generators for

Javascript, both through a survey of existing tools and a practical experiment.

1.1. Research questions

This thesis will answer the following research questions, each providing the

reader with insights into the subject from four different perspectives:

- RQ 1: What kind of tools and approaches exist for automatic unit test

generation for Javascript?

- This RQ will be answered in chapter 3. State of the Art by

conducting a survey on the subject “Javascript unit test

generation”.

- RQ2: What is the availability and maturity level of existing tools for

Javascript?

- Answered through an analysis of current tools, gathered

through a search in relevant channels. This research question

is answered in chapter 3. State of the Art.

- RQ3: What is the performance of existing tools?

2



Niclas Ringbom

- This question will be answered through two subquestions, RQ

3.1 and RQ 3.2. These questions will measure the effectiveness

in commonly used metrics such as code coverage and fault

detection.

- RQ3.1 What is the level of code coverage achievable for

automatically generated unit tests?

- Answered through a combination of two subjects;

experiments conducted on viable generators in thesis,

and reported results for generators not included in the

experiment

- RQ3.2 What is the quality of the generated unit tests?

- This question is only applied to tests generated during

the practical experiment. It is answered through a code

review in this thesis’ experiment.

- RQ4 What are the limitations of the automated test generation

frameworks?

- This final research question will be answered through a

discussion of the subject where the results of the previous

questions will be summarized and analyzed. This research

question is answered in Chapter 6. Discussion.

The first two chapters, 1. Introduction and 2. Background, introduce concepts

required to grasp the methodology of generating unit tests as well as

understanding the challenges they face. These challenges are presented

both from a general point of view and specifically for Javascript. The third

chapter, 3. State of the Art, presents the methodology of the literature survey,

and the results of it. Excluding the final chapters, 6. Discussion and 7.

Conclusion, the remaining chapters describe the experiment and present the

outcome of it.

3



Niclas Ringbom

2. Background
In this chapter of the thesis, subjects such as test oracles and unit test

generation are presented and discussed. An overview of core Javascript

functionality is also presented to give the reader a better understanding of the

obstacles unit test generators face for this specific programming language.

The purpose of this chapter is to further explain concepts strongly related to

unit test generation in an effort to improve the readers’ ability to interpret the

discussion and analysis presented in the remaining chapters.

2.1. Javascript

Javascript as a programming language is prototype-based, single-threaded,

and dynamic [7]. The language supports many different programming styles,

due to its underlying object-oriented principles as well as imperative and

declarative properties [7].

Javascript’s prototype-based quality is one of the more appealing features of

the language, as it allows the usage of classes and objects, without

necessarily needing to explicitly define the properties of said object [8].

Compared to other popular object-oriented programming languages, such as

C or Java, Javascript allows for a larger ambiguity as a default. As properties

are added to empty objects during runtime in Javascript, the typing (among

other things) of the objects does not need to be as clearly designed or

planned for the code to run.

This behavior can also open up the code to faults, as objects and functions

will allow almost any type of input. A simple summation of two variables can

result in many different outcomes, depending on what type the variables

represent. An example of this behavior is given in Figure 1, where two cases

of integer addition are presented. In Figure 1-a , a string representation of the

number 3 is added to 5, which results in the variable num1 (5) to be cast to

4



Niclas Ringbom

the string type, to allow the concatenation of the two variables. The two

variables (now both in the string type for this operation) are concatenated to

result in the string representation of “53”. In the second case (Figure 1-b), an

integer representation of the number 3 is added to the number 5, which gives

us an expected result of 8.

const num1 = 5;

const num2_string = "3";

const sum = num1 + num2_string;

//53

a)

const num1 = 5;

const num2 = 3;

const sum = num1 + num2;

//8

b)

Figure 1. Summation of two values in Javascript

As made apparent in the example above, code execution in Javascript may

not always give the expected outcome if the input or output is not controlled

or checked. This uncertainty adds to the importance of testing Javascript

code, to ensure that the methods give the expected results.

2.2. Javascript frameworks

Javascript implementations often use frameworks or libraries to expand upon

the core functionality of pure Javascript (often called vanilla JS). These tools

have their own intended use case, and provide additional functionality to

5



Niclas Ringbom

support and effectivize development. Their syntax differs slightly from vanilla

JS but they are able to interpret pure JS. The Javascripts communities’

inclination to use frameworks and other extensions in order to expand upon

the base toolkit offers a challenge to unit test generators as the generator is

given an additional factor to consider when interpreting.

Two of the most popular frameworks for both front-end and back-end are

introduced in this section. The statistics for the usage of frameworks are

fetched from State of JS [12], which conducts an annual survey of the

different technologies used by Javascript developers. Statistics for the usage

of Javascript frameworks is presented below in Figure 8. [12] and Figure 9.

[13].

Figure 8. Usage of front-end frameworks for Javascript

Figure 9. Usage of back-end frameworks for Javascript

6



Niclas Ringbom

2.2.1. React

React is a front-end library, even if it is often referred to as a framework. It is

the most popular front-end tool for Javascript in 2021 according to State of JS

[12] The library offers a simplified method for building a complete user

interface by providing access to functionality such as individual components

and state management. It also offers a virtual DOM, which allows the user

interface to render and rerender only the essential changes. The

component-based feature of the library incentivises the development of

encapsulated units which are then combined into declarative views. Correctly

utilized, this development style isolates components from each other which

results in code that is easier to read and test.

2.2.2. Angular

Angular is the second most popular front-end tool [12]. Angular functions

similarly to React, with components as the primary building blocks of the

application. This separation of components offers a good starting point for

quality control. Angular offers many features that impact the application

development process, such as built-in Typescript, full dependency injection,

and two way data binding. Lastly, being a full-featured framework, Angular

provides the developer with all the tools required to create anything from

small scale projects to enterprise solutions.

2.2.3. Express

Express is the most used back-end framework for JS [13]. It is used to build

and manage servers and routers, with features such as APIs and

middleware. The framework is minimalistic, and provides developers with

little else than the most essential functionality to create a back-end.

7



Niclas Ringbom

2.2.4. Next.js

Next.js is a back-end framework often used in tandem with React, as it

expands upon the functionality of React to allow websites to be rendered

server-side rather than client-side. In fact, the React website recommends

using Next.js for server-side rendering [16].

2.3. Software testing

Software testing refers to the process of verifying that the software functions

as it is intended to. There are various different levels of software testing

practices available to developers, which all have different use cases, and

validate the systems’ functionality in different ways. These are the four

software testing levels [4]:

● Unit testing

○ The testing of individual units of source code. Depending on the

coding practice, this unit may be a single function in a file or a

complete segment of source code.

○ Used for continual testing, and often done during the early

stage of development.

● Integration testing

○ The testing of the interaction between software components.

○ Done after the unit testing stage, to ensure that components

with verified functionality interact with each other as designed.

● System testing

○ The testing of the whole system, where the system is compared

to the original objectives [5, p. 130-132].

● Acceptance testing

○ The comparison of the complete product against the

requirements and needs of the end users. This stage of the

software testing process differs from the other types of testing

8



Niclas Ringbom

since this process is often done by the customer and not the

developer. [5, p. 140-144]

This thesis will focus on the importance and effects of unit testing and briefly

introduce the most commonly used testing levels. Since unit testing is not

dependent on the other levels of testing, methods and techniques related to

this level of testing can be analyzed in isolation.

The hierarchy of the software testing levels is presented in the figure below

(Figure 2). As can be observed from the figure, the three broader testing

levels (integration, system, and acceptance) are reliant on their narrower

counterparts. For instance, when integration testing is performed on a

combination of software components, an assurance of the correctness of

respective components is needed. This assurance could be achieved through

unit testing. This behavior is inherited to the broader levels, where system

testing is aided by integration and acceptance testing by system testing.

Figure 2. Software testing levels

9



Niclas Ringbom

2.4. Unit testing

Unit testing is one of the four software testing levels available, along with

integration testing, system testing, and acceptance testing. Unit testing allows

the testing of individual components of the source code. It is an integral part

of a complete quality assurance system, as it ensures that each individual

component of the code is working in accordance with design specifications.

In comparison to the other testing levels, unit testing has several advantages

as well as disadvantages. One of the most prominent advantages is that it

allows the developer to test small parts of the project, which helps with

continuously verifying the quality of the project code. For larger, collaborative

projects, unit tests provide a way for teams to test their own contribution prior

to integrating with other branches of code. Since these tests are possible to

execute on individual components, this testing process can be initiated as

soon as the component is believed to function according to specifications.

Identifying bugs and defects at an early development stage is essential, as

eliminating these bugs becomes increasingly more difficult and

time-consuming as the system is developed and software components are

combined.

Unit testing also enables developers to refactor code at a later stage, while

still verifying that the module or component is working as designed. There are

many other advantages to unit testing, such as promoting code familiarity and

allowing for more accurate design of each individual unit.

Disadvantages and limitations of unit testing are numerous, which is mostly

due to the nature of writing explicit tests. The most obvious limitation of unit

testing is the fact that it cannot be used to test interaction between

components or modules. This results in the necessity to use other methods of

testing in addition to unit testing, to ensure that the system as a whole

functions as intended. Another disadvantage is that unit testing adds an

10



Niclas Ringbom

additional layer of software that needs to be maintained. If the unit testing

suites are poorly designed or their maintenance is neglected, they may

provide the developer with faulty errors that are a result of inferior tests rather

than poor code quality. Lastly, creating, executing, and maintaining unit

testing suites are tasks that are quite time-consuming. This is often the

reason why unit testing is neglected, since it often depletes resources that

could be spent developing the system. This disadvantage, however, could be

seen as an advantage as well, as writing tests for the system promotes

familiarity with the code base, as was mentioned earlier.

The ultimate goal of unit testing is to ensure and verify that individual

components of code function as they were designed. For more complex

behavior, other testing levels prove superior to unit testing, as they are able

to verify the interactions between components as well as the system as a

whole. While there are several other software testing levels, unit testing is

one of the more prominent and useful tools for a developer. Since unit testing

requires a great deal of understanding what exactly the components should

achieve in their functionality and how the code for them is written, unit testing

is considered a white box approach. This implies that the writer (creator) of

the tests has complete knowledge of the system under test. As unit tests are

written for individual components of code, it is recommended to write tests for

components during the development process.

In practice, unit tests use functionality of the code to test if certain inputs

correspond to expected outputs or results. There are several syntactical ways

to structure unit tests, of which the so-called “AAA method” and the

table-driven method will be introduced in the following sections. Regardless

of which structure is used, having a predetermined template of how unit tests

should be written in a project promotes efficiency and readability.

11



Niclas Ringbom

2.4.1 Arrange, Act, Assert structure

The standard practice is to use the three A’s of unit testing steps (Arrange,

Act, Assert) [19], where the unit test is divided into three parts.

The three steps of the “Arrange, Act, Assert” structure promote readability by

compartmentalizing each procedure.

The first step, “Arrange”, should set up the test case by defining and

assigning variables or objects. In addition to assigning needed variables, the

arrange step should also initialize any features that provide the data or

functions needed to test the unit. These features include things such as

databases or a context, like logging in to a web app.

The behavior and business logic of the unit should be executed in the second

step, “Act”. This is the primary part of the unit test, and should mimic all of the

different uses for the component. This includes all function calls or

interactions with the logic of the unit or SUT.

After preparing the resources needed and executing the logic of the unit, the

final step “Assert” is performed in order to verify that the outcome is as

expected. This is usually done through an assertion check, which in the case

of Jest, is the expect() function. Below is an example of how a unit test could

be written in Jest [1], a popular Javascript unit testing framework, using the

“AAA” structure. The source code to test is provided in the first code block

and the test on the latter.

function sum(a, b) {

return a + b;

}

12



Niclas Ringbom

describe('sum', () => {

test('1 + 2 = 3', () => {

// Arrange

const a = 1;

const b = 2;

const expected = 3;

// Act

const result = sum(a, b);

// Assert

expect(result).toBe(expected);

});

});

Figure 3. Jest unit testing using “AAA” structure

One disadvantage of the “AAA” structure is the need to write extra code,

which for large test suites can result in a large amount of code. This results in

costly refactoring of the tests. For example, the test above could be written in

a single line instead of 5.

expect(sum(1, 2)).toBe(3);

Figure 4. Jest unit test single line

2.4.2 Table-driven structure

An alternative to the “AAA” structure is the table-driven structure, where the

inputs and desired outcomes are sorted in a table, similarly to the “Arrange”

step of Figure 3. The values from the table are then referenced in the

assertion, which uses the different values when running multiple tests.

13



Niclas Ringbom

Applying table-driven testing to a unit test for the same sum() function could

look like Figure 5.

describe('sum', () => {

// Defines inputs 'a' & 'b', and expected outcomes

'expected'

const tests = [

{a: 1, b: 2, expected: 3},

{a: 5, b: 5, expected: 10},

{a: 4, b: 3, expected: 7},

]

// Calls the function to be tested sum() inside an

assertion expect()

tests.forEach(({a, b, expected}) => {

expect(sum(a, b).toBe(expected);

});

});

Figure 5. Table-driven unit test

The advantage of table-driven testing is that a single unit test is able to

perform many different assertions. A single line for assertions also promotes

maintainability, as the unit test is able to be reused for functions with similar

logic, in this case basic arithmetic such as subtraction or multiplication.

After the test suite is completed, either through manual or automatic means,

it needs to be run against the system under test to check for faults. This final

stage of the unit testing process can either be done manually or automatically

(often as a part of the deployment process). The automatic testing of the

system ensures that new or modified components of code function as defined

in specifications and requirements.

14



Niclas Ringbom

For the test suite to be accepted as adequate, it has to meet the defined

system requirements. Once determined as adequate, the component is

evaluated by running the unit test. If the test passes without any faults, the

component can be verified to function as intended.

2.5. Unit testing metrics

Due to the strong connection between white box testing and unit testing, the

most used metrics for unit testing rely on the fact that the source code is

available. Two of these metrics are code coverage and mutation score.

Code coverage is defined as the degree to which a test suite (consisting of

one or several tests) executes the source code [2]. The code coverage metric

does not require the tests to be written in a complex manner, and could in

some cases be considered to be an inaccurate metric for evaluating code

quality. A study performed by Lucas Gren and Vard Antinyan found little to no

correlation between code quality and code coverage [3]. Code coverage may

be obtained through different levels, such as:

● Statement coverage: The ratio of all statements (lines) covered by the

test suite in the source code.

● Branch coverage: The ratio of branches covered by the test suite in

the source code. For example, if a test suite executes both branches

of an if statement, the branch coverage for that code would be 100%.

● Function coverage: The ratio of functions in the source code called by

the test suite.

● Condition coverage The ratio of boolean expressions that have been

evaluated to true or false.

Mutation testing can be used to temporarily alter the source code, in order to

simulate real faults. This is most often done automatically by tools such as

Stryker [18]. Stryker supports JavaScript, TypeScript, C#, and Scala. The

quality of a test suite can be evaluated via mutation testing. By using

15



Niclas Ringbom

mutation testing to seed faults into the source code, one is able to test a

system to a greater extent compared to using the original code. The higher

the mutation score a test suite is able to achieve, the more thorough the test

suite is. As a metric for unit test suites, mutation score is considerably more

useful compared to code coverage [54]. An example of code mutation can be

found from Figure 6 below.

function isUserOldEnough(user) {

return user.age >= 18;

}

/* 1 */ return user.age > 18;

/* 2 */ return user.age < 18;

/* 3 */ return false;

/* 4 */ return true;

Figure 6. Stryker: Mutated return statements [17]

In the case presented in Figure 6, the return statement from the original

source code on the left is mutated into the variants on the right. The modified

program is then executed against the test suite to verify that the unit tests are

written in a manner that tests every possible change (mutation) the

statements or expressions could undergo. Summarily, mutation testing is able

to evaluate the test suite's ability to find faults in the source code.

One of the ways to calculate mutation score is by calculating the percentage

of generated mutants found in a test suite, but since this depends on how

relevant and accurate the generation of mutants is, this might be an

inaccurate measurement.

16



Niclas Ringbom

2.6. Mocking code for unit tests

Mocking of code is often performed in the unit testing phase, where the

purpose is to unit test components that depend on other components which

can not be verified as correct. These components are either not tested or not

available for testing. This isolation is an essential part of testing Javascript

code as units often depend on other components of software, whether it is

another unit or an external component. The complex behavior is simulated

via mocking so that a specific part or unit can be accurately tested.

In Javascript, this mocking can not only be performed on functions but on

modules as well. This is an extremely important part of unit testing Javascript

code, as there are often calls made to APIs (Application Programming

Interface) which drastically reduce the reliability and speed of the tests. With

mocking, this unreliability can be negated by simulating a response in the

detriment of accuracy.

An example of module mocking in the testing framework Jest is presented

below. Figure 7a is the system under test and Figure 7b is the test used to

evaluate the code.

import axios from 'axios';

class Users {

static all() {

// axios fetches data from /users.json and assigns it to

resp.data

return axios.get('/users.json').then(resp => resp.data);

}

}

export default Users;

a)

import axios from 'axios';

17



Niclas Ringbom

import Users from './users';

// mocking of the module 'axios' with jest

jest.mock('axios');

test('should fetch users', () => {

// definition of fetch parameters

const users = [{name: 'Bob'}];

const resp = {data: users};

// simulation (mock) of a fetch

axios.get.mockResolvedValue(resp);

// compares the response with the expected outcome through

an assertion and returns the result (True or False)

return Users.all().then(data =>

expect(data).toEqual(users));

});

b)

Figure 7. Module mocking in Jest

The framework uses the .mock() function to automatically mock the axios

module, so that it is possible to simulate a response. In this particular case,

the test simulates a fetch from a remote API, with the parameters of an array

containing “name: ‘Bob’”. The variable definitions are done as one would

without the mocking, but then the response is fetched through a mocked

version of axios. Lastly, the simulated response is evaluated through an

assertion using the expect(...) function. In essence, the mocking in this

example allows the developer to test the unit without requiring a functional

API.

18



Niclas Ringbom

2.7. Test oracles

When generating tests, a procedure that can differentiate between correct

and incorrect behaviors is needed [9]. This procedure is referred to as a test

oracle. The test oracle is aware of how the system under test should behave

and what the desired outcome of the system and corresponding test is.

These test oracles can then be used to design and create tests, as they

provide knowledge on what is correct and incorrect. The different categories

of test oracles are presented below [9].

● Implicit test oracles - Defined by implicit information on whether a

system is working as expected, such as compilation faults or execution

failures.

● Derived test oracles - Defined by information derived from

documentation, system executions or previous versions of the SUT.

● Specified test oracles - Defined by formal specifications and software

models. The only type of oracle to rely on mathematically based

techniques.

● Human test oracles - In the absence of any form of information that

could be used to define any of the other test oracles mentioned,

human test oracles have to be utilized. In this case, the test oracle has

to be based upon vague and abstract concepts such as “gut-feeling” or

intuition since there is no tangible specification available.

Some of these types of oracles have their own disadvantages or inaccuracies

depending on the information used to generate them. For implicit test oracles,

the biggest challenge is the fact that not all faults are universal [9]. Behaviors

in one system might be considered abnormal, while the same behavior in

another system could be intended [9]. This results in the need to define new

test oracles specifically depending on the system, as well as the context the

oracle is used in. In the case of specified test oracles, the challenge is

connected to the limitations of a formal specification. As formal specifications

19



Niclas Ringbom

use abstraction to a great degree, the translation from abstract to definite

may produce an inaccurate test oracle.

When the developers act as the test oracle, they are able to take formal and

informal requirements into consideration when writing and examining tests.

Naturally, a multitude of flaws exist when the developer acts as the oracle as

this opens up the testing to a greater degree of human error and

interpretation. This brings us to the test oracle problem which is a large

hindrance for the effectiveness and correctness of automated testing as well

as automatically generated testing.

The test oracle problem is defined as the challenge of differentiating between

correct, intended behavior, and incorrect behavior [9]. This problem is

particularly problematic for the effectiveness of automatically generating unit

tests, as there is minimal supervision from the human aspect of the

development process. If no useful information exists for creating test oracles,

the generator is not able to write serviceable unit tests. If a test is written

without assertions, the developer is required to review the incomplete test

and complete the process [10], which renders the generation of the stubbed

unit test unnecessary.

2.8. Unit test generation

Unit test generation is a complex process that differs greatly depending on

the system under test. As each programming language has their own defining

features, the same unit test generator might not be able to be used for a

different language or even a different framework. For instance, when

comparing plain Javascript with Java, many defining features of the

languages differ. Javascript is an interpreted language, whereas Java is a

compiled language. Another significant difference is the fact that Javascript is

a weakly typed language, and Java is strongly typed.

20



Niclas Ringbom

There are many different methods that unit test generators can employ to

analyze the code. As the generator has to have intricate knowledge of the

system under test, this method of analysis is of great importance to the

effectiveness of the unit tests. This knowledge may be derived either from the

source code or from the specifications of the SUT. Without this knowledge,

the generator would not be able to differentiate between a well constructed

test and a simple test. Simple tests would lead to worse code coverage, and

more importantly, to worse fault detection. This need for unit test generators

to understand the system under test leads us to the oracle problem,

explained in Section 2.1.

2.9 Unit testing frameworks in Javascript

Many unit testing frameworks are available for Javascript, from which a

developer can choose a suitable framework depending on the use case.

Frameworks such as Jest [1] or Jasmine [49] are used to test the functionality

of the computational section of the code, whereas tools such as Puppeteer

are used to determine if a site is rendered according to expectations.

Jest is one of the unit testing frameworks available for JS and was the most

used testing framework in 2020 and 2021 [15]. It is compatible with most

other frameworks and libraries used in JS projects, such as Node, React,

Typescript, etc.

21



Niclas Ringbom

3. State of the art
This section of the thesis will cover the current state of unit test generation,

both through a literature survey of academic publications and a survey of

existing tools. The aim of this chapter is to present the past and current

environment in which generators are made or prototyped. The primary

analysis of the current state of unit test generation will be presented through

the literature survey. This literature survey will consist of research from

academic channels. Afterwards, a survey of existing tools, either found

through the literature survey or other means will be introduced. The final

subsection will summarize the results found from these surveys. This chapter

will answer RQ1 and RQ2.

3.1. Literature survey

The first section of this chapter will present an academic literature survey of

the topic “Unit test generators for Javascript” in order to collect resources and

information required to answer the research questions in this thesis. These

publications are collected from relevant academic channels such as Google

Scholar [31] and IEEE Xplore [32]. The selection criteria for the literature

survey is as follows:

● The tool is focused on unit test generation for JS

● The publication presents a fully functional tool

● The capabilities of the tool are presented through an experiment on

open-source programs

● The generated tests should be fully functional unit tests

Materials referenced in collected resources will also be used in order to find

similar materials. The resources in this literature survey were collected on

12/2022. The same queries were performed in both of the channels with the

following search terms:

- “Unit test generation Javascript”

- “Automatic unit testing”

22



Niclas Ringbom

- “Test generation Javascript”

In total, approximately 30 publications were reviewed. As a result of these

queries, and reviews of the resources referenced in them, the following

publications were found to be the most relevant for the purpose of this

survey:

Title Proposed tool Year of
publication

Found in
Publication
Database

JSEFT:
Automated
Javascript Unit
Test Generation
[10]

JSEFT [25] 2015 IEEE

A framework for
automated
testing of
javascript web
applications [28]

Artemis [26] 2011 Google Scholar

A Symbolic
Execution
Framework for
Javascript [27]

Kudzu (not
public)

2010 Found through
references in
[28], available on
IEEE

Table 1. List of resources for literature survey

As can be observed from the table above, the most relevant publications

found in the literature survey are almost all a decade old, with the exception

of JSEFT. This reflects the current state of academic publications within the

field, as filtering results in both IEEE and Google Scholar from 2015 onwards

returns no publication with a proposed tool. As such, it is not possible to

assume these tools would be able to achieve the same degree of code

coverage and fault detection if applied to code written today. This is due to

the fact that Javascript has changed considerably since 2015, when ES6

(ECMAScript 6) was released. Changes to the language included the usage

of “let” and “const” as variable keywords, promises, and arrow functions. The

23



Niclas Ringbom

substantial changes to the syntax, as well as the industries’ inclination to use

frameworks such as React could severely impede the effectiveness of old

tools. Some of the tools have received updates since their release to improve

their capabilities. Of the tools listed in Table 1, Artemis is the only one to have

received such updates. Regardless, the results presented in these

publications offer valuable insights as to which degree unit test generators for

Javascript could generate test suites.

3.2. Survey of existing tools

Similarly to the literature survey, relevant channels such as Google and

Github were used to find existing tools using the following search terms:

- “Unit test generation Javascript”

- “Automatic unit testing”

- “Test generation Javascript”

The tools were filtered for those that were publicly available (community

editions) or open source. The first search for tools was conducted on 05/2022

and the final search on 12/2022. No additional tools were found during the

final search. Three additional tools were found as a result of the survey of

existing solutions: Ponicode, Examin, and jest-test-gen. These tools were all

found as a result of queries on Google.

3.3. Results

An introduction of the tools found as a result of the surveys in sections 3.1

and 3.2 are presented in Table 2 below, with a description of their test

generation method, latest update, licensing, and a link to the tool.

Name Method Last
updated

Licensing Link to
tool

24



Niclas Ringbom

Ponicode AI, NLP processing of
semantics and structure

2022 Commercial
application,
licensing not
applicable

https://www
.ponicode.c
om/develop
ers

Examin Feedback-directed 2021 MIT license https://githu
b.com/osla
bs-beta/Exa
min

Artemis Feedback-directed 2017 GPL v3.0 https://githu
b.com/cs-a
u-dk/Artemi
s

JSEFT Event-space exploration 2014 Undisclosed https://githu
b.com/saltla
b/JSeft

jest-test-g
en

Undetermined 2022 MIT license https://githu
b.com/egm
0121/jest-te
st-gen

Table 2. Set of found unit test generators for Javascript

The advertised capabilities, availability, installation, as well as other relevant

information on the tools found will be presented below.

Some of the tools found have been excluded from this set, as they are

outside of the scope of the intended practical experiment or not publicly

available. The excluded tools are listed below, along with a reason for their

exclusion.

● Kudzu [27], not publicly available

● JS Test Gen [30], only generates test templates

In the following sections, possibly applicable unit test generation tools are

reviewed.

25

https://www.ponicode.com/developers
https://www.ponicode.com/developers
https://www.ponicode.com/developers
https://www.ponicode.com/developers
https://github.com/oslabs-beta/Examin
https://github.com/oslabs-beta/Examin
https://github.com/oslabs-beta/Examin
https://github.com/oslabs-beta/Examin
https://github.com/cs-au-dk/Artemis
https://github.com/cs-au-dk/Artemis
https://github.com/cs-au-dk/Artemis
https://github.com/cs-au-dk/Artemis
https://github.com/saltlab/JSeft
https://github.com/saltlab/JSeft
https://github.com/saltlab/JSeft
https://github.com/egm0121/jest-test-gen
https://github.com/egm0121/jest-test-gen
https://github.com/egm0121/jest-test-gen
https://github.com/egm0121/jest-test-gen


Niclas Ringbom

3.3.1. Ponicode

Ponicode is an AI-powered unit test generator for JavaScript, TypeScript,

Python, and Java. The tool analyzes the structure and semantics of the code

using AI powered natural language processing [23], and uses the information

obtained to generate unit tests.

For Java, the tool is available as an IntelliJ plugin and as a VSCode

extension for the remainder of the supported technologies. A CLI (Command

Line Interface) is also available, as an npm package. The CLI supports test

generation for JavaScript, TypeScript, and Python. Ponicode generates unit

tests for the following test frameworks, for each supported technology [33].

Language Test framework

JavaScript Jest

TypeScript Jest

Python Pytest
Table 3. Ponicode VSCode supported technologies.

The installation process is simple for both the CLI and the VSCode extension.

NPM (Node Package Manager) is used to download and install the CLI.

Before using the tool a small amount of configuration is required. In this

configuration, properties of the system under test are defined. This

configuration allows the tool to more accurately interpret the source code,

which leads to higher quality tests. The VSCode extension can be installed

through the VSCode marketplace and does not require any configuration.

Ponicode does not mention any results or studies done using the tool. As

such, no details on the capabilities of the tool were found as a result of this

survey. Further details on the capabilities of Ponicode are found in chapters 4

and 5.

26



Niclas Ringbom

3.3.2. Examin

Examin generates unit tests for React applications through a Google Chrome

extension. The tool employs React Developer Tools to analyze the source

code of the system under test, and generates unit tests for each individual

component. Similarly to Ponicode, the tests are generated using Jest syntax.

Examin can be installed through the Chrome Web Store [35] or through

manually building the extension using the GitHub repository [36]. No setup is

required, with the exception of a few dependencies that are added to the

system under test through NPM. In addition to the dependencies, Examin

requires React Developer Tools [37] to function.

As was the case with Ponicode, Examin does not advertise any results or

studies. As a result, the capabilities of this tool are not possible to determine

without a practical experiment.

3.3.3. Artemis

Artemis is the first tool in the survey that is based on academic research. As

such, intricate details about the tool and its capabilities are available in the

research paper [28]. Based on the Rhino Javascript interpreter [38], it

combines data from the interpreter, such as event handlers, constants, and

read/write sets with feedback-directed random test generation algorithms

[28].

The table below is a summary of the experimental results from the research

paper [28] presenting Artemis. The columns are defined as follows:

● Benchmark, the system under test (SUT).

● LOC, total number of lines of code in the SUT.

● Coverage, line coverage (% of lines covered by generated tests)

achieved by each test generation algorithm.

27



Niclas Ringbom

Table 4. Artemis research publication experiment results [28].

A total of 100 tests were generated by each of the algorithms; initial, events,

const, cov, and all. From the table we can observe that executing all of the

test generation algorithms present in the tool against the systems under test

resulted in an average of 72% code coverage. One negative aspect of the

tool is that it requires a great deal of tests in order to achieve the code

coverage presented. The results in Table 2 are all achieved after generating

100 tests, which for some of the programs is an unrealistic number of tests to

maintain. All of the systems under test in the research were interactive and

event-driven [28]. As such, the capabilities of the tool on other types of

JavaScript programs is undetermined.

The installation of Artemis requires a great deal of effort in comparison to the

other tools listed in this survey. A detailed installation file is included in the

GitHub repository [26], which includes restrictions such as the usage of

Linux-based systems.

3.3.4. JSEFT

The fourth tool included in this survey, JSEFT [10], is also a result of

academic research. JSEFT uses dynamic exploration of the event-space

through a function coverage maximization method [10] to interpret the code

and generate unit tests. The tool was allowed to run for 10 minutes for each

28



Niclas Ringbom

application, out of which 5 minutes were reserved for the dynamic exploration

step [10]. There is no mention of how many tests were generated for each of

the applications. In their research they claim to have achieved a higher code

coverage than Artemis. In Figure 11 below, the code coverage percentage

achieved in the experiment [10] of the tools JSEFT and Artemis are

presented.

Figure 11. JSEFT & Artemis Code Coverage Comparison [10].

According to the research JSEFT is able to achieve 68.4% code coverage on

average, while Artemis was only able to achieve 44.8% average code

coverage on the same set of applications. In comparison to the benchmark

programs used to evaluate Artemis [28], the experiment performed in the

JSEFT paper uses many different application types. As a result, the

experiment is more valid, as a considerable threat to validity in these

experiments are the programs used to benchmark them. From the graph, we

can observe that a more varied set of the systems under test result in a lower

average code coverage for Artemis.

29



Niclas Ringbom

No installation guide is available on the Github repository [25], which severely

hinders the availability of the tool.

3.3.5. Summary of survey

The capabilities of the tools Ponicode and Examin could not be determined in

this survey, and would need to be included in the practical survey in order to

evaluate their performance. One significant advantage of the tools appears to

be their simple installation process, which lowers the initial cost for using (or

evaluating) the tools. Another advantage of the tools is their usage of Jest

syntax to structure the generated tests. This allows the tests to be easily

integrated into existing test suites and expanded upon when required.

Both of the tools originating from academic research, JSEFT and Artemis,

were possible to evaluate in the literature survey. Both of the research papers

[10][28] included an experiment performed using the tools. Reviewing the

experiments performed resulted in JSEFT appearing superior to Artemis.

Even though these two tools seem promising after reviewing the research,

the installation process for both of them appears cumbersome, which could

negatively impact the usefulness of the tools. Another severe disadvantage of

these tools is the fact that both papers (and the documentation of the tools)

fail to mention in which syntax unit tests are generated. Compared to Examin

and Ponicode, which use Jest, the tests generated by JSEFT and Artemis

might not be able to comfortably integrate into testing frameworks.

Regarding RQ 2, many of the existing tools are not available as of today,

either due to not being maintained or not possible to access. The remaining

available tools do not seem to portray a high maturity level.

30



Niclas Ringbom

4. Evaluation
The purpose of this section is to present which unit test generation

frameworks and how will be evaluated via a practical experiment. A brief

explanation of how to generate tests with these frameworks will also be

included along with a review of the readability of the generated tests. Lastly, a

list of the metrics used to measure the effectiveness of the frameworks will be

mentioned.

Out of the four tools found in the survey in chapter 3, two were chosen for the

practical experiment. These tools were Ponicode and Examin. There were

several reasons for only choosing these two tools out of the total 4 tools

found, which will be listed below.

● Excluded from experiment

○ JSEFT

■ Unable to determine the syntax of the generated unit

tests, likely to not be compatible with current test

frameworks.

■ No installation guide included in the Github repository

[25].

■ Installation of the tool proved unsuccessful, as a result of

unresolved dependencies.

○ Artemis

■ Similarly to JSEFT, unable to determine the syntax of the

generated tests.

■ Tedious installation process with heavy restrictions such

as the usage of a Linux operating system.

● Included in experiment

○ Ponicode

31



Niclas Ringbom

■ Simple installation process with several options for

usage platforms.

■ Promising early results.

■ Generates tests in Jest syntax, possible to integrate into

existing test suites.

○ Examin

■ Browser based tool, effortless installation with no

restrictions on development environment.

■ Generates tests in Jest or Enzyme syntax.

4.1. Test Generation Examples

A short running example of how to generate unit tests with Ponicode and

Examin is presented below. Every step required to generate tests is briefly

introduced, in order to provide the reader with insights into the process of

generating unit tests. The following steps will be included in the examples:

● Configuration

● Input required for test generation

● Test generation

● Generated test overview

● Test running and reporting

4.1.1. Ponicode

Ponicode offers two different methods for generating unit tests, a VSCode

extension, and a CLI (Command Line Interface). Both methods require

access to runnable source code. The CLI offers a simple and fast way to

generate tests at the cost of customization, whereas the VSCode extension

allows the developer to customize the generated unit tests to their own

preference.

32



Niclas Ringbom

The VSCode extension does not require any configuration, but the tests

themselves can be configured to the developers’ needs. As mentioned

earlier, the extension requires runnable source code as input, which in the

case of Ponicode, is the only artifact used to generate test cases.

Tests can be generated in two ways, either using the “Flash Test''

functionality or the “Unit Test” functionality. The “Flash Test” automatically

generates 6 test cases, by default, for each function selected. The “Unit Test”

functionality offers additional customization for the generation of the tests by

opening a window from which the developer can select test cases from a pool

of suggestions presented by the tool. The following function will be used as

the unit under test for this running example.

Figure 12. Ponicode example unit under test

In Figure 12 above, the two options for generating tests using Ponicode are

visible. Upon selecting “Flash Test”, Ponicode generates the unit test in

Figure 13 (formatted to take less space).
const IsOdd = require("../IsOdd")

// @ponicode

describe("IsOdd.isOdd", () => {

test("0", () => {

let result = IsOdd.isOdd(2)

expect(result).toBe(false)})

test("1", () => {

let result = IsOdd.isOdd(0.0)

expect(result).toBe(false)})

test("2", () => {

let result = IsOdd.isOdd(1.0)

expect(result).toBe(true)})

test("3", () => {

let result = IsOdd.isOdd(2.0)

expect(result).toBe(false)})

test("4", () => {

33



Niclas Ringbom

let result = IsOdd.isOdd("Dillenberg")

expect(result).toBe(false)})

test("5", () => {

let result = IsOdd.isOdd(Infinity)

expect(result).toBe(false)})

})

Figure 13. Ponicode IsOdd flash test

The test suite contains 6 test cases in total, with 4 of them (tests 0-3) testing

the logic of the function, and 2 of them (tests 4-5) testing edge cases for

exception handling. This test suite is written into a separate subfolder, where

the test can be added into existing test suites or run individually.

Tests generated by Ponicode are executed using Jest. These tests can be

executed in multiple different ways, either through the ways recommended by

Jest [14] or by opening the test suite and selecting “run”. The progress and

result of the test execution is then reported in the terminal, along with any

errors that might be present. The result of the test suite presented in Figure

14 produces the following result.

Figure 14. IsOdd test execution result.

The “Unit Test” method functions similarly to the “Flash Test”, but instead of

automatically generating a test suite, selecting the “Unit Test” opens a

window in which the developer can add test cases from a list of suggestions.

The developer can also add their own assertions to the unit test using the

34



Niclas Ringbom

user interface. Figure 15 below presents the user interface of Ponicode’s Unit

Test feature.

Figure 15. Ponicode Unit Test User Interface [48]

The developers can also write their own test cases, which the extension then

adds to the test suite.

As of 13.03.2023 all Ponicode solutions were discontinued and deprecated

as a result of CircleCI acquiring the company Ponicode. All documentation

related to the usage and features of the tool were removed from the public at

35



Niclas Ringbom

the same date. CircleCI hopes to integrate the tool into their CI/CD product,

and as such, the functionalities may become available again at a later date.

Attempting to use any of the solutions provided by Ponicode results in a

failed request, as the test generation was hosted by the company itself.

Further use of the tool is not possible at the time of the experiment, which

results in the exclusion of Ponicode from the practical experiment. Below is a

screenshot taken during an attempt to use the tool to perform the primary

experiment.

Figure 16. Ponicode solution shut down.

Since the tool is no longer available for public use, the data found in the initial

experiment to justify inclusion of the tool into the primary experiment will be

used to review the capabilities of the tool. This review is presented in chapter

5.

4.1.2. Examin

Examin generates unit tests automatically from source code run on a local

server. The tests are generated through a Google Chrome extension, which

is opened on the browser, in the same window as the client connected to the

local server. The unit tests are then automatically generated while using the

application.

36



Niclas Ringbom

To install and configure Examin for a project, the following steps are required

[36]:

● Install the Examin extension for Google Chrome

● Install npm dependencies for Jest/Enzyme

● Navigate to the Examin panel in Chrome developer tools

After the installation, generate the unit tests by navigating through the

application. The extension does not offer a great deal of customization, as

the tool automatically generates test cases for each running component.

The simplistic interface of the extension offers a “How to use” tab, a

“Start/Stop” function, as well as copy and export functions. The functions

available in the extension are as follows:

● “How to use” tab, contains the same configuration information as on

the GitHub page [36].

● Copy” function copies the contents of the generated test case to the

clipboard.

● “Export” function exports the contents of the generated test case to a

JavaScript file (.js).

● Detected components, allows the developer to show or hide test cases

generated for each component.

● The “Start/Stop” function allows the developer to pause the unit test

generation. This function is used to prevent generation of test cases

for components that are rendered prior to reaching the unit to be

tested (for instance pausing test generation during login to a

webpage).

Figure 17 below is a screenshot of the tool during code execution.

37



Niclas Ringbom

Figure 17. Examin extension interface.

Figure 18 below consists of the test case generated for the “App” component

of a simple tic-tac-toe game written in React [6] (Figure 24) used for the

running example. This test case can then be added into a test suite and run

with Jest.

//imports

describe('App Component', () => {

const wrapper = shallow(<App />);

it('Contains Header component', () => {

expect(wrapper.find(Header).length).toBe(1)

})

38



Niclas Ringbom

it('Contains Board component', () => {

expect(wrapper.find(Board).length).toBe(1)

})

it('Contains Footer component', () => {

expect(wrapper.find(Footer).length).toBe(1)

})

it('App includes html elements', () => {

expect(wrapper.find('[object

Object]').length).toEqual(1);

});

});

Figure 18. Examin test example.

const x = 'clear'

const blank_boxes = Array(9).fill(null)

export const AppContext = createContext()

const App = () => {

const [board, setBoard] = useState(blank_boxes)

const [turn, setTurn] = useState(x)

const { winner, winner_row } = check_winner(board)

const running = game_over(board)

return (

<>

<AppContext.Provider value={{ winner, turn, running }}>

<Header />

<Board

board={board}

setBoard={setBoard}

setTurn={setTurn}

winner_row={winner_row}

/>

</AppContext.Provider>

<Footer />

</>

)

39



Niclas Ringbom

}

export default App;

Figure 24. React tic-tac-toe App.js [6]

These generated test cases can then be used to supplement an existing Jest

test suite, or be used as the basis for a new test suite. Examin offers no

support for executing the generated tests or configuring a test environment.

Test environment configuration and test execution should be performed as

instructed in Jest Docs [14].

4.2. Metrics

In the practical experiment, line coverage is used to determine how well the

frameworks are able to cover types of Javascript code. As line coverage

alone is not a good metric for test quality, another metric should be used to

confirm that the test not only tests the code, but confirms that the test the

code adequately. Mutation testing was planned to use an additional metric,

but due to the fact that Ponicode was no longer available, and dependency

issues with Examin, a manual test review was performed on the generated

tests.

4.3. Benchmark

This second section describing the practical experiment will present the

importance of choosing different types of applications when evaluating the

performance of unit test generators, as well as introduce the features of the

applications chosen for this specific experiment.

40



Niclas Ringbom

4.3.1. Applications

Five different applications were chosen to evaluate the performance of

Examin. All of these applications are written in React version 16.8 or higher.

The defining features of the chosen applications are listed in Table 5 below.

Name Description Lines
of
code
(JS)

React
version

Github

react-calculator Simple
calculator

399 16.12 https://github.com/Mani

ruzzamanAkash/react-

calculator

english-class-min
igame

Word guessing
game

502 18.0 https://github.com/bkfa

n1/english-class-minig

ame/blob/master/pack

age.json

react-frontend-de
v-portfolio

Portfolio
website

769 16.13.1 https://github.com/Doro

ta1997/react-frontend-

dev-portfolio

React-Quiz-App Quiz app 201 18.0.0 https://github.com/md-

kawsar-ali/React-Quiz-

App

React-Weather-a
pp

Simple
weather app

318 18.2.0 https://github.com/code

bucks27/React-Weath

er-app

Table 5. Properties of chosen applications.

4.4. Experiments

Details of how the experiment is conducted will be presented in this chapter.

The two previous chapters, 4. Evaluation and 5. Benchmark explained which

41

https://github.com/ManiruzzamanAkash/react-calculator
https://github.com/ManiruzzamanAkash/react-calculator
https://github.com/ManiruzzamanAkash/react-calculator
https://github.com/bkfan1/english-class-minigame/blob/master/package.json
https://github.com/bkfan1/english-class-minigame/blob/master/package.json
https://github.com/bkfan1/english-class-minigame/blob/master/package.json
https://github.com/bkfan1/english-class-minigame/blob/master/package.json
https://github.com/Dorota1997/react-frontend-dev-portfolio
https://github.com/Dorota1997/react-frontend-dev-portfolio
https://github.com/Dorota1997/react-frontend-dev-portfolio
https://github.com/md-kawsar-ali/React-Quiz-App
https://github.com/md-kawsar-ali/React-Quiz-App
https://github.com/md-kawsar-ali/React-Quiz-App
https://github.com/codebucks27/React-Weather-app
https://github.com/codebucks27/React-Weather-app
https://github.com/codebucks27/React-Weather-app


Niclas Ringbom

frameworks were included in this experiment and which applications they are

being tested for. The contents of this chapter builds on those details,

explaining how exactly the experiment is set up. These core details include

how exactly the experiment is set up, in what environment, how data is

collected, as well as the timeline for the experiment.

4.4.1. Experiment details

Only one tool is included in the practical experiment, as Ponicode, which was

one of only two frameworks of notable performance found during the surveys

in chapter 3. State of the art. As such, the experiment will be specifically

designed around the needs of Examin, which is an automatic unit test

generator for React applications with a version of 16.8 or higher.

The experiment in its entirety was performed by the author of this thesis. This

includes everything from the execution of the tool against the selected

applications to data collection. The experiments were performed on Windows

10 Version 10.0.19044, using VSCode as the IDE. NPM [46] was the

package manager used to integrate Examin into the applications. Coverage

data was fetched through Jests’ built-in coverage reporter [47], which

includes statement-, branch-, function-, and line coverage.

A thorough experiment was not possible to perform on Ponicode, as the tool

was acquired by another company and terminated. The preliminary

experiment was performed using a collection of algorithms written in pure JS

[41], using the same environment and technologies mentioned above.

42



Niclas Ringbom

5. Results
This chapter will summarize the results of the experiment performed on the

chosen frameworks. An analysis of the results will be done by answering RQ

3, 3.1, 3.2. In the case of Ponicode, the preliminary evaluation performed to

justify inclusion into the practical experiment will be used to evaluate the

framework. This chapter will answer RQ 3, RQ 3.1, and RQ 3.2.

5.1 Ponicode

During the preliminary evaluation of Ponicode on a set of algorithms written in

Javascript [41], Ponicode managed to generate tests with an average

67.57% line coverage. Reviewing the coverage report in Figure 19 generated

by these tests, it is apparent that the tool is only able to interpret certain types

of code.

During the generation of the tests, several issues and limitations of the tool

surfaced. Upon further testing the repository, Ponicode encountered 19

critical errors. The tool had difficulties instantiating classes, and did not

understand some common-practice coding methodologies in JS, such as the

use of methods.

43



Niclas Ringbom

Figure 19. Ponicode initial results

5.2 Examin

Examin’s test generation capabilities were tested on the applications listed in

subsection 4.3.1. Applications. The tests were generated following Examin’s

instructions [24]. A detailed description of the test generation process is

defined in subsection 4.1.2.

The configuration process for Examin was cumbersome, as all of the projects

experienced dependency issues after installing the required dependencies for

Examin.

44



Niclas Ringbom

Once configured, Examin generated the test suites almost instantly. However,

the tool requires the developer to simulate every part of the application that is

desired to generate unit tests for. The simulation entails navigating through all

different branches of the program while it is running. Depending on the size

and complexity of the application, this can slow down the generation process

considerably. Examin failed to generate tests for two (english-class-minigame

and react-frontend-dev-portfolio) out of the five chosen open-source

applications. The tool encountered the same error in both cases, where it

was unable to print the generated test case to the browser extension. A

screenshot of the error encountered when generating tests for

English-class-minigame is presented in Figure 20.

Figure 20. Examin FiberNode error.

The error references an issue with the ‘FiberNode’ constructor, and as

Examin uses React Fiber to generate the unit tests, this appears to be a core

fault in the tool.

For the remaining three applications, Examin managed to achieve an

average line coverage of 30.19%. The results of the generated test report are

depicted in Figure 21. Each color in the graph represents an application

45



Niclas Ringbom

under test, and the results are categorized by coverage type (statement-,

branch-, function-, and line coverage).

Figure 21. Examin Experiment Results Code Coverage.

As can be seen from the figure above, Examin did not manage to generate

adequate tests for any of the systems under test. The worst results, after the

two applications that Examin failed to generate any tests for, was the

calculator application. For this application, Examin only managed to generate

tests with a total line coverage of 14.56%. The best case was for the quiz

application, with a total line coverage of 40%. It is also worth noting that the

chosen applications had simple codebases that should be easier to interpret

in comparison to real business applications. For further inspection, the

generated reports are presented in Figures 22a), b), c).

46



Niclas Ringbom

Figure 22a. Jest coverage report React-Weather-app

Figure 22b. Jest coverage report react-calculator

Figure 22c. Jest coverage report React-Quiz-App

Depending on the size and complexity of the application, this can slow down

the generation process considerably. This also adds to the requirements of

the test developer, as they might not have prior knowledge regarding the

navigation of the application.

47



Niclas Ringbom

5.2.1 Test Quality

Considering the poor line coverage of the generated unit tests, it is unlikely

they are of sufficient quality to be used as is in an actual test suite. To answer

RQ 3.2, a manual review of the test quality is presented below.

For the React-Quiz-App the source code that determines the logic of the

program is located in the App.js file. The rest of the relevant JS files, located

in the components folder, affect the outlook of the program. All lines

containing the essential logic of the program are not covered by the

generated unit tests. Figure 23 contains the complete test generated by

Examin for the App.js file.

Figure 23. Examin React-quiz-app generated unit test for App.js

As can be observed from the unit test, it clearly does not test any lines

relevant to the logic of the program, only checks if the components are

rendered into the application.

48



Niclas Ringbom

The generated tests for react-calculator and React-Weather-app suffer from

the same discrepancies as for react-quiz-app. The generated tests contain

almost no assertions for testing the logic of the program, and only check if

components are rendered. Summarily, as the generated tests do not verify

that the logic of the program functions as expected, the unit tests generated

by Examin for these applications are of poor quality.

49



Niclas Ringbom

6. Discussion
This chapter will review the reliability of the experiments and surveys

conducted in this thesis, as well as present an analysis of the validity of the

aforementioned experiments. In addition to this, a discussion around the

difficulties faced during the different practical parts of this thesis.

There were several difficulties faced while searching for tools and conducting

the experiment. Finding an applicable unit test generator was significantly

harder than expected. Out of the few applicable test generation tools, even

fewer were usable for code written in newer versions of Javascript (including

relevant frameworks and libraries such as React). Furthermore, installing the

tools and conducting a preliminary evaluation often required solving several

dependency issues. Although this hints at a poor availability of unit test

generators for Javascript, it has negatively impacted the validity of the

practical experiment. This is due to the fact that only one tool could be

evaluated properly through the practical experiment. In addition to this, the

tool (Examin) had a very specific use case as the program had to be

executable with React v. 16.8 or higher.

50



Niclas Ringbom

7. Conclusion
Unit test generation offers an extremely helpful tool for reducing the

development costs of a software project, but in the case of Javascript, the

generators available display many limitations. The configuration process for

many of them are extensive, and offer little to no help concerning the

debugging process. If the tests generated by the tools are inadequate, they

will require extensive review by the developers. Reviewing and expanding

upon the tests will exhaust the same development hours the tools were

meant to save. Although the unit test generators for Javascript suffer from

limitations, they portray a promising start to be able to generate adequate test

suites.

The conclusion of this thesis is that unit test generators for Javascript are not

adequately advanced to be able to replace manual unit test development. As

long as the test suites generated require extensive review and revision,

manually writing the tests is the preferable option. For developers with a

novice proficiency of unit testing, the process of reviewing and expanding

upon a generated test suite that might contain odd syntax or irrelevant test

cases could prove to be more difficult than personally writing the tests.

Contrastingly, a developer with expert proficiency would likely write tests

superior to the generated ones, without the need to exhaust development

hours on configuring the tool for use.

Based on the results found both in the state of the art survey as well as the

experiment, the conclusion of this thesis is that JavaScript unit test

generators are not sufficiently advanced to replace manual test writing. They

may be used to build templates for each unit test, but produce such

unreliable logic that the developer cannot confirm whether the source code or

the test itself is the issue. Regarding the future of JavaScript unit test

generators, it may be possible for them to become sufficiently advanced to

51



Niclas Ringbom

replace manual testing in some cases. This would require the test generators

to be able to more accurately interpret the logic of the source code.

Considering the dynamic and unpredictable nature of JavaScript, the slow

improvement of JS unit test generators in the last 10 years, and the small

size of the community, it is unlikely the test generators could achieve a

sufficient level of success.

During the writing of this thesis, ChatGPT [53] has steadily gained popularity.

ChatGPT-based unit test generators have As ChatGPT is a general AI,

models that are specifically focused on programming should be assessed.

These specialized models [50][51][52] could be a powerful tool for generating

unit tests, and should be considered as a subject for future research into

automatic unit test generation. For instance, CodiumAI [52] offers unit test

generation support for Javascript and integrates directly into VSCode [44]

and JetBrains IDEs [34].

52



Niclas Ringbom

8. Swedish summary
Enhetstestning är en viktig del av varje bra kodbas. Användningen av

utförliga enhetstest främjar återanvändbarheten och pålitligheten av koden,

så väl som förbättrar den övergripande kvaliteten på koden. Genom att

använda enhetstester kan vi validera att programvaran utför operationer

exakt så som den är avsedd att utföra dem. Att manuellt skriva enhetstester

förbrukar värdefulla utvecklingstimmar som skulle kunna användas för att

ytterligare förbättra eller utöka programvaran och är en av huvudorsakerna till

att enhetstester förbises. Denna åsidosättning öppnar upp programvaran för

bristfällig kod och kan i ett senare skede av utvecklingsfasen resultera i en

kostsam omstrukturering av kodbasen.

Automatiska testgeneratorer tillåter utvecklaren att utelämna det manuella

skapandet av enhetstest och direkt förse testförfattaren med de resurser som

behövs för att köra testerna och validera systemet som testas. Generatorerna

förlitar sig på källkod eller en mängd olika artefakter för att producera dessa

enhetstest. Dessa artefakter kan bland annat vara resurser som

klassdiagram, UML-modeller (Unified Model Language) och diverse

designspecifikationer.

Testfallen som skrivs av enhetstestgeneratorerna skrivs separat för varje

funktion eller kodkomponent. Dessa testfall kan vid behov förbättras manuellt

av testförfattaren efter genereringen. Detta är viktigt för att säkerställa att den

skapade testsviten kan testa alla delar av koden och erbjuder en acceptabel

grad av feldetektering. Tidig identifiering av fel i kodbasen är väsentligt,

eftersom problemet eller felet är aktuellt. Den tidiga identifieringen möjliggör

att utvecklarna snabbare kan hitta en passlig lösning. Detta beror på att

utvecklaren inte behöver återbekanta sig med kodbasen. Testning kan lätt

åsidosättas under utvecklingsprocessen av ett programvaruprojekt. Ramverk

53



Niclas Ringbom

som automatiskt kan generera enhetstester hjälper till att lindra kostnaden av

mjukvarutestning.

Syftet med denna avhandling är att utvärdera prestandan av

enhetstestgeneratorer för Javascript, både genom en litteraturundersökning

av befintliga verktyg och ett praktiskt experiment.

Sökningen för verktygen (enhetstestgeneratorer för JavaScript) utfördes

genom två olika kanaler. Dessa två kanaler var sökning av verktyg genom

publicerad forskning och ett utförligt sök på nätet. Två olika kanaler användes

för att inkludera verktyg av både akademiskt och icke-akademiskt ursprung i

undersökningen. Följande verktyg hittades (Tabell 1):

Namn Metod Senast
uppdater
ad

Licensering Länk till
verktyget

Ponicode AI, NLP processering av
semantik och
kodstruktur

2022 Kommersiell
applikation

https://www
.ponicode.c
om/develop
ers

Examin Responsriktad 2021 MIT licens https://githu
b.com/osla
bs-beta/Exa
min

Artemis Responsriktad 2017 GPL v3.0 https://githu
b.com/cs-a
u-dk/Artemi
s

JSEFT Evenemangsutrymmeutf
orskning

2014 Framgår ej https://githu
b.com/saltla
b/JSeft

jest-test-g
en

Obestämd 2022 MIT licens https://githu
b.com/egm
0121/jest-te
st-gen

54

https://www.ponicode.com/developers
https://www.ponicode.com/developers
https://www.ponicode.com/developers
https://www.ponicode.com/developers
https://github.com/oslabs-beta/Examin
https://github.com/oslabs-beta/Examin
https://github.com/oslabs-beta/Examin
https://github.com/oslabs-beta/Examin
https://github.com/cs-au-dk/Artemis
https://github.com/cs-au-dk/Artemis
https://github.com/cs-au-dk/Artemis
https://github.com/cs-au-dk/Artemis
https://github.com/saltlab/JSeft
https://github.com/saltlab/JSeft
https://github.com/saltlab/JSeft
https://github.com/egm0121/jest-test-gen
https://github.com/egm0121/jest-test-gen
https://github.com/egm0121/jest-test-gen
https://github.com/egm0121/jest-test-gen


Niclas Ringbom

Tabell 1. Resultat av materialsökning för enhetstestgeneratorer.

Utav dessa verktyg, kunde verktygen som hittades genom akademiska

kanaler (Artemis, JSEFT) utvärderas på basis av deras relaterade

forskningspublikation. De andra verktygen (Ponicode, Examin, jest-test-gen)

som hittades genom en webbsökning kunde inte utvärderas utan vidare

undersökning. Verktygen med akademiskt ursprung verkade lovande, men

installationen av dessa två verktyg visade sig vara ytterst krävande. När

verktygen väl var installerade framgick det att de inte längre var

funktionerliga. Dessa verktyg skulle kräva utförliga uppdateringar för att

funktionera. jest-test-gen genererade endast basstrukturen för enhetstest och

ansågs inte vara relevant för undersökningen.

Medan undersökningen av dessa verktyg pågick, köptes Ponicode av ett

annat företag (CircleCI) som omedelbart förhindrade all åtkomst till verktyget.

Som ett resultat av detta kunde endast en del av experimentet utföras på

verktyget. Examin var således det enda återstående funktionerliga och

tillgängliga verktyget att inkludera i experimentet.

Experimentet utfördes på diverse JavaScript applikationer med åtskiljande

egenskaper. Verktygen användes för att generera enhetstest på basis av

dessa applikationer, som sedan användes för att testa applikationerna. Målet

med experimentet var att fastställa kvaliteten på enhetstesten genererade av

verktygen. Detta mättes genom enhetstesternas förmåga att testa källkoden.

Ponicode lyckades generera lovande resultat på den enda applikationen som

testades innan tillgängligheten till verktyget förnekades. Av 954 funktioner

lyckades enhetstesten genererade av Ponicode täcka 653 stycken, 68.4%.

Under experimentet uppkom tydliga begränsningar i Examins möjlighet att

integreras i existerande programvaruprojekt. Integreringen i funktionella

projekt lyckades endast för 1 av 5 fall. Utöver detta är verktyget begränsat till

55



Niclas Ringbom

kod med en React version av 16.8 eller högre, som grovt förminskar

verktygets genomsnittliga användbarhet.

Generering av enhetstest erbjuder ett användbart verktyg för att minska

utvecklingskostnaderna i ett programvaruprojekt, men angående Javascript

har de tillgängliga generatorerna många begränsningar.

Konfigurationsprocessen för många är krävande och erbjuder obetydlig

information när det gäller felsökningsprocessen. Om testerna som genereras

av verktygen är otillräckliga kommer de att kräva omfattande granskning av

utvecklarna. Även om enhetstestgeneratorerna för Javascript lider av

begränsningar visar de en lovande startpunkt för att kunna generera utförliga

testsviter. Slutsatsen av denna avhandling är att enhetstestgeneratorer för

Javascript inte är tillräckligt avancerade för att kunna ersätta manuell

enhetstestutveckling på en allmän nivå. Så länge som testsviterna som

genereras kräver omfattande granskning och omstrukturering, är manuell

skrivning av testerna det bättre alternativet.

56



Niclas Ringbom

9. References

1. Jest, Jest, accessed 29 October 2023,https://jestjs.io/

2. Ivanković, Marko, et al. "Code coverage at Google." Proceedings of

the 2019 27th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software

Engineering. 2019.

3. Gren, L. and Antinyan, V., 2017, August. On the relation between unit

testing and code quality. In 2017 43rd Euromicro Conference on

Software Engineering and Advanced Applications (SEAA) (pp. 52-56).

IEEE.

4. Sneha, K. and Malle, G.M., 2017, August. Research on software

testing techniques and software automation testing tools. In 2017

international conference on energy, communication, data analytics and

soft computing (ICECDS) (pp. 77-81). IEEE.

5. Myers, G.J., Badgett, T., Thomas, T.M. and Sandler, C., 2004. The art

of software testing (Vol. 2). Chichester: John Wiley & Sons.

6. Tic-tac-react, Github, accessed 29 October 2023,

https://github.com/rfce/tic-tac-react

7. Javascript web docs, Mozilla, accessed 29 October 2023,

https://developer.mozilla.org/en-US/docs/Web/JavaScript

8. Prototype based programming MDN web docs, Mozilla, accessed 29

October 2023,

https://developer.mozilla.org/en-US/docs/Glossary/Prototype-based_pr

ogramming

9. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M. and Yoo, S., 2014.

The oracle problem in software testing: A survey. IEEE transactions on

software engineering, 41(5), pp.507-525.

10.S. Mirshokraie, A. Mesbah and K. Pattabiraman, "JSEFT: Automated

Javascript Unit Test Generation," 2015 IEEE 8th International

57

https://jestjs.io/
https://github.com/rfce/tic-tac-react
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Glossary/Prototype-based_programming
https://developer.mozilla.org/en-US/docs/Glossary/Prototype-based_programming


Niclas Ringbom

Conference on Software Testing, Verification and Validation (ICST),

2015, pp. 1-10, doi: 10.1109/ICST.2015.7102595.

11. Dudekula Mohammad Rafi, Katam Reddy Kiran Moses, K. Petersen

and M. V. Mäntylä, "Benefits and limitations of automated software

testing: Systematic literature review and practitioner survey," 2012 7th

International Workshop on Automation of Software Test (AST), 2012,

pp. 36-42, doi: 10.1109/IWAST.2012.6228988.

12.State of JS 2021, front-end frameworks, State of JS, accessed 29

October 2023,

https://2021.stateofjs.com/en-US/libraries/front-end-frameworks/

13.State of JS 2021, back-end frameworks, State of JS, accessed 29

October 2023,

https://2021.stateofjs.com/en-US/libraries/back-end-frameworks/

14.Jest Getting started, Jest, accessed 29 October 2023,

https://jestjs.io/docs/getting-started

15.State of JS 2021, Testing libraries, State of JS, accessed 29 October

2023, https://2021.stateofjs.com/en-US/libraries/testing

16.React, Create a new app, React, accessed 29 October 2023,

https://reactjs.org/docs/create-a-new-react-app.html

17.Stryker mutator docs, Stryker, accessed 29 October 2023,

https://stryker-mutator.io/docs/

18.Stryker, accessed 29 October 2023, https://stryker-mutator.io/

19.Ponicode, AAA or Table-driven, Internet Archive, accessed 29 October

2023,

https://web.archive.org/web/20221207080828/https://www.ponicode.co

m/shift-left/arrange-act-assert-or-table-driven-testing

20."IEEE/ISO/IEC International Standard - Software and systems

engineering--Software testing--Part 4: Test techniques - Redline," in

ISO/IEC/IEEE 29119-4:2021(E) - Redline , vol., no., pp.1-286, 28 Oct.

2021.

58

https://2021.stateofjs.com/en-US/libraries/front-end-frameworks/
https://2021.stateofjs.com/en-US/libraries/back-end-frameworks/
https://jestjs.io/docs/getting-started
https://2021.stateofjs.com/en-US/libraries/testing
https://reactjs.org/docs/create-a-new-react-app.html
https://stryker-mutator.io/docs/
https://stryker-mutator.io/
https://web.archive.org/web/20221207080828/https://www.ponicode.com/shift-left/arrange-act-assert-or-table-driven-testing
https://web.archive.org/web/20221207080828/https://www.ponicode.com/shift-left/arrange-act-assert-or-table-driven-testing


Niclas Ringbom

21.Stackoverflow Survey 2022, Stackoverflow, accessed 29 October

2023,

https://survey.stackoverflow.co/2022/#most-popular-technologies-lang

uage

22.W3techs client-side usage statistics, W3Techs, accessed 29 October

2023, https://w3techs.com/technologies/details/cp-javascript

23.Ponicode, CircleCI, accessed 29 October 2023,

https://circleci.com/blog/ponicode-and-circleci/

24.Examin, Examin, accessed 29 October 2023, https://www.examin.dev/

25.JSEFT tool, Github, accessed 29 October 2023,

https://github.com/saltlab/JSeft

26.Artemis tool, Github, accessed 29 October 2023,

https://github.com/cs-au-dk/Artemis

27.P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant and D. Song,

"A Symbolic Execution Framework for JavaScript," 2010 IEEE

Symposium on Security and Privacy, 2010, pp. 513-528, doi:

10.1109/SP.2010.38.

28.Shay Artzi, Julian Dolby, Simon Holm Jensen, Anders Møller, and

Frank Tip. 2011. A framework for automated testing of javascript web

applications. In Proceedings of the 33rd International Conference on

Software Engineering (ICSE '11). Association for Computing

Machinery, New York, NY, USA, 571–580.

https://doi.org/10.1145/1985793.1985871

29.Esben Andreasen, Liang Gong, Anders Møller, Michael Pradel, Marija

Selakovic, Koushik Sen, and Cristian-Alexandru Staicu. 2017. A

Survey of Dynamic Analysis and Test Generation for JavaScript. ACM

Comput. Surv. 50, 5, Article 66 (September 2018), 36 pages.

https://doi.org/10.1145/3106739

30.JS Test Gen, Github, accessed 29 October 2023,

https://js-test-gen.github.io/

59

https://survey.stackoverflow.co/2022/#most-popular-technologies-language
https://survey.stackoverflow.co/2022/#most-popular-technologies-language
https://w3techs.com/technologies/details/cp-javascript
https://circleci.com/blog/ponicode-and-circleci/
https://www.examin.dev/
https://github.com/saltlab/JSeft
https://github.com/cs-au-dk/Artemis
https://js-test-gen.github.io/


Niclas Ringbom

31.Google Scholar, Google, accessed 29 October 2023,

https://scholar.google.com/

32. IEEE Xplore, IEEE, accessed 29 October 2023,

https://ieeexplore.ieee.org/Xplore/home.jsp

33.Ponicode VSCode extension supported technologies, Internet Archive,

accessed 29 October 2023,

https://web.archive.org/web/20230201223057/https://docs.ponicode.co

m/docs/vscode_extension/supported_technologies/index/

34.Jetbrains, Jetbrains, accessed 29 October 2023,

https://www.jetbrains.com/

35.Examin Chrome extension, Google, accessed 29 October 2023,

https://chrome.google.com/webstore/detail/examin/ihhopbmcfgkpjklem

fdbhgingabdkcpe

36.Examin Github Repository, Github, accessed 29 October 2023,

https://github.com/oslabs-beta/Examin

37.React Developer Tools, Google, accessed 29 October 2023,

https://chrome.google.com/webstore/detail/react-developer-tools/fmka

dmapgofadopljbjfkapdkoienihi

38.Rhino Interpreter, Github, accessed 29 October 2023,

https://github.com/mozilla/rhino

39.React Magic, Github, accessed 29 October 2023,

https://github.com/Sylvenas/react-magic

40.React Snakke, Github, accessed 29 October 2023,

https://github.com/diogomoretti/react-snakke

41.JavaScript Algorithms, Github, accessed 29 October 2023,

https://github.com/trekhleb/javascript-algorithms

42.JavaScript Snake, Github, accessed 29 October 2023,

https://github.com/patorjk/JavaScript-Snake

43.Angular Start Application, Github, accessed 29 October 2023,

https://github.com/DeborahK/Angular-GettingStarted

60

https://scholar.google.com/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://web.archive.org/web/20230201223057/https://docs.ponicode.com/docs/vscode_extension/supported_technologies/index/
https://web.archive.org/web/20230201223057/https://docs.ponicode.com/docs/vscode_extension/supported_technologies/index/
https://www.jetbrains.com/
https://chrome.google.com/webstore/detail/examin/ihhopbmcfgkpjklemfdbhgingabdkcpe
https://chrome.google.com/webstore/detail/examin/ihhopbmcfgkpjklemfdbhgingabdkcpe
https://github.com/oslabs-beta/Examin
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://github.com/mozilla/rhino
https://github.com/Sylvenas/react-magic
https://github.com/diogomoretti/react-snakke
https://github.com/trekhleb/javascript-algorithms
https://github.com/patorjk/JavaScript-Snake
https://github.com/DeborahK/Angular-GettingStarted


Niclas Ringbom

44.Visual Studio Code, Visual Studio Code, accessed 29 October 2023,

https://code.visualstudio.com/

45.Algorithms Github, Github, accessed 29 October 2023,

https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorit

hms

46.Npm, npm, accessed 29 October 2023, https://www.npmjs.com/

47.Jest CLI, Jest, accessed 29 October 2023, https://jestjs.io/docs/cli

48.PoniCode : My feedback and a mixed overall feeling about the tool,

Sylvian Leroy, accessed 29 October 2023,

https://sylvainleroy.com/2020/07/23/ponicode-my-feedback-and-a-mix

ed-overall-feeling-about-the-tool/

49.Jasmine Documentation, Jasmine, accessed 29 October 2023,

https://jasmine.github.io/

50.Yuan, Zhiqiang, et al. "No More Manual Tests? Evaluating and

Improving ChatGPT for Unit Test Generation." arXiv preprint

arXiv:2305.04207 (2023).

51.Xie, Zhuokui, et al. "ChatUniTest: a ChatGPT-based automated unit

test generation tool." arXiv preprint arXiv:2305.04764 (2023).

52.Codium.ai, accessed 29 October 2023, https://www.codium.ai/

53.ChatGPT, accessed 29 October 2023, https://openai.com/blog/chatgpt

54.G. Petrović, M. Ivanković, G. Fraser and R. Just, "Does Mutation

Testing Improve Testing Practices?," 2021 IEEE/ACM 43rd

International Conference on Software Engineering (ICSE), Madrid, ES,

2021, pp. 910-921, doi: 10.1109/ICSE43902.2021.00087.

61

https://code.visualstudio.com/
https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms
https://github.com/trekhleb/javascript-algorithms/tree/master/src/algorithms
https://www.npmjs.com/
https://jestjs.io/docs/cli
https://sylvainleroy.com/2020/07/23/ponicode-my-feedback-and-a-mixed-overall-feeling-about-the-tool/
https://sylvainleroy.com/2020/07/23/ponicode-my-feedback-and-a-mixed-overall-feeling-about-the-tool/
https://jasmine.github.io/
https://www.codium.ai/
https://openai.com/blog/chatgpt

