The Modernization Process of a Data
Pipeline

Abo Akademi
University

Sebastian Pulkka 42004

Master’s thesis in Computer Engineering
Supervisor: Mats Aspnés

Abo Akademi University

Faculty of Science and Engineering

2023

Abstract

Data plays an integral part in a company’s decision-making. Therefore, decision-
makers must have the right data available at the right time. Data volumes grow
constantly, and new data is continuously needed for analytical purposes. Many
companies use data warehouses to store data in an easy-to-use format for reporting
and analytics. The challenge with data warehousing is displaying data using one
unified structure. The source data is often gathered from many systems that are

structured in various ways.

A process called extract, transform, and load (ETL) or extract, load, and transform
(ELT) is used to load data into the data warehouse. This thesis describes the
modernization process of one such pipeline. The previous solution, which used an
on-premises Teradata platform for computation and SQL stored procedures for the
transformation logic, is replaced by a new solution. The goal of the new solution is
a process that uses modern tools, is scalable, and follows programming best
practises. The cloud-based Databricks platform is used for computation, and dbt is
used as the transformation tool. Lastly, a comparison is made between the new and

old solutions, and their benefits and drawbacks are discussed.

Keywords: Data warehouse, ETL, ELT, dbt, Databricks

Preface

I want to thank my manager for providing me with the opportunity to work on this
project and write this thesis. Additionally, I would like to thank team members who

have helped with the implementation of the project and given feedback on the

thesis.

Sebastian Pulkka
Turku, 1 May 2023

Table of Contents

List Of ADDIeVIatioNnsS ...c...eoviiiieieeeee et s vi
O[] 4o o [¥To1 i To Yo WU PO P R UPPOTOVSRPRRINt 1
1.1 Problem State@ment.........ceo i 1
1.2 GOAl Of the THESIS ..ottt 2

2. Data Warehousing CONCEPLSuviiiiiiiiieiiiieeeeiiiee e eriree e estte e e eere e e e s sabe e e e enbaeeeenntaeeeennrenas 4
2.1 Data War€hOUSING ...ccciecuiieiiiiiieecciieee ettt site e e s sttt e e s sbae e e s sbteeessbaeeessnaeeessseeeessnnes 4
2.1.1 Dimensional MOAEIIINGc.uviiiiiiiiiiciiee e e s 5
2.1.2 The Enterprise Data WarehOUSE........cueeiveiiiieiciiee ettt 10

2.2 Data INTeGIratioN ..ccviiiiiiiiiiiiieeeteeeere e et e e e e e e e e e e e e e e e e eaeaaes 12
2.2 L EXEFACE i 13
2.2.2 TrANSTOMM . ciiiiieiiee ettt ettt ettt s e st e e sab e e sbt e e s st e e sabeeesabeesaseesbeeesabeeenns 15

D2 2 o Y- Yo SRS 17
224 ETL AN ELT oottt st sttt et s b e st st st et be e 18

R 0= g o Yol | W D - (S 19
2.4 Data Warehousing in the CloUd..........occuiiiieiiie e 23
2.4.1 DAta LAKE .eeeueeieiiieeiieeeiee ettt ettt st st e sab e st e snee e sabe e e e 23
2.4.2 Data LAKENOUSE........eiiiiiiiii ettt ettt sttt sttt e s e b e e 26

I o q Iy] o= o] 1V 4 o Yo FO PR 31
R B = ot o o IO UTPPOPT SRR 31
3.2 TransfOrMatioN ..c..eeoeieieeieeee et 32

TR o - [« HO PSSP PPN 34
3.4 Shortcomings of the Current SOlULIONcoovciiiiiiciiece e 34

4. IMPIEMENTATION ..eeiiiiiiee et e e et e e e et e e e e e bt e e e esbteeeeeabeeeeeestaeeesnnns 37
4.1 Data BUIlA TOOI...ccuiiieeeeteetee ettt ettt st sttt be e b e s 38
4.2 DAtabricks SQLc...oooiiiiiiiieieree ettt 43
4.3 EXEraCiON cooeiiiiiiiiitcitcccc s 45
4.4 Methods for Freezing Dataueeveciieiieiiieececiees ettt 45
A.5 TranSfOrMatioNooueeieeieiie ettt sttt et e be e b e sane e 48
4.5.1 Data QUality TeStING....cccc ettt e e e e e e e st ae e e e e e eeaas 52

3 o Y=o [o= USSP 52
Ly ol o T=Te (U] 1 o = PR 53
4.8 Continuous Integration and Continuous Deliverycccccceeeeveeciiiieeeee e, 54
el @ oYU T Y/ L= =Y o o I U 56
5. EValuation Of RESUILS....ccuiiiiieieiiieete ettt e 58
ST 6] o Tol U o] o FO TSP PRSPPI 62

Lo U o Y= AT Lo] TR 62

Svensk SamMMaANTAttNING......occviiiiii e 64
[[a1 =T oY o= USRIt 64
(D 11 =4 Y RPNt 65
IMPIEMENTATION .eeeeiiiieee e e et e e e s b e e s sbae e e s s eareeeesnes 66
Evaluering 0Ch avsSIUtNINGocciiii i e e 67

List of Abbreviations

API
ETL
ELT
dbt
SQL
CI/CD
BCNF
3NF
OLAP
DBMS
ACID
DDL
DAG
DML
CTE

Application programming interface

Extract, transform, and load

Extract, load, and transform

Data build tool

Structured query language

Continuous integration / continuous deployment
Boyce-Codd normal

Third normal form

Online analytical processing

Database management system

Atomicity, consistency, isolation, and durability
Data definition language

Directed acyclic graph

Data manipulation language

Common table expression

Vi

1. Introduction

For a business to be able to make good decisions, data is needed to support the
decisions. The more comprehensive and accurate the data is, the better analysts and
managers can make important decisions. Another essential factor is that the data is
in an easy-to-use format, making it convenient for the end users. This is where data
integration plays a significant role in converting heterogeneous data from multiple
sources into one homogeneous data warehouse. This thesis studies one such real-

world data pipeline.

1.1 Problem Statement

The company studied for this thesis is a large company in the financial sector with
business in many countries. Because of this, there are many source systems that
produce data in varying formats. This data is then loaded into a central data

warehouse to provide one easy-to-use system to aid decision-making.

This thesis describes the process of modernizing one of these data pipelines, and

the benefits and drawbacks of the new solution are compared with the old solution.

Three main steps must be performed so that the data can be used by the data
consumers in a meaningful and efficient manner. First, the data needs to be
extracted from the source. This is done by reading text files, other databases, or
APIs. Once the data has been extracted from the data producers, it has to be
transformed to make it easier to use for analytical purposes. Some common steps
done at this stage are enriching the data by joining it with other sources, casting
data into their correct format, and pivoting the data to achieve the correct granularity
level. Lastly, the data is loaded into target tables in the data warehouse, where it
can be used for analytical purposes. The order of these steps can vary depending on
what tools and architectures are used. One common method is extract, transform,

and load (ETL). Another method is extract, load, and transform (ELT).

The process of extracting, transforming, and loading the data into the data
warehouse is important to be able to have data from all the source systems in a
format that is easy to use for analysts and allows for easy comparisons between
different systems. This becomes especially important in a larger company with

business in multiple countries.

There is also a multitude of different tools that can be used for this process which
all have different benefits and drawbacks [1]. Therefore, choosing the right tool for
the occasion is particularly important. This thesis aims to compare the previous
approach of using SQL stored procedures for the transformation, with newer tools
that allow developers to follow programming best practises. For the transformation
part of the pipeline, dbt-Lab’s data build tool (dbt) is the tool that will be used, and
the benefits and drawbacks will be compared to the previous approach. Another
goal of the thesis is to move the data processing away from the current on-premises
solution, which is under a very heavy load due to increased usage, into the cloud.
Again, the benefits and drawbacks of having a cloud-based platform for data

processing are discussed.

1.2 Goal of the Thesis

As a part of this thesis, one data pipeline will be modernized. This is needed, since
the previous tools that were used lacked many key features that are essential for a
smooth process. Some of the benefits that will, hopefully, be achieved with the new

tools are:

e C(Create a solution that uses modern tools in favour of outdated ones.

e C(reate a more efficient loading process, meaning that data will be
available for analysis at an earlier stage.

¢ Run the data transformations in a cloud environment, allowing for more
scalability compared to the currently overloaded on-premises solution.

e Create a solution that is version controlled in Git, allowing for change
tracking and improved maintainability compared to the previous
solution.

e Incorporate continuous integration (CI)/continuous deployment (CD) to
simplify and speed up the development and deployment process.

e Improve the data quality by introducing automated data testing. This
will help find issues in the source data at an earlier stage and mean that
the consumers of the data warehouse data will be able to trust the

correctness of the data better.

In addition, the current version of the pipeline lacks some core features that will be

added in parallel with the modernization steps:

e Create a “frozen” solution, meaning that the process can be run multiple
times and still produce the same result. This is important, since the current
solution changes when corrections to the data come in. This is not always
desired, as the ability to go back and check what data decisions were made
upon is lost.

e Add two new measures for counting the number of products and objects.

The scope of the work in this thesis is to implement and document the
modernization of a data pipeline, starting by reading data from an existing
normalized data warehouse. Then the data will be transformed into an easy-to-use
denormalized star schema using modern tools. The processing will be moved to a
cloud environment, while still providing the target star schema also on the on-
premises environment for compatibility reasons. The benefits and disadvantages of

the new solution will then be discussed in 5. Evaluation of Results.

2. Data Warehousing Concepts

2.1 Data Warehousing

In general, an organization has two types of database systems [2]. The first is an
operational system, with the goal of keeping record of operational activities, such
as handling customer orders. The other database system used in many organizations
aims to provide an overview of the transactions logged in the operational database.
This type of system is called a data warehouse. It can be defined as a central
repository where information is gathered from multiple source systems, and the data
is integrated using one common model [3]. The primary goal of a data warehouse

is to provide valuable data that can help a company make data-driven decisions.

Especially in larger enterprises, it is common to have many different operational
systems that all create data in different formats and separate locations. For
analytical purposes, it is important to have all the data archived in one central place.
This presents one of the challenges in data warehousing, where the goal is to
combine data from multiple sources and present it using one common architecture
and model. This architecture and model should be optimized for analytical queries.
The queries that are needed for analyses often involve querying a large number of
rows (up to millions or even billions of rows) and then aggregating the data to see
trends and, thereby, evaluate the performance of the different operational activities.
This contrasts with an operational database, where there are many small requests,
often just updating or adding one single row at a time. Another difference between
the two types of databases is that an operational database often stores only the
current information. A data warehouse additionally stores historical data to help see

trends in the data and thereby be able to make more informed decisions.

Since data is loaded to the data warehouse by reading from the operational source
systems, there will always be a delay between when the data is produced in the
source system and when it is available for analysis in the data warehouse. There are
different methods of loading the data to the data warehouse. Daily batch loading is
a common method where new information is loaded to the data warehouse daily

using batch jobs. However, more current data, i.e., data-freshness, has become

increasingly common. This can be accomplished using mini-batches, run multiple

times a day, or with streaming solutions if near real-time updates are required [3].

One of the core metrics of a successful data warehouse solution is that the business
community must accept and use the new solution. The value provided by a data
warehouse comes from the decisions made after analyzing the data in it. Therefore,
if there are few or no users, it will not provide any business value. To ensure that
the data warehouse is used, it is important to create a solution that is both fast and
easy to use, so that business users are eager to use the new data warehouse in favour

of alternative solutions. [2]

2.1.1 Dimensional Modelling

Normalization is an important aspect to consider when designing a database.
Normalization is the concept of splitting the information into schemas in a way that
reduces redundancy, meaning that a completely normalized model should have no
repetition of information. Having a normalized database is important for
consistency, as updates are needed only in one place, and there is less risk of
inconsistencies where some information would be updated in parts of the database
but not in others. However, a highly normalized database comes with the drawback
of complex queries with many joins, as the information is split into many tables to
avoid redundancy. There are multiple levels of normalization defined, which all
have different rules for the required normalization [3]. Two examples of these are

Boyce-Codd normal form (BCNF) and third normal form (3NF).

Dimensional modelling is one commonly used method in data warehousing that can
be used to achieve a data model that is easy for business users to understand and
provides good query performance. [2] Dimensional models are denormalized, and
the goal 1s to optimize read performance. This means that dimensional models have
some data redundancy, decreasing write performance, but fewer joins are needed,
improving the read performance. This is in contrast to BCNF and 3NF modelling,

where the goal is to normalize the database to achieve optimal write performance.

Dimensional data models can be represented in two ways depending on what type
of database system is used. If a relational database system is used, the model is a
star schema. If a multidimensional database management system is used, it is called

an online analytical processing (OLAP) cube.

OLAP cubes have improved query performance compared to star schemas because
of optimizations such as indexing and pre-calculations. This improved performance
comes with the drawback of worse performance when loading the data into the data
warehouse. Therefore [2] recommends using star schemas at least as a starting point
for loading the data. If needed, OLAP cubes could then be populated based on the

star schema.

With relational dimensional modelling (star schemas), there are generally two types

of tables, fact tables, and dimension tables.

Fact tables are used in star schemas for storing the measurements from a business
process, like sales in a grocery store. In this example, the fact table would contain
the price of the sale and potentially a transaction number. Other information like
the product, customer, store, or clerk information will be stored in dimension tables

so that the fact table only contains a foreign key to these tables.

All rows in a fact table should be on the same level of detail, i.e. have the same
grain. This means that one row in the fact table should always correspond to the
same type of event in the real world. For example, if we have a fact table containing
information about sales, one possibility would be to have one row in the fact table
per sold product. It is important that all rows are on this level and that there are no
rows representing multiple products or groups of products. This is important so that

aggregation can be done in a way that avoids double counting.

According to [2], the measures in fact tables should ideally be numeric and additive.
Additive facts are useful since many rows are often retrieved in analytical
applications, and grouping on some dimensional attribute and summing on the
measurements is often useful. An example of an additive measurement is the sales
amount. Account balance or unit price, on the other hand, are not additive, which
means that summation is not possible. In these cases, only averages or counts can
be used. Textual facts are also theoretically possible, but since most textual
information is derived from a list of possible values, it should instead be modelled
in a dimension table to reduce redundancy and consume less space. Therefore,
textual measurements should only be used if the content of the text field is unique.
However, this type of information would be tough to analyse in a meaningful way,

which is why textual measurements are rarely used.

Dimension tables should, according to [2], describe the measurement in the fact
table by containing attributes that give the context of: “who, what, where, when,

how, and why”.

Dimension tables consist of a unique primary key that uniquely identifies one row
in the dimension table and is used for joining the dimension with the fact table. In
addition to the primary key, a dimension contains attributes that describe the
business process. The number of attributes is often high, and large textual fields can
be included. Since the number of rows in a dimension table is small compared to a
fact table, the space needed for dimension tables is still less than what is needed for
the fact table, in most cases. Attributes should be descriptive, and the use of codes

should be avoided to make the model intuitive and easy to use for business users.

These attributes in the dimension tables can then be used for filtering answer sets
and doing groupings. If we have a fact table consisting of product sales, we might
have one dimension for the product and one for the store. These dimensions could
then be used to filter and find the sales of a particular product or sales made in a

particular store or city.

When deciding if a numeric field should be in a fact table or in a dimension table,
one should look at the possible values the field can take. If the field can only take a
discreet number of different values, it should usually be modelled in a dimension,
and if it is a continuous field that can take on a broad range of values, it should most
likely be modelled in a fact table. This can sometimes be ambiguous. For example,
the standard price of a product might seem like it is constant and should therefore
be in a dimension. On the other hand, it can also change quite often over time and

should therefore be modelled in a fact table.

Dimension tables should be denormalized to improve query performance and
simplicity. This means that some information will be duplicated, increasing the
storage need. However, this is necessary to keep the structure simple and the queries
performant. If normalization is still desired, snowflake schemas can be used to

achieve this.

i e

key_product int key_customer int

name varchar
brand varchar

age nt
name varchar

. couniry varchar
size varchar

city varchar
o e m '
o vardh street varchar
category varchar key_product int
key_customer int
key_store int
key_date int
sales_amount decimal
transaction_number int key_date o
m year int

key_store int .
quarter int

country varchar .
month int

city varchar
week_day varchar

ddr varchar
address archa date date

dbdiagram.io

Figure 1 Diagram of dimension and fact tables in a star schema

Figure 1 shows an example of a star schema with four dimensions and one fact
table in the middle. The fact table contains the measurements sales amount and
transaction number, as well as foreign keys used for joining with the four

dimensions.

With snowflake schemas, the dimensions from a star schema are normalized. New
sub-dimensions are created and connected to the normalized dimensions [4]. The
normalization can be done for all the dimension tables in the star schema or only
for a subset of the tables. The dimension tables can also be completely normalized

or only partly normalized.

The advantages of normalization and creating the snowflake structure are that
storage can become more efficient as duplication of large fields can be avoided.
Maintenance may also be easier because of the normalized structure, meaning that

updates are only needed in one place.

Disadvantages are creating a more complex structure which makes usability
difficult, and the performance will also be degraded due to the additional joins
needed with a more normalized structure. Therefore, one should carefully consider

if a snowflake schema is worth it over an easier-to-use star schema.

Key_brand

dim_product
key_product int

key_brand

key_product
key_customer int
key_store int

key_date

dbdiagram.io

Figure 2 Diagram of a snowflake schema where the product dimension has been partly normalized.

Figure 2 shows a “snowflaked” version of the star schema from Figure 1. The
product dimension has been partially normalized by separating the brand
information into a separate sub-dimension. This approach can save some space as
the large brand name and description fields are not duplicated for all the products
of the same brand. In addition, making changes to the brand name or description
fields is simple, and only one row needs to be updated in the subdimension.
However, as the product dimension is likely not very big, the amount of space that
can be saved is small, and the added complexity of the model and the potential
performance impacts mean that one should carefully consider if using the snowflake

structure is strictly necessary.

Referential integrity is one important aspect of the star and snowflake schemas.
This means that every key that exists in the fact table should find a match in their
respective dimension table. On the other hand, keys not present in the fact table
may still exist in dimension tables. Database management systems can often
enforce referential integrity by defining the tables’ foreign and primary key

attributes.

As aresult of how fact tables and dimension tables are structured, joining becomes
simple. Often only a couple of joins are needed together with where clauses and
group by statements to be able to answer questions that are relevant to the business.
This means that the core requirement when designing a data warehouse, ease of use,

can be met using this structure. Figure 3 shows an example of a simple SQL query

using the schema defined in Figure I to determine the monthly total sales in stores

located in Turku during 2022.

SELECT
dim_date.month,
SUM(fact_sales.sales _amount)
FROM
fact_sales
INNER JOIN dim_store ON
fact_sales.key_store = dim_store.key_store
INNER JOIN dim_date ON
fact_sales.key_date = dim_store.key_date
WHERE
dim date.year = 2022 and
dim_store.city = 'Turku'
GROUP BY dim_date.month

Figure 3 Sample SQL statement for querying a star schema.

After the initial model has been designed, there will inevitably be changes required
to this initial model. Therefore, it is important that changes can be made with as
little development effort as possible. With a star schema, it is easy to create
completely new dimensions and connect them to fact tables, add new measures
given that they are of the same grain as the current fact table, or add new attributes
to a dimension. Most importantly, all these changes can be made so that the existing
users will not be affected, and previous queries will still produce the same result.
Take the example in Figure 2 as an example. If a new dimension for the clerk who
made the sale were added, the query would not need to be changed, and the result

would still be the same.

2.1.2 The Enterprise Data Warehouse

Another common architecture for the data warehouse is the enterprise data
warehouse first proposed by Inmon [5]. He advocates for creating one central
repository where all the data from the whole enterprise is stored. The data in the
enterprise data warehouse should be normalized and modelled using traditional
relational modelling techniques meaning that updates are more efficient, and less
storage space is required. The enterprise data warehouse can then be used as a base
for further transformations and aggregations that are done departmentally to create

data marts that meet the specific needs of different departments. This method tries

10

to reduce inconsistencies as the same base is used for all the data marts, while also

emphasizing creating a technically performant solution.

The main difference between Inmon’s approach and Kimball’s star schema [2] is
that Kimball advocates for process-oriented data modelling [5]. With the star
schema, the goal is to have one star schema representing one business process.
Business processes often overlap departments meaning that the departmental
distinction is not made when using Kimball’s approach. Inmon also argues for one
central repository covering the whole organization, but unlike Kimball, he believes
that the modelling should be done in a data-centric way. This means that the
characteristics of the data should be used as a base when creating the schema. As a
result, Kimball’s model has a lower initial cost as the modelling is lighter and easier
for people without a strong IT background to understand. On the other hand,
designing an Inmon-style enterprise data warehouse takes more initial effort, as
creating a relational model covering the whole enterprise is time-consuming.
However, after the initial development has been done, subsequent changes and

expansion require less effort due to the normalized design.

As an alternative to the two methods Kimball [2] presents the option to use the two
approaches together so that the normalized enterprise data warehouse is used as a
base when creating the denormalized fact and dimension tables of the Kimball star
schema. This approach may be good when a normalized enterprise data warehouse
solution already exists but cannot meet the needs of the business users due to the
complexity of the model, making it difficult to understand for non-IT personnel.
However, Kimball argues that because of the overhead this dual approach creates
in both storage and processing, it will be more expensive and time-consuming to
develop. Therefore, the dimensional star schema approach should be used instead

when starting from scratch.

Recently, due to the popularity of cloud-based platforms, one big table modelling
has become an alternative strategy. Tables are completely denormalised with one
big table modelling, meaning all needed data is available in the same table. This
approach can have some performance benefits when working tables in the cloud

[6], as joining can become more expensive due to the need for moving data.

11

However, denormalization increases the storage requirements, but as cloud-based

storage is cheap, it is often acceptable.

2.2 Data Integration

Many businesses have developed multiple separate systems that are used in parallel
to each other. This can be an issue as it makes it difficult to find holistic information
about the whole company. Therefore, data integration is needed to provide a system

that gives the users access to all the data through one single platform.

One of the central issues that need to be tackled when integrating multiple source
systems is that the target system needs to have one common data model. This is
especially difficult since source systems are rarely designed to be integrated, which
means that additional adaptations and transformations are needed so that all the data

can be represented in one common model.
Integration can be done at different levels [7]:

e Manually, meaning that the persons interested in the data will manually
access the different source systems and perform needed integrations by
themselves.

e Using a common user interface, meaning that the data can be accessed
using a common user interface, but the integration and unification are still
to be done by the users.

e Applications can be used for accessing the different source systems and
then creating a unified representation for the user.

e Middleware can be used to provide reusable functionality and reduce
integration work needed on the application level.

e Through uniform data access, the unification of the data is done when the
data is accessed by applications. A unified view is provided covering the
physically distributed data. This has the benefit of many applications being
able to use the same unified view, but as the integration is done at runtime,
it can be resource heavy.

e Using common data storage, meaning that data from the different source
systems is loaded into a new common data storage. To keep the data fresh

new data from the source systems needs to be loaded periodically.

12

For data warehousing, a common data storage solution is used [7]. Therefore, we

will take a closer look at this process.

The process of loading data into a data warehouse has three distinct steps: extracting
the data from the source system, transforming the data, and loading the data to the
target data warehouse. The order of these steps can differ depending on a few
factors discussed in later chapters. Next, we will go through each of the steps

individually.

2.2.1 Extract

The first step of any ETL task is to extract the data from various source systems so
that it can then be processed further and loaded into the data warehouse. According
to Kimball [2], data profiling is the first step to extract data efficiently. Data
profiling entails investigating the source systems to find what information is needed
for the data warehouse. It also plays an important role in getting an understanding
of how much work will be needed to load the data into the data warehouse. Potential
shortcomings and data quality issues in the source should be discovered at this
stage. Finding them at an early stage will help make better estimates of the total
development efforts for all parts of the pipeline. To help with profiling of the source
system, documentation could be used, and therefore good quality source system

documentation can be very valuable.

Two types of extraction techniques are needed when extracting data to the data
warehouse, incremental and initial loads. Initial loads are used the first time data is
extracted. Incremental loads are performed after the initial load has been performed
at an interval depending on the business needs, usually daily or weekly. The benefit
of incremental loads is that only the changed data is extracted, and therefore the
extraction is less computationally heavy compared to an initial load. Some change
capture method needs to be used to find the changed data [4], defines two types of
change capture methods for these incremental batch-based extractions, timestamp-

based extractions, and comparison-based extractions.

Timestamp-based extraction can be used, provided that the source contains
timestamps that show when a record has been updated. If that is the case, these
timestamps can be used to find records that have been updated after the previous

extraction.

13

Comparison-based extraction can be used in cases where timestamps are not
available. This method entails first creating and storing snapshots of the source. A
current snapshot is then compared with the previous snapshot to find the changed
records. This method can be very inefficient for large data volumes. Therefore, it

should only be used when other methods are not feasible.

These two methods have the drawback of potentially missing information about
states of records that have changed multiple times between the extractions. This is
because source systems often keep only the most recent versions of records. If
multiple changes have been made to one record, only the latest state will be
extracted, and the other information is thereby lost. Real-time data extraction can
be used to prevent these issues. Ponniah [4] describes three different methods for
performing real-time extractions, using transaction log files, using database

triggers, and modifying the source application.

The transaction log files of a database system can be examined to find updates,
inserts, and deletes. This method works only for extracting data from database
systems and not from flat files. One added benefit is that no extra strain is put on
the source system as the log file would be maintained by the database management

system regardless of if it is used for extracting data to a data warehouse or not.

Database triggers are stored procedures that can be set to run when a certain action
is performed on the database. These stored procedures can then be used to write the
desired data to a file that can later be used to extract the data. This method is quite
robust but can require more development effort and put more strain on the source
system because running the triggers is additional work that would not be needed if

no data were extracted.

The source application can be modified in a way that can help with the data
extraction by capturing the transactions in a separate file that can then be extracted
into the data warehouse. This is work that the application must do in addition to
updating the operational database, which may mean performance issues in the

source application.

When the needed data has been identified, and a change detection method has been
decided on, it is finally time to extract the data. When extracting, either a

commercial ETL tool or an in-house tool can be used. Both [4] and [2] recommend

14

using a commercial tool as they are better at adapting to changes in source systems

and have good metadata capabilities.

2.2.2 Transform

Data transformation has the main goal of improving the quality of the source data
and making it more user-friendly. Since many source systems are loaded into the
same data warehouse, there are many unification measures needed. Data to the
warehouse can be loaded from legacy mainframe systems and other newer systems,
which can lead to issues with multiple naming standards, different data types,
missing values, or inconsistencies between the systems. Therefore, there is usually
a significant amount of transformation needed to load the data into a common model
that has good data quality. [4] Lists some common tasks that are often performed

during the transformation step of an ETL pipeline.

e Data type conversions may be needed if the column definitions for the
same field are different between systems. In the data warehouse, one
common type should be used, meaning that data might need to be cast to a
different type.

e Decoding of fields is done when the source systems have cryptic codes that
represent some useful information. One example is having 1 and 2 represent
male and female in one system, whereas M and F may be used in another.
These types of fields should be decoded, and more descriptive names like
male and female should be used so the fields are easy to use and understand
for everyone.

e Performing calculations, sometimes analysts want data that is not directly
available from the source but can be calculated based on available data. An
example of this would be the tax-free versus the tax-included price of a
product. The source may only include the tax-free price and the tax rate.
This information could then be used to calculate the price with the tax
included.

e Splitting information, which is represented as one field in the source
system, into multiple smaller ones in the data warehouse. An example would
be the city and area codes that may be represented as one field in the source
system. In the data warehouse, this should be split into two separate fields,

as analysts may be interested in using only one of these fields.

15

e Enriching the data by joining with other sources. Sometimes all the
relevant data cannot be found from the same source. Then it becomes
necessary to join with other sources from either other internal source
systems or even data from external vendors. By doing this, all the
information that is needed for the final tables in the data warehouse can be
gathered.

e Summarization, sometimes, the level of detail of the data in the source is
unnecessarily large, and if it is certain this level of detail will never be
needed, data can be summarized. The drawback with doing this is that if
requirements change and more detailed data is needed at a later stage, more
work is needed to make the changes. Therefore [2] recommends having the
lowest level of detail available, which can then be summarized, as this
method is better at answering future needs without making assumptions
about what the use cases will be.

¢ Deduplication, sources may contain duplicates of a record, mostly because
of mistakes. In the data warehouse, these duplicates should not be included.

Therefore, deduplication should be done at the transformation stage.

According to Ponniah [4], many companies make the mistake of thinking that the
data transformation step is simple. In reality, the transformation is often more
complex than it seems and requires much time and effort. This is because
integrating many source systems, all with different structures and different data

quality challenges, requires a great deal of problem-solving and time.

When deciding what tool to use for the transformation, the options are either
commercial ETL tools or coding manually with SQL stored procedures or other
programming languages. [4] recommends using ETL tools as they can be more
efficient, and less error-prone compared to manual coding. ETL tools also have the
advantage of taking care of the metadata creation, whereas when coding manually,
this must be done by the programmer. However, Ponniah says that even if a
transformation tool is used, one should still be prepared to have to do some parts

manually in cases where the tool is not able to meet the needs of the transformation.

16

2.2.3 Load

Loading the data is the process of writing the data from the source system to the
data warehouse system. Similarly to extraction, either a full initial load, containing
all the data, or an incremental load, containing only the latest changes, can be
performed. Additionally, a full refresh can be done. A full refresh is similar to an
initial load, the difference being that with a full refresh, data already exists in the
target database, which needs to first be erased. When loading the data into the

database, four different methods can be used [4]:

Load, this method always overwrites everything that is currently in the target table
with the data that is being loaded. The load method is mostly used with initial loads

and full refreshes when all data is loaded a once.

Append works similarly to load, with the difference that the table is not wiped clean
before the data is loaded. This means that the incoming data is added to the already
existing data. This may lead to duplicates if an identical record to the one being
loaded already exists in the database. In some cases, this is acceptable. Otherwise,
the rows in the current load that would lead to duplicates can simply be ignored.
This method is commonly used if the initial or full refresh needs to be split up into
smaller loads due to performance considerations. In these cases, the data can usually

be split in a way that duplicates are not an issue.

Constructive merge compares the incoming data to the target data using the
primary key. If the primary keys do not match, the data is loaded similarly to the
append mode. If the keys match, the row in the target is marked as expired, and the
new row from the incoming data is loaded into the target. This method is commonly

used when doing incremental loads, as it preserves the history of changes.

Destructive merge is similar to constructive merge, with the difference that if the
primary keys match, no new rows are inserted into the target. Instead, the matching
row is updated with the latest information from the incoming data. This means that
the previous state of the record is lost. Therefore, this method is mostly used when

correcting erroneous data.

Once tables have been populated with data after the initial load, there are two
options for how to deal with future data loads. One is to perform a full refresh of

the table, completely wiping the table clean and inserting the new data. The other

17

option is to perform an incremental load and update only the rows that have changed
since the last time the table was loaded. A full refresh is easier to implement from
a technical perspective, as no comparison is required. However, with large data
volumes, significant performance improvements can be achieved by doing
incremental loads instead. The more the rows change, the less efficient updating
becomes, whereas the cost of a full refresh stays relatively constant. According to
[4], the cut-off percentage when a full refresh becomes more efficient than an

update is when between 15 to 25% of rows have changed. This is illustrated in

Figure 4.
A -
— - -
UPDATE _ _-~-"~
- -
- - -
= 7 REFRESH
o L5
= I S -
J s
g <
J -
/ 15% to
! 25
)
f

% OF RECORDS CHANGED
Figure 4 Cost of refreshing and updating [4]

2.2.4 ETLand ELT
The order in which the previously described extract, transform, and load steps are
performed can vary depending on architectural and design decisions. There are two

different possible orders extract, transform and load (ETL) and extract, load and

transform (ELT).

ETL is what has traditionally been used when building data warehouse solutions.
With ETL, separate systems are used for transforming the data and storing the data
in the data warehouse. The data from various source systems is first extracted and
transformed by one system. Finally, the transformed data is loaded into the data

warehouse system, where business users can access it.

With ELT [8], on the other hand, the data is first extracted and loaded into the data

warehouse before the transformation is done on the data warehouse system. Some

18

advantages of this sequence are that the raw data from the source systems can be
loaded to the target system faster as no transformation is needed in between. The
raw data can also be made available for more advanced analysis to users across the
organization. With the ETL approach, there are often limits on getting access to the
source systems meaning that only the data warehouse developers can access these
systems. Having the raw data staged in the data warehouse also decouples the
transformation process from the extraction and load process allowing for changes
to the transformation logic without necessarily needing to perform the time-
consuming extraction process again. This is also an advantage in case of errors in
the transformation step that causes the execution to halt. When using ETL, this
would mean that no data is loaded to the data warehouse before the error is fixed.
On the other hand, when using ELT, the source data is loaded to the staging tables,
and the transformation step can then be more easily rerun after the error has been

fixed.

Recently ELT has become a more popular method for doing data integration. The
reasons for this are that ELT is better able to support unstructured and real-time
data, which has become important in many organizations with the rise of cloud-

based data warehouses [8].

2.3 Bitemporal Data

The objects that we store in our data warehouse often change over time. These
changes can also be of value to keep track of, as they allow for seeing trends in how
the data has changed over time. However, the data provided from source systems is
often nontemporal, meaning that it can only provide us with the current state of an
object. Therefore, we need a method for tracking the changes. The solution to this
is to add timestamps to the tables. Unitemporal tables with valid times could be
used for keeping track of past states. However, using these tables, it is still
impossible to make corrections to previous states of the object as we receive more
information or fix errors. Bitemporal tables can achieve this by using both valid and
transaction times. This method also allows us to keep track of how the data looked
previously in the data warehouse and means that no information needs to be

overwritten [9].

19

Nontemporal tables only store the current information, meaning that they only
have one row per object. If the data associated with the object changes, the record
is updated, and the information about the previous states will be lost. This also

means that the primary key consists of only an id column.

Below is an example of how the data in a nontemporal table changes after the data

has been updated.

id | data

1 | x

Table 1 initial data in a nontemporal table
Suppose that initially, the data was ‘x’. Later on 2023-01-01, it changed to ‘y’.
However, no information about when this change happened and how the data

looked before the change is stored in a nontemporal table.

id | data

1|y

Table 2 data in a nontemporal table after the update

Unitemporal tables can have multiple rows as the state of an object changes. To
allow this, a validity period is used. The validity period describes when something
is believed to be true in the real world about the modelled object. Using unitemporal
tables partly solves the issues with nontemporal tables. Changes to an object’s state
are tracked using the validity information, and if there are updates, the valid
timestamps can be used to see how an object has evolved in time. There is still one
major limitation with unitemporal tables. They only work properly if the changes
to the state are updated in the database immediately as they happen. In other words,
the unitemporal tables lack support for making corrections or filling in information

about a previous state of an object.

Suppose we have a situation where on the first of February, we find out that the
state of an object in our database has changed on the first of January. Then there are
two options: either have the new state be valid from the first of January or the first
of February, but both are incorrect. If the first of January is used, we overwrite
information about the previous state that was incorrectly in the database during the

month of January. This is not ideal since decisions may have been made based on

20

this data. Therefore, it is important not to overwrite it. In some cases, it may even
be legally required not to make these types of changes [9]. On the other hand, if the
first of February were used, that would not correctly reflect the situation as it was

in the real world. Bitemporal tables can be used to solve this.

The example below illustrates how a unitemporal table can be used if all updates to

the state can be made as they happen in the real world and no error corrections are

needed:
id | valid from time valid to time | data
1 |2022-01-01 9999-12-31 X

Table 3 Initial data in a unitemporal table

Initially, the object had the data ‘x.” On the first of January, we find out that starting
from the first of January 2023, the data should be ‘y’

id | valid from time valid to time | data
1 |2022-01-01 2023-01-01 X
1 |2023-01-01 9999-12-31 y

Table 4 Data in a unitemporal table after the update

The data is updated, and the table can be used to track changes to the object's state.

Bitemporal tables are similar to unitemporal ones, but instead of having one period
describing when the information about an object is believed to be true in the real
world, an additional transaction period is used. This period describes when the
information was in the database. This means that updates can be made retroactively
without losing any information about how the state was previously recorded in the
database. The primary key for these tables consists of the id, valid from time, valid

to time, transaction from time, and transaction to time.

Suppose we again have a situation where we, on the first of February, find out that
the state has changed on the first of January. Now we will add a new row to the
database with a valid from timestamp starting from the first of January. The

transaction from times for this row would be the first of February. Thus, we can

21

still see the correct data but also see how the data looked at an earlier point in time

when needed.

id | valid from time | valid to time | transaction | transaction to | data
from time time
1 |2022-01-01 9999-12-31 2022-01-01 | 9999-12-31 X

Table 5 Initial data in a bitemporal table

Suppose we initially have the above information in the database. Then on 2023-02-
01, we found out that starting from 2023-01-01, the data should have been ‘y’
instead of ‘x’. Having two separate periods allows us to update the database with
the correct information without overwriting anything. It is also possible to track
both how we now believe the data to have looked during the full history of the

object and how the data looked in the database at a given point in time.

id | valid from time | valid to time | transaction | transaction to | data
from time | time

1 |2022-01-01 9999-12-31 | 2022-01-01 | 2023-01-01 X

1 |2022-01-01 2023-01-01 | 2023-02-01 | 9999-12-31 X

1 |2023-01-01 9999-12-31 | 2023-02-01 | 9999-12-31 y

Table 6 data in a bitemporal table after the update

To query this type of bitemporal table, constraints regarding the two periods should
be added to the query. Figure 5 shows how the current state of objects can be found.
If one instead wanted to see how the objects looked at an earlier point in time, this
can be done by simply changing the timestamp.

SELECT *

FROM example_table

WHERE

current_timestamp() between valid_from_time AND valid_to_time AND
current_timestamp() between transaction_from_time AND transaction_to_time

Figure 5 Example of a query against a bitemporal table

These types of conditions can also be used to create views on top of the bitemporal
table that can be used to create either a nontemporal version (Figure 5) or a
unitemporal version (Figure 6) of the bitemporal table. This is useful as the
nontemporal and unitemporal versions are sufficient for many applications and

more user-friendly to query.

22

SELECT *
FROM example_table
WHERE
current_timestamp() between transaction_from_time AND transaction_to_time

Figure 6 Example query for the unitemporal version of the bitemporal table

2.4 Data Warehousing in the Cloud

Traditional data warehouses worked well for use cases like reporting and business
intelligence. These use cases take structured data and create reports that follow up
on key performance indicators (KPIs), such as profitability or the number of new
customers. As data volumes grew and new use cases, like machine learning and
data science, became more popular, the traditional data warechouse faced
difficulties. Data scientists are often interested in unstructured and semi-structured
data and use methods such as machine learning for their analyses. Data warehouses
have limited support for unstructured and semi-structured data, and SQL is
inefficient for machine learning applications as direct file access is more efficient

for the algorithms used.

Data warehouses use proprietary file systems for the storage of the data. Proprietary
storage locks organizations into one system, and changing the database
management system (DBMS) would be challenging. Additionally, data warehouses
are typically hosted on-premises meaning that scaling is difficult. Organizations
need to pay for the usage at peak hours, while utilizing the system at a low
percentage during other times. At the same time, cloud-based solutions can provide
easy scaling both vertically and horizontally. Additionally, cloud-based solutions
can often provide better guarantees for uptime and good disaster recovery services.
As a result, data lakes and later data lakehouses emerged to solve the issues with

data warehouses.

2.4.1 Data Lake
The core concept of data lakes is to store data in an open-source file format like the
column-oriented Apache Parquet [10] and Apache ORC [11] or the row-oriented

Apache Avro [12]. This allows for decoupling the storage and computation and

23

using cheap and scalable cloud-based storage options. Additionally, the open-
source file format supports fast ingestion and cheap storage of semi-structured and
unstructured data such as text, audio, and video. Direct access to the data in an open
file format can also better support machine learning, compared to accessing data

through SQL, which is inefficient for machine learning use cases.

Apache Parquet has become one of the most used file formats in the cloud [13].
Parquet is an open-source and columnar file format, making it a good fit for storage
in the cloud. Columnar storage allows for superior compression, and open-sourcing
means that many tools support the format. In addition, storing the data in a columnar
manner opens the possibility for clever encoding strategies that would not be

possible with a row-based approach [14]:

¢ Dictionary encoding maps values to integers using a dictionary. This
allows for storing only the integer values and then using the dictionary to
find the true value of the column. The approach is similar to the concept of
normalization from database design. Instead of storing the references in
multiple tables using keys, the file system has a built-in dictionary to handle
the mapping. This approach works best with larger fields, such as text fields
that do not have many unique values.

¢ Run length encoding RLE is an option when the data contains multiple
repeating values. RLE is a common data compression algorithm used in
multiple file formats. Instead of storing the same value multiple times in a
row, it is possible to store the value together with the number of consecutive
occurrences. If the length of concurrent occurrences of the same value is
large, this will reduce the file size. However, if the length of consecutive
values is short, using RLE may increase the size.

e Delta encoding compares the current value with the next value and
calculates a delta. This delta is often small compared to the actual value,
especially when working with date and timestamp data, allowing for more
efficient storage. For example, after calculating the deltas, the sequence 100,
101, 102, 103 would become 1, 1, 1, which can be stored using fewer bits

than the original sequence.

24

Reducing the storage requirements by having efficient compression and encoding
algorithms is not the only advantage of columnar storage. The columnar format can
reduce I/O operations of OLAP queries, which often access a subset of the columns
of a table. All the columns would need to be fetched with row-based storage,

whereas columnar storage allows fetching only the specified columns [15].

However, the SQL query performance on data lakes was often insufficient. Data
quality was also an issue since data lakes operate with a schema on read
architecture, meaning there are low data quality guarantees. Additionally, data lakes
are not able to support ACID transactions. ACID transactions have been a core
concept in relational databases since the 1980s and played an integral part in their
popularity [16]. The acronym stands for atomicity, consistency, isolation, and

durability.

Atomicity guarantees that all changes made to a database are made as an indivisible
operation. In other words, atomicity ensures that when a transaction containing one
or more database operations is made on the database, the whole transaction will
either succeed or fail. If all operations, part of the transaction, succeed, the changes
will be applied to the database. However, if one or more of the operations in the
transaction fail, the whole transaction will fail, and no changes will be applied to

the database.

Consistency ensures that the state of the database can only transition from one
consistent state to another consistent state, meaning that the state of the database
will not change during a transaction. Instead, the state only changes after a

transaction has been completed successfully.

Isolation allows multiple transactions to be executed simultaneously against the

database in a way that their operations do not interfere with each other.

Durability guarantees that after a transaction has succeeded, the resulting state is

permanent and capable of surviving potential system failures.

The lack of support for ACID transactions means that appending tables is the only
possibility in the data lake. This, in turn, means that expensive and unnecessary

rewrites are needed when data is updated [16]. The poor SQL performance, and

25

lack of schema enforcement, meant that an additional data warehouse solution was

often needed on top of the data lake.

@ @ &

Data Machine
Scienos Learning

gg—| |

Dt ‘Warehousss

FReparts

1o="T
b e
i
Fin]
ETL

] w @ 18
-li‘l";"ﬂ1||". |1l+'||.-'|"2l|

' Datalake ' ** !

@1%@@

Structured, Semi-structuned & Unstructured Data

Figure 7 Two-system data lake and data warehouse architecture

A subset of the structured data from the data lake would be further transformed and
loaded into a traditional data warehouse. This two-system architecture described in
Figure 7 is still prevalent today. It allows good query performance for business
intelligence and reporting needs while supporting fast ingestion of semi-structured
and unstructured data into the data lake. However, this architecture has many
drawbacks [10]. Firstly, the cost of operating two different systems can be high, and
there will inevitably be overhead in storage, as the same data will be in both the
data warehouse and the data lake. Secondly, having consistent data between the

data lake and data warehouse is challenging, requiring constant development effort.

2.4.2 Data Lakehouse

A data lakehouse combines the data lake and the data warehouse to benefit from
both. A data lakehouse can be defined as a data management system that takes
advantage of cheap cloud-based storage using an open-source file format and adds
reliability, performance, and management features from the data warehouse by
building a metadata layer on top of the file format [10]. By adding the metadata
layer, the data lakehouse can offer features lacking from the data lake, such as ACID
transactions, data versioning, auditing, and good query performance. The data

lakehouse also adds features lacking from data warehouses, such as support for

26

machine learning through direct file access and support for unstructured and semi-
structured data. Because of this, data lakehouses remove the need for having a
separate data lake and data warehouse. Instead, one system can be used for all the
data needs, see Figure 8. In addition, having only one platform leads to a simplified

architecture meaning a lower operating cost.

& @ 4 @

Oata Machine

HEp i Science Learning

Metadats, Caching and
Indexing Layer

Tt
B ok dg B

Struciured, Zami-stroctured £ nstructured Data

Figure 8 Data lakehouse architecture

At the core, the data lakehouse uses the same open-source file systems as the data
lake. This allows the data lakehouse to utilize cheap and scalable cloud storage
providers such as AWS S3 or Azure ADLS. The improvement over a data lake
comes from adding an additional metadata layer on top of the open-source file

system.

One example of this metadata implementation is Delta Lake. Every time an insert,
delete or update is made to a Delta Lake table, records are written to one or more
files. The Delta Lake transaction log records every change and the files that were
written to during that change. The transaction log can then be used as a single source
of truth specifying which files are part of a table. This solves the issue of failing
jobs that result in partial files. Without a transaction log, it would be impossible to
know if a file should be included in the table or if it is corrupted as the result of a
failed job. In other words, the transaction log can provide a definitive answer to

which files were part of a given table at what time in history [17].

27

The metadata layer provided by software like Delta Lake can then be used to

provide features that were missing from the data lake, such as:

e Support ACID transactions with a metadata file that tells which files are part
of which table version. The metadata file is updated only after the data file
has been successfully written, meaning that if, for some reason, an operation
fails, it will not be included in the transaction log and, therefore, not be a
part of the table.

e Allow access control specification on a table, row, or columnar level [13]
and manage these permissions with user groups. Delta Lake also provides
audit logs to help monitor user actions.

e Logging all changes to the state of the table in the transaction log and not
deleting any data makes it possible to revert to an earlier version of a table.
This is a useful feature as it allows for looking back at how a table looked
at an earlier point in time and rolling back to an earlier table version if

accidental updates or deletions are made.

The open-source nature of the data lakehouse provides multiple benefits that do not

exist when using a proprietary DBMS system, such as [13]:

Sharing files between organizations becomes easier as the open file format means
that almost all the available tools can read them easily. Traditionally, CSV files or
other complicated proprietary formats were used together with file transfer protocol
(FTP) when sharing files. This led to the data consumer having to translate the file
to the needed format. When using an open-source file format like Apache Parquet
in a cloud environment, expensive and unnecessary file copying can be avoided.
Due to the cloud’s good security, privacy, and audit capabilities, many
organizations can access the same data, reducing the need for unnecessary file
transfers. The need for the data consumers to understand and translate the
proprietary file formats is also removed, as there is comprehensive support across

most data tools for formats like Parquet.

Using the open file format also gives users access to data catalogues developed and
open-sourced by companies like Facebook and Netflix. The goal of data catalogues
is to allow easy discovery of already existing data in the organization and give an

overview of how the data is used and transformed. These open-source data

28

catalogues also have good search and visualization tools reducing the times when

different teams create separate solutions for the same problem.

The data lakehouse can also support direct API access for programming languages
like Python and R, which are commonly used for data science and machine learning
applications [13]. This is essential since the way data needs to be accessed in
machine learning applications is not well suited for SQL. Additionally, the ability
to travel back in time via the transaction log gives the ability to rerun models using
the exact same dataset at a later point in time. This is something that otherwise

would require saving many copies of the data.

The use of open software can provide flexibility and avoid vendor lock-in. Multiple
query engines are available for file formats like Delta Lake, and switching between
different ones is simple since they all support the same file format. If, at a later
point, someone builds a new better performing query engine, switching over to
using that one can be done with little effort. Switching between different DBMS,
on the other hand, requires exporting data to a different file format and is, therefore,

much more time-consuming.

For a data lakehouse to be successful, providing good SQL performance is essential.
The open file format causes some limitations in the types of optimizations that can
be done and makes achieving satisfactory performance more challenging. In a
traditional data warehouse, more optimizations could be done using proprietary file
formats. However, the three following techniques can still be used and have shown

good results [10]:

e Frequently used data can be cached to faster storage mediums such as SSDs
or RAM. Cashing is safe as the metadata layer guarantees that the cashed
files are still valid. Additional optimizations, such as decompression, can be
done while data is cached, as the file format limitations do not apply at that
time.

e Auxiliary data files can be used to keep track of statistical information. The
query engine can then use this information to optimize queries. An example
would be keeping track of the minimum and maximum values of a column

in a file. The statistics allow the optimizer to completely skip reading files

29

when a query has a where condition falling outside a file's minimum or
maximum values.

e Data layout, meaning how the records are clustered together, can also
optimize the query performance. In general, records that are often accessed

together should be stored together, allowing for faster retrieval.

Based on the abovementioned techniques, Databricks created a query engine called
Delta Engine. Compared to widely used cloud-based data warehouses, Delta Engine
achieved comparable or better SQL performance at a cheaper price [10]. This shows
that despite the limitations conforming to an open-source file system has on

optimization strategies, satisfactory SQL performance can be reached.

Because the data lakehouse uses the same file format for storing objects as data
lakes, it is easy to convert a data lake to a data lakehouse and receive the added
benefits from the metadata layer. Therefore, researchers believe many organizations
will convert to this architecture in the future, making the data lakehouse architecture

prominent [10].

30

3. Existing Solution

This chapter will describe the target company’s currently existing solution. The
goal of the solution is to provide a monthly overview of all the active information
as it existed on the last day of each month. This information should be “frozen,”
meaning that once a month data has been loaded, that data for that month should

not change.

First, data is read from a normalized enterprise data warehouse, and then data is
transformed using SQL stored procedures. The target schema for the process is a
star schema with one fact table and four dimension tables connected to it. Because
the dimensions are also used together with other fact tables, they are loaded daily
and always reflect the current state of the underlying normalized data warehouse.
The fact table, on the other hand, is loaded monthly on the first day of the month.

See Figure 9 for an overview of the current solution.

Normalized Data
Warehouse

Stored procedure Stored procedure Stored procedure Stored procedure

run daily run daily run daily run daily

¥ L. L. A 4

Dimension 1 Dimension 2 Dimension 3 Dimension 4

Stored procedure

run monthly

¥

Fact table

Figure 9 Overview of the current architecture

3.1 Extraction

The sources for the ETL process are an Inmon-style normalized data warehouse. In

the normalized warehouse, data has already been integrated from various sources

31

and use one common 3NF schema. Due to this, the extraction process is greatly
simplified as the difficult task of reading many different sources using different
methods, such as text files or database connectors, has already been done. All the
data is on the same platform, and the extraction step is simple. The tables in the
normalized data warehouse are all bitemporal, meaning that there is a validity
period describing when something is believed to be true and a transaction period
showing when information was recorded in the database. When creating the
dimension tables, only the most recent representation of the data is used. Therefore,
only the data with a transaction timestamp of ‘9999-12-31" is read. A query similar

to Figure 6 can be used to accomplish this.

The underlying data structure is built from many different source systems that all
produce the data at different times. To always have as fresh data as possible
available in the target schema, an additional filter on the source system is added to
the loading process. This allows loading a source systems data into the target tables
immediately when one source has been loaded into the underlying normalized

schema.

3.2 Transformation

The transformation for the previous solution is done using SQL stored procedures.
Stored procedures are SQL scripts that can be saved on the database and called at a
later time to run a sequence of SQL statements. This allows for running the
transformation directly on the database server without needing additional ETL

tools.

The transformation process for the dimensions reads the data from the normalized
data warehouse and applies different transformations to it. These transformations
include processes like joining enumeration tables to find human-readable
descriptions for codes. Surrogate keys are also created for the dimension tables at
this point so that each unique combination of natural keys receive a unique
surrogate key. Because the dimension tables are unitemporal, validity periods are
used when creating the natural keys in addition to the modelled objects’ unique
identifiers. These keys are created incrementally and have no relation to the

underlying natural keys, as described by Kimball [2]. This is done to make the data

32

warehouse tables more resistant to changes that might happen to the natural keys in

the source data.

The fact table is quite simple and currently has four dimension keys and one
measure. The data is stored on the most atomic level and grouped by each month.
Data that is active in the dimensions at the end of each month is joined with active
data from all the other dimensions and measures monthly. An example of what one
year’s data might look like in the fact table can be found in Table 7. This allows for
easily finding rows that were active during a given month, and monthly trends
become easy to find by grouping by the month. Using this approach means that
there is a significant amount of redundant data since, many times, a given row is
active for a significantly longer time than one month. An example of this is months
2022-01—2022-04, which all have the exact same data and only the month changes.
Another alternative would be to provide validity timestamps to show when a
combination of rows is valid, but that would make querying for monthly trends
harder. This becomes a trade-off, and providing an easy-to-use solution for the end

users outweighs the increased computing and storage costs for the data warehouse.

Month diml_key | dim2_key | dim3_key | dim4_key | measures
2022-01 |1 1 2 1 X
2022-02 |1 1 2 1 X
2022-03 |1 1 2 1 X
2022-04 |1 1 2 1 X
2022-05 |1 1 1 1 y
2022-06 |1 1 1 1 y
2022-07 |1 2 1 1 y
2022-08 |1 2 3 1 y
2022-09 |2 2 3 1 z
2022-09 |2 2 3 1 z
2022-11 |2 2 3 1 z
2022-12 |2 2 3 1 z

Table 7 Example of how the data in the fact table might look like

Due to the high amount of data processed, the chosen algorithms, underlying data
structure, and compute infrastructure need to work well together so that the
computation can be done in an efficient and timely manner. Especially when

33

concerned about the fact table with billions of rows, the dimension tables are

slightly smaller and faster to process.

3.3 Load

Like the extraction process, the loading process for this pipeline is straightforward,
since the same platform is used for extraction, transformation, and loading. Loading
the target dimension tables is done by comparing the new state calculated in the
transformation step with the current state in the target dimension. A destructive
merge is then performed to reduce the number of rows that need to be inserted and

thus speed up the loading time.

The approach for the fact table is slightly different since the data needs to be frozen.
Instead of the destructive merge, the table is appended with the data from the latest
month. Using this approach, no data is ever overwritten, and the table is, in a sense,

frozen.

3.4 Shortcomings of the Current Solution

The current solution has been in production for about one year. During this time, a
few issues have been discovered, mostly related to the tool used for the way the

frozen data is implemented.

Some drawbacks of using stored procedures are that DDL statements, such as create
table statements, cannot be defined in the stored procedure script. Instead, they need
to be done manually, making deploying changes a tedious and error-prone process.
The developer must remember to also update all the tables used by the stored
procedure. Stored procedures also lack modularity leading to code duplication when
similar operations are performed in many different places. An example of this, from
the solution that is studied in this thesis, is the code for creating the surrogate keys
for the four dimensions. This code is identical in all the dimension stored

procedures, with the only difference being the columns that are used as natural keys.

The stored procedure approach also makes developing and testing difficult as
different tables are used depending on if one is developing, testing, or deploying
the change in production. This means that versions of the stored procedure are

needed for the different environments, and it becomes a manual process for the

34

developer to find the correct table names for the different environments as well as

remember to make the changes when the code is run in a different environment.

One requirement for this solution is for the data to be frozen, meaning that after
loading the data into the target tables, it should not change. This was achieved by
loading the fact table once a month with the data for the latest month and leaving
the other, previously loaded months, untouched. However, this solution has several
issues. Firstly, only the fact table is loaded in a way that guarantees no back-dated
changes, the dimensions are still loaded daily, and if back-dated changes happen,
they are reflected in the dimensions. This means that if a correction like removing
or adding a record is made in the data source, it is also reflected in the dimension
tables but not in the fact table. As a result, the fact table and dimension become
unsynchronized and referential integrity cannot be guaranteed. Secondly, the time
when the monthly run of the fact table is executed affects the result, meaning that
if there is a delay in the execution of the fact table stored procedure, the data will
not be correct as it reflects the data how it looked at the moment of execution and
not how it looked at the last second of the month as intended. Lastly, making
changes to the fact table, like adding a measure, at a later point in time becomes
difficult or impossible. A full refresh of the fact table would be needed to
accomplish this, but as discussed, a full refresh would mean that backdated
corrections would now be included in the table, and therefore the state of how the

table looked historically is lost.

Another issue with the current architecture is vendor lock-in due to the fact that the
transformation is run on an on-premises Teradata data warehouse. Since there are
some differences between SQL dialects, the process of changing the DBMS system
is non-trivial. Changing to a new DBMS would require rewriting the code in a way
that is compatible with the new system and, most importantly, storing the data in a
new location, since the storage and compute are coupled in the current situation.
Lately, this has become a larger problem as the capacity of the current on-premises
solution has become insufficient due to growing usage. This, in turn, slows down
development because testing takes a long time due to the high load slowing down
data processing. Long testing times mean that the time to validate the code and find

bugs grows larger, and therefore the overall development speed is impaired.

35

Therefore, the new solution will run in a cloud environment that uses an open-

source file format for data storage.

36

4. Implementation

An improved solution was needed to solve the issues discussed in the previous
chapter. This solution was built using dbt, a modern tool for the transformation part
of ELT pipelines promoting software development best practises, such as
documentation, testing, code reusability, and code portability. Additionally, the
new solution is run in a scalable cloud-based environment using Microsoft Azure

and Databricks to alleviate the scalability and performance issues.

The development of the new solution was done in two steps. First, the old stored
procedures were converted to dbt code, the new measures were added, and the
issues with the frozen data were solved. This solution was still run and tested using
the on-premises Teradata platform. Secondly, the data and the dbt code were
migrated and executed using the cloud-based Databricks platform to alleviate the

scalability issues.

Figure 10 shows an overview of the final architecture. First, the source data is
replicated to the cloud. Once the data needed for the transformation process is
available in the cloud, the transformation is done using Databricks and dbt. Lastly,
the transformed data is replicated back to the on-premises platform, where different
data consumers can access and use the data according to their needs. The replication
between on-premises and cloud is needed, as providing data only in the cloud would
make the new solution difficult to use together with other data that is currently only

available on the on-premises platform.

37

Databricks cloud

Replicated Transformed
source data data

Teradata on-premise

Replicated
Source data transformed
data

Figure 10 Overview of the relation between on-premises and cloud in the ETL process.

In this chapter, the solution will be described in more detail, starting with describing

the tools used and then discussing the ETL process of the new solution.

4.1 Data Build Tool

Data build tool (dbt) is a tool for the transformation part of ELT or ETL, maintained
by dbt labs [18]. Dbt simplifies the transformation process by allowing developers
to write the business logic using only SQL select statements. Adapters that are
available for most of the common DBMS take care of the tedious DDL [19].
Additionally, Jinja templating can be used [20] to enhance the SQL code. Before
running the code on the database, dbt will compile the Jinja and use the adapters to
create the needed DDL statements. The compiled code is then run on the DBMS
system, meaning that dbt does not require any additional platform or moving of

data.

Dbt Labs offers two separate products: dbt core and dbt cloud. Dbt core is an open-
source version that can be run through the command line. All essential features of
dbt are available in this version. Dbt cloud is a paid version that provides additional

features such as a web-based Ul with an integrated development environment,

38

version control, and job orchestration possibilities. The project discussed in this

thesis uses the free dbt core version.

{{ config(
materialized="table",

schema="marketing"

) 1}

with customers as (

select *
from {{ ref('stg _customers') }}

)
orders as (

select *
from {{ ref('stg_orders') }}

)
final as (

select *
from
customers
left join orders on
customers.customer_id = orders.customer_id

)

select *
from final

Figure 11 Example of a dbt model before it is compiled

Developers can write dbt code by defining model and configuration files. Figure
11 shows an example of what a model file in dbt might look like. A model file
contains an SQL select statement and an optional config block. The config block
defines information about the model, such as materialization strategy, schema, or
pre- and post-hooks. Alternatively, the configuration information can be defined in
YAML [21] files. Materialization strategy determines if the compiled SQL code
should create a view or table in the database [22]. The schema variable defines in
which schema the model should be materialized. The use of pre- and post-hooks
allows users to define SQL code that should run before or after the SQL for the
model. Some examples where pre- and post-hooks may be helpful are collecting

statistics or logging metadata about model runs.

The SQL select statement written in the model is where all the business logic is

located and is the basis for creating the final tables or views in the database. In

39

addition to writing plain SQL, the use of Jinja templating [23] means that features
such as if-statements, for-loops, and macros are available for developers to use.
Figure 12 shows the final SQL statement that dbt would execute against the

database after the model from Figure 11 was compiled and run.

create table analytics.customers as (
with customers as (

select *
from analytics.stg_customers

)s

orders as (

select *
from analytics.stg orders

)s
final as (

select *
from
customers
left join orders on
customers.customer_id = orders.customer_id

)

select *
from final

Figure 12 Example of the SQL code produced after the model has been compiled

The new features enabled by using dbt mean that many of the issues with writing

plain SQL and running it through stored procedures can be solved.

Having adapters that automate the DDL means that the developer only needs to
write SQL select statements. The tables or views are created automatically using
“create table as” or “create view as” syntax. This means that manually updating the
table definitions after making changes, such as adding a new column, is no longer

needed. Thus, development and deployment become easier and less error-prone.

Using Jinja templating allows for writing code that follows software development
best practices, such as using for loops, variables, and, most importantly, macros.
Macros allow for reusing common code across models by defining the code as a

macro and then calling it in multiple models. This promotes the software

40

development best practice of “don’t repeat yourself” (DRY), meaning that the code
is reusable and the same piece of code is not repeated multiple times. Achieving

DRY code using SQL together with stored procedures has proven difficult.

Another feature available in dbt is the ref-function. The ref-function is an added
abstraction that allows users to reference dbt models directly by their name instead
of referencing database and table names. This allows for dbt to track dependencies
between the models across the dbt project. The added abstraction also makes it
possible to easily materialize the tables in different schemas or with different table
names depending on whether the table is materialized in a development, test, or
production environment. This makes development, testing, and production
deployments significantly easier, as the developer does not need to remember to
update table names when switching between the different environments manually.
Additionally, there is built-in visualization of the resulting directed acyclic graph
DAG, making it easy for developers to understand how the models in a project

depend on each other. Figure 13 shows an example of one such graph.

stg_customers

customers

stg_orders

Figure 13 Example of dbt DAG

To ensure the quality of the data in the models, dbt makes it possible to define tests
[24]. Tests can be defined on the column or model level in a model-specific YAML
[21] file. Dbt comes with basic tests that can be used to validate the results of
models. Some examples of tests are not null tests, uniqueness tests to check that a
column or combination of columns is unique in a model, and referential integrity
tests. In addition to these basic tests that come predefined, users are also able to
define their own more specific or complex tests using SQL. Tests for a model can

then be run using the command line at any time to check the data quality.

Dbt also offers easy-to-use documentation features, which allow documenting
models and columns using markdown syntax. The documentation is defined in the

same YAML files as where tests are defined. This documentation can then be

41

visualized in an intuitive web-based Ul together with the DAG, and source code for
the models. This Ul is also available when using the core version of dbt. Having the
documentation interwoven with the models can potentially make it easier for new
developers to gain an understanding of the code in a faster manner compared to

having the documentation in a separate system.

Because all the code needed for creating models is available in the dbt project and
the adapters take care of creating the DDL statements, deployments become simple.
All that is needed is to run a dbt command that defines which models should be run
and what the target environment is. Dbt will then automatically detect the order in
which the selected models should be run based on the DAG created by using the ref
functions and run the compiled models against the DBMS. When comparing this to
stored procedures, dbt is faster, and the chance for errors is significantly lower.
Developers no longer need to manually create tables or change the database and
table names in the code to match the desired environment. All the code needed to
run dbt is available in the dbt project and can easily be integrated with Git. This
makes it possible to automate deployments. For example, new and changed models
can automatically be run when they are merged to the main branch using CI/CD
pipelines. This process is more closely described in chapter 4.8 Continuous

Integration and Continuous Delivery

For dbt to be a worthwhile investment, conversion from legacy SQL scripts to dbt
should be easy and efficient. In many cases, the conversion from SQL stored
procedures to dbt is simple as the SQL code that already exists can be used as a
base. However, while switching to dbt, it is also recommended to make the

following changes to the code so that it becomes more modular and reusable [25].

e Switch to using common table expressions CTE syntax when writing the
SQL queries in favour of using subqueries that can become difficult to
debug. CTEs can be read in a top-down manner where the blocks below
reference the blocks above. This often becomes easier for humans to read
compared to subqueries that build on each other starting from the middle of
the code.

e The table references need to be updated to use the ref function. This is

needed for dbt to resolve dependencies when running models and create the

42

DAG. Additionally, this makes deployments more straightforward and
allows dependency tracking.

e Restructuring the code to smaller logical models is beneficial, as it promotes
reusability between different solutions that may partly use the same data.

e Data manipulation language DML statements need to be rewritten so that
only select statements are used. This is needed, since dbt only allows select
statements in the models. Luckily, most update or delete statements can be
rewritten using joins and filters.

e Avoiding dialect-specific SQL functions is recommended to make
switching between different underlying DBMS systems easier. This allows
for an easier time if the platform on which the dbt models are run is changed

in the future.

If these steps are followed, the result should be code that is easy to run on any
DBMS and is written in a modular way so that parts can be reused when building

new models.

4.2 Databricks SQL

Databricks [26] is a data lakehouse platform that provides a unified interface for
business intelligence and machine learning. Databricks can be used with many of
the most common cloud providers, such as Microsoft Azure, Amazon Web
Services, and Google Cloud [27]. In this thesis, we will focus on the features
provided with the Microsoft Azure version of Databricks, as Azure is the cloud
provider used by the target company. When using Databricks, Microsoft Azure
provides the cloud resources, but Databricks automates the deployment of these
resources [28]. This approach makes it easier for end users to manage cloud

resources.

Most of the services provided by Databricks are based on open-source projects, for
which Databricks has created improved versions. One of the provided services is
Databricks SQL. Databricks SQL is an enterprise data warehouse built on top of
the Databricks Lakehouse platform. The main feature that Databricks SQL provides
is an optimized, spark-based computing platform, provided in the cloud, called SQL

warehouse.

43

The Databricks SQL warehouse provides two different methods to interact with it:
a web-based interface and an API. The web-based interface allows developers and
analysts to create and execute SQL queries against the Databricks warehouse and
see or even visualize results. The interface also allows users to visualize query
profiles that can help developers identify bottlenecks and improve query
performance [29]. The query profile can be used to split the query into subtasks and
see metrics such as time spent, memory used, and rows affected for each of these
subtasks. This, in turn, makes it easy for developers to identify which part of the
query is the problematic one, such as an unnecessary full table scan or a poorly

constructed join and make changes accordingly.

Databricks also offers Unity Catalog, a data governance solution aimed at the data
lakehouse [30]. The Unity Catalog is a central platform for managing access to all
data available in the whole Databricks environment, which may include multiple
workspaces for different applications such as data warehousing or machine
learning. Standard ANSI SQL syntax can be used to manage access to the Unity
Catalog. This is beneficial as many administrators are familiar with the syntax from
other DBMS systems. The Unity Catalog has a three-level naming hierarchy instead
of the two-level hierarchy commonly found in other DBMS systems to allow for a
clearer separation of data assets. Instead of the traditional database.table, Unity
Catalog uses catalogue.schema.table for defining and accessing tables. This allows
databases, or schemas as they are referred to in Databricks, to be divided into
separate catalogues, for example, giving each team or unit their own catalogue. The
benefit of this separation is a clearer structure when many different users and teams

use the same Unity Catalog.

Since Databricks is cloud-based, there are many options for scalability when
choosing the size of SQL warehouse clusters. This means that the size of the SQL
warehouse can be chosen so that it fits the needs of the users. Additionally,
Databricks offers autoscaling features that allow the number of warehouse clusters
to increase and decrease dynamically depending on the load [31]. These features
mean that fewer computing resources will go to waste when compared to an on-
premises solution that has a constant amount of computing power allocated to it and

is not capable of adapting to short-term changes in the load.

44

4.3 Extraction

Similarly to the previous solution, the bitemporal and normalized data warehouse
is used as a source for the extraction part of the ETL process, making it relatively
simple. However, as the final solution will move the processing to the cloud, the
source data also needs to be moved to the cloud before the processing can be done

there. This adds complexity to the extraction process.

Moving large amounts of data over the internet can be time-consuming and
expensive. A change detection system can be used when extracting the data so that
only the changed rows are moved to the cloud environment to reduce the time and
cost of the extraction process. Finding the changed rows can be done using the
transaction timestamps of the bitemporal tables in the normalized data warehouse
or by using database triggers. There are many different tools available that can be
used to move data between different systems. Azure Data Factory ADF is an
example of such a tool [32]. At the target company, the whole process of replicating
the data between the on-premises Teradata system and Databricks is done using an
in-house tool that is based on ADF. Alternatively, other commercial change data
capture (CDC) tools could be used to achieve the same result as the current in-house
tool. Having a CDC tool means that developers do not need to worry about data
replication to the cloud and can use the tables in the cloud the same way as they

would on the on-premises platform.

4.4 Methods for Freezing Data
One of the improvements needed in the new solution was creating a method for

freezing the data. To accomplish a frozen solution that can be rerun at any time and
still produce the same result every time, it is not enough to just read the currently
active rows, as was done in the previous solution. Instead, we need to look at both
the valid and transaction times. The intersection of these two periods is the data as
it was recorded in the database historically. Studying all the data for one entity, the
most recent representation of the data can be found when selecting rows with a
transaction to timestamp equal to 9999-12-31. However, those rows also include
corrections made to the data after it was valid, and new corrections may be made in
the future. This means that the data during one validity period may change, and as
aresult, tables built using this data as a starting point would receive different values

depending on when they were loaded.

45

To solve this issue, we can take the intersection of the validity and transaction
period, which represents the data as it was recorded in the database when it was
valid. The transaction period is never retroactively updated, and thus loading tables
with this intersect method means that the result will be the same no matter when the

load is executed.

Table 8 and Table 9 show an example of this. In this example, the data was
retroactively corrected on 2023-01-01. As we can see, when looking at the result of
the intersect operation, this change is not present in the resulting frozen data.
Additionally, new changes to the current validity period that may be applied in the
future would not intersect with the current validity periods. Thus, these changes
would not be included. Lastly, it is worth noting that because the row with the
validity period from 2021-01-01 to 2022-01-01 was inserted into the database late
on 2021-02-01, this row was not recorded in the database during the period 2021-
01-01 - 2021-02-01 and thus the valid from timestamp becomes 2021-02-01.

id | valid from time | valid to time | transaction | transaction to | data
from time | time

1 |2021-01-01 2022-01-01 | 2021-02-01 | 2023-01-01 X

1 |2022-01-01 2023-01-01 | 2022-01-01 | 2023-01-01 X

1 |2021-01-01 2022-01-01 | 2023-01-01 | 9999-12-31 y

1 |2022-01-01 2023-01-01 | 2023-01-01 | 9999-12-31 y

Table 8 Example data for one entity in the bitemporal data warehouse

id | valid from time valid to time data
1]2021-02-01 2022-01-01 X
1 12022-01-01 2023-01-01 X

Table 9 Example of the intersection between validity and transaction periods.

In practise, this approach was implemented by creating intermediate dbt models
based on the tables from the normalized data warehouse. These models have the
same data as their underlying bitemporal tables but are unitemporal with an
additional timeline identifier. To be able to compare the frozen and the current
versions, three different timeline identifiers are used. The first represents the latest
representation of the data and can be found by filtering on transaction to timestamps

equal to 9999-12-31. This is the same approach that was used in the original

46

implementation. The second timeline is the frozen timeline, where the intersection
of the validity and transaction periods are done. Finally, the third, frozen-adjusted
timeline is similar to the frozen one but allows including bugfixes in the frozen

history.

In many cases, some crucial bugs in the loading process of the underlying data
warehouse are found and fixed. When these bugs are fixed, many rows will receive
new transaction times starting from the time of the fix. If the frozen timeline is used,
these bugfixes will not be included, as the new transaction periods do not intersect
with the validity periods. However, some bugfixes are important and should be
reflected even in the frozen history for the data to be usable. This is the reason
behind including the third timeline in the intermediate tables. To achieve this,
entities that should be fixed are identified and included in a dbt seed file. When
creating the intermediate tables, an entity's transaction timestamps are checked, and
known bugfixes are identified by joining the dbt seed file. These entities are then
further processed by moving the transaction from timestamp backwards. Previous
transactions, valid before the bugfix, are discarded. Lastly, the intersection of the
validity periods and the newly updated transaction period are calculated just like
with the frozen timeline. This results in a representation of the data as it was
recorded in the database at the time of the bugfix. The data will also remain
consistent over multiple loadings. However, entities that are fixed in this manner

lose the history before the bugfix, a drawback that is necessary to ensure good data

quality.
Timestamp of bugfix Description
2023-01-01 Fix bug in the loading process
2023-03-01 Fix another bug in the loading process

Table 10 Example of a seed file including bugfix timestamps.

Table 10 shows an example of a seed file used to record bugfixes. The seed file is
just a CSV file where the timestamps of bugfixes that should be included are
written. Then, looking at Table 11, we see the next step of creating the frozen-
adjusted timeline. In this example, since the entity has a transaction timestamp
equal to the bugfix timestamp, the frozen-adjusted timeline is moved back to low

date, and all transactions valid before the bugfix are discarded.

47

id | valid from time | valid to time | transaction | transaction to | data
from time | time

1 |2021-01-01 2022-01-01 1900-01-01 | 9999-12-31 X

1 |2022-01-01 2023-01-01 1900-01-01 | 9999-12-31 X

Table 11 Example of the frozen-adjusted timeline after rows active before the bugfix have been removed
and the transaction from timestamp updated

As we can see from Table 12, the resulting data is what was recorded in the database
at the time of the bugfix (2023-01-01). If late changes came into the table after the
bugfix, those would not be present in the final data after the intersection, meaning

this timeline is idempotent.

id | valid from time valid to time data
1 12021-01-01 2022-01-01 X
1 |2022-01-01 2023-01-01 X

Table 12 example of the frozen-adjusted timeline after the intersection

Table 13 shows an example of all the different timelines assuming that the starting

point was the data from 7able § and that bugfixes are recorded in Table 10.

id | valid from time valid to time data timeline id
1 |2021-01-01 2022-01-01 y 1
1 |2022-01-01 2023-01-01 y 1
1 |2021-02-01 2022-01-01 X 2
1 |2022-01-01 2023-01-01 X 2
1 |2021-01-01 2022-01-01 X 3
1 |2022-01-01 2023-01-01 X 3

Table 13 Example of the three different timelines for frozen data
Having intermediate models containing the three timelines makes the processing in
the transformation step significantly easier. All needed data is in an easy-to-use

format, and the intersection and corrections to the timelines are already done.

4.5 Transformation

For the transformation part of the ETL process, dbt is used to create models that are
compiled and executed against the database. As the data replication process to the
cloud is quite time-consuming, this project was done in two steps. First, the dbt

code was executed and the transformation logic was tested on an on-premises

48

platform. Later when the code was working, and the logic had been tested, the
processing was moved to the cloud, and a Databricks SQL warehouse was used for

the transformation. The cloud migration is more closely described in section
4.9 Cloud Migration.

The existing stored procedures already had most of the business logic for the
transformations implemented and provided a good base for the conversion to dbt.
The process of creating the dbt code for the dimensions and the fact table closely
followed the steps outlined in chapter 4./ Data Build Tool. The steps that were done

to convert the SQL stored procedures to dbt modes were:

e Converting the logic in the stored procedures to CTEs that can be used in
dbt models. This means that insert, update, and delete statements need to be
rewritten. Insert statements could be rewritten using select and union
statements. Update statements could be rewritten using joins and case
statements.

e The long stored procedure scripts for dimensions were also split into smaller
parts by creating one dbt model that does most of the transformation and a
separate one for creating and storing the surrogate keys.

e Instead of directly referencing database and table names, the dbt ref and
source functions were used. Using the ref function to reference other dbt
models and the source function to reference source tables from the database
allows for generating a DAG that can be visualized for developers and used
by dbt to run models in the correct order.

e Implementing the frozen data. After the intermediate frozen tables discussed
in the previous chapter were done, this step is rather simple. All that is
needed is to add the timeline id column to all joins in the dbt models and
update the ref function to point to the newly created intermediate frozen
tables instead of the bitemporal sources that were used previously.

¢ Adding two new measures for counting the number of objects and products
to the fact table. This was done by creating common product and object
definitions for all the different source systems and using them to be able to

provide new columns for object and product count.

49

e Using hash keys instead of incremental keys for the surrogate keys. This
change was done to ensure that the same natural keys always map to the
same surrogate key. The creation of the hash keys is done using a common

macro used by all dimensions.

For the materialization of the intermediate frozen tables and the target tables, an
incremental materialization strategy is used [33]. Incremental materialization is an
additional materialization strategy provided by dbt in addition to view and table
materializations. This strategy is useful in situations when using a view means that
the performance of downstream models would be lacking or using a table
materialization becomes inefficient as the number of rows grow large. In these
cases, using the incremental materialization strategy makes it possible to define
filters so that only a subset of the data is read. The subset of data is usually the new
rows that have been loaded into the upstream tables since the latest load. A unique
key is also defined. Dbt will then do a destructive merge between the incremental
table and the subset of data calculated using the unique key. This approach greatly
reduces the number of rows that need to be processed on daily loads, as the number

of changes from the source system is only a fraction of the total data volume.

50

Bitemporal source Bitemporal source Bitemporal source
table 1 table 2 table n
v v v
Intermediate frozen Intermediate frozen Intermediate frozen
table 1 table 2 table n

v

Dimension macro

h 4 v v A 4 A 4

intermediate intermediate intermediate intermediate intermediate
dimension table 1 dimension table 2 dimension table 3 dimension table 4 dimension table n

v h A ¥ A J A J

Final dimension table

Figure 14 Description of the loading process for one dimension

As with the previous solution, different source systems produce data at different
times. Therefore, the target tables need to be loaded at different times. One option
for this would be to use variables defined on the command line when running dbt
models [34] together with incrementally materialized models. However, dbt needs
to do a complete reparsing of the whole project if variables are used, which is a
slow process. This, in turn, makes the running of multiple source systems at
different times slightly harder. Instead of using a variable, one intermediate dbt
model is created per source system. To reduce code duplication, all these models
use the same macro that takes as an input argument the source system for the model.
This model can then be run at any time without needing to use command line
variables. Finally, all the source system-specific intermediate tables are combined
into one final table using a dbt model that takes the union of all source system-

specific intermediate models.

An overview of the whole process, starting from the source to the target table, can

be seen in Figure 14. This figure shows the process for one dimension, but the

51

process is very similar for the fact tables as well, the only difference being that the

fact table uses the dimension tables as a source in addition to the bitemporal tables.

4.5.1 Data Quality Testing

To guarantee the quality of the data, testing the data is important. Errors may occur
at many stages during the ETL process, starting from the source data all the way
until the final tables are loaded. The previous solution was severely lacking in tests.
Testing was only performed manually by business users and developers.
Additionally, table definitions could be used to enforce some requirements like not

null fields and data types.

Using the testing capabilities of dbt, several tests were incorporated into the models
starting from the source data, intermediate models, and finally, testing the target
tables. Most of the tests that are currently used are basic ones that are included in
dbt. Some examples are testing for not null values, which is needed since not null
columns cannot be defined in the table definitions when using dbt due to the tables
being created with the “create table as” syntax. Referential integrity tests are also
done to ensure that all keys found in the fact table also find a match in the connected
dimensions. Accepted values are used to check that fields, where only a certain
number of distinct values are allowed, do not contain any unexpected values.
Uniqueness tests are used to check that tables do not contain any duplicates. The
overlapping validity test is an example of a self-defined test that is used to check

that no two rows for the same entity are valid at the same time.

These tests can be run during development to ensure that new changes do not cause
any unintended side effects. Additionally, tests are run automatically when
deployments are made, as well as during daily runs, so that potential data quality

issues are found and can be remedied as soon as possible.

4.6 Loading

The process of loading the transformed data into the target tables has not changed
much from the old solution to the new one. The processed data volumes for the
solution are very high. Therefore, it is necessary to have some form of a change

detection method.

When loading data for the first time or after making changes to the code, a full
refresh is done. On consecutive runs, incremental loads are done instead. The

52

incremental loads of the dimensions are done by reading all the data from the
intermediate frozen tables. This data is then transformed and loaded into the source
system-specific intermediate tables. However, when loading the final dimension
table, a change detection macro is used to compare the rows in the intermediate
table with the rows that are present in the final dimension table and only load the
rows that are new or have changed. This reduces the number of inserts needed and
thus speeds up the processing. For the fact table, the incremental logic is simple.
The data is frozen and reported monthly, meaning that there can never be retroactive
changes to a month after it has been loaded. This allows just loading the latest month

when doing an incremental load.

Once the transformation is done, and the data is available in the cloud environment,
the data still needs to be brought back to the on-premises data warehouse. This step
is needed for the time being due to many users and solutions needing to use
additional data that is only available in the on-premises solution. Having all the data
available in the same place makes using it significantly more convenient. Therefore,
it is not feasible to only provide the data in the cloud before all other data has been
migrated to the cloud. Similarly to the replication from on-premises to the cloud,
moving the data from the cloud to on-premises is handled by an ADF-based in-

house tool, meaning that it is not something developers need to worry about.

4.7 Scheduling

To automatically run and monitor jobs, a scheduling tool is needed. This becomes
especially important once the size of a project grows and the number of
dependencies on other jobs increases. For this implementation, BMC’s Control-M
[35] tool is used, as it is the tool that all other jobs at the target company are

orchestrated with.

Using dbt has helped simplify the scheduling process. This is because dbt can use
the DAG to run the models in the correct order and do parallelization. This, in turn,
means that fewer jobs need to be configured to run on the orchestration tool. For
this implementation, it is enough to run one simple command: dbt run -s
+fact table. This plus sign in the command means that all models upstream from
the fact table will be run, meaning that the dimensions and other intermediate

models are run first and, lastly, the fact table. In the previous solution, all the stored

53

procedures for updating dimensions and fact tables needed to be configured
separately. This meant that finding the optimal configuration for the best

parallelization was difficult.

The old solution was very dependent on the time at which the transformation was
run due to the lacking implementation for freezing the data. This is because the data
that was used was the data that was currently active in the database, which would
change more and more the further from the reporting time the procedures were run.
Meaning that delays would cause inconsistencies between reporting months,
making the data unreliable. As the new solution has an improved implementation
for the frozen data, the solution can be run at any time after the month has changed,
and the result is the same, guaranteeing reliable data. Currently, the process for
updating the data for this solution is configured to run after midnight on the first
day of each month so that we can strive to have the data available as early as

possible.

4.8 Continuous Integration and Continuous Delivery

Continuous integration and continuous delivery CI/CD are used to automate the
process of integrating and deploying software [36]. Continuous integration CI is the
process of building new changes and testing them using automated tests. This
process is important when multiple developers are working on the same software
to guarantee that the new changes do not cause issues with other changes. If
problems are discovered during the continuous integration stage, it is easy for the
developer to fix them as they receive feedback at an early stage. If no errors are
discovered, the process can continue to the next stage, which is continuous delivery
and continuous deployment. Continuous delivery is the process of automatically
merging the changes from the continuous integration into a repository which should
always be ready for deployment. If just continuous delivery is used, the deployment
process is still done manually. Continuous deployment is used to automate this step

as well.

54

CONTINUOUS CONTINUOUS CONTINUOUS
INTEGRATION DELIVERY DEPLOYMENT

AUTOMATICALLY AUTOMATICALLY
MERGE RELEASE TO DEPLOY TO
REPOSITORY PRODUCTION

Figure 15 Overview of Cl/CD process [36]

CI/CD is one area where the use of dbt has greatly improved the development
experience. In the previous solution, this whole process was done completely
manually. Developers needed to try their new changes by manually creating test
versions of the stored procedures as well as creating the needed tables on the
database before finally running the code on the database. Testing was also
something that developers needed to do manually, as no automated tests were
defined. This increased the risk of new changes causing unwanted errors elsewhere
that would be difficult to find. Once the new changes were tested and accepted, the
deployment process was also manual work by the developers. The new changes had
to be added to the stored procedure, and then potential changes to table definitions
were made. Lastly, the procedure was run to verify that it worked. Again, there was
no automated testing to help guarantee that the deployment did not cause any
unexpected issues. Git was used to track the changes to procedures and tables, but
there was no guarantee that the code that was in Git was actually in sync with the

code deployed on the database.

As a result of using dbt, it has become possible for us to use Microsoft’s CI/CD
pipelines [37] to automate the whole deployment process. We now have one CI
pipeline that is run on the feature branch and one pipeline for CD. The CI pipeline
is run by the developer when the development of a new feature is ready. First, the
quality of the code is checked using a linter. Next, the pipeline detects changed
models by comparing the new branch with the situation in production. Changed
models are then built in a test environment, downstream models from the changed
models are also built. Lastly, the tests defined for the models are run. If all these
checks succeed, the developer can open a pull request to let other team members
review the changes. Once the pull request is approved, the CD pipeline can be
started. First, the new code is merged to the main branch, after which changed

models are again detected and built, this time in the production environment.

55

Finally, the tests defined for the models are run again, now in the production

environment.

This approach guarantees that the code that is in the version control system is the
same as what is executed on the database. Automated testing also means that
potential problems with the integration or deployment are detected at an early stage.
As the whole deployment process is automated and extensive testing is done during

CI, the risk of errors during deployment is also reduced significantly.

4.9 Cloud Migration

Once the dbt code was written and tested on the on-premises platform and the
source data had been replicated to Databricks, the cloud migration process could be
started. When using Databricks, a new dbt project was created, which uses the
Databricks dbt adapter instead of the Teradata adapter to ensure that the correct

DDL syntax is used for the new environment.

Data replicated from the on-premises platform to the cloud is not directly available
in Databricks but stored in the cloud provider's blob storage [38]. This means that
before it can be used in Databricks, the blob storage needs to be connected to
Databricks, and the replicated tables need to be defined as external tables. Defining
an external table is simple; all that is needed is to give the path to the table and
specify the catalog, schema, and table that will be used for that table in Databricks.
Once the external tables have been defined, they can be used in dbt as any other

table.

CREATE TABLE <catalog>.<schema>.<table name>
(
<column specification>
)
LOCATION 's3://<bucket path>/<table directory>';

Figure 16 Example of an external table in Databricks [39]

During the migration process, it became necessary to rewrite Teradata-specific
functions that are not available in Databricks using ANSI syntax. Some examples
of functions that needed to be rewritten are NORMALIZE and P_INTERSECT, both
of which are used when creating the frozen data. To help with reusability and further

development, the SQL code needed to replicate these functions was defined as

56

macros which can then be reused whenever one of the functions are needed in the

Databricks dbt project.

There are also slight differences in auxiliary structures, such as indexes and
partitions, when using Databricks. Traditional indexes are not used. Instead,
Databricks offers Z-ordering, which aims to locate related information in the same
file, which can then be used by data-skipping algorithms [40]. Databricks also
automatically collects file-level statistics on the 32 first columns for each table,
which can be used to reduce the number of files that need to be scanned. The Z-
ordering columns and partitions could be optimized to improve performance, but
finding the best combinations is not necessarily straightforward. However, already
by using the default settings, the performance was competitive when compared to

the on-premises solution.

57

5. Evaluation of Results

When comparing the new solution with the previous one, three areas have changed.
The processing rules have been updated to make the data more reliable and easier
to analyse. Additionally, the tool for the transformation was changed from stored
procedures to dbt. Lastly, the platform for the computations was moved from on-
premises Teradata to Databricks in the cloud. These changes have many benefits

but also a few challenges, which will be discussed in this chapter.

Two changes were made to the processing rules of the solution. Firstly, two new
measures for counting the number of products were added to the fact table. These
fields have common definitions across the various source systems from the
underlying data. This solution has worked well during the testing phase and helped
analysts to compare different source systems and countries better. It is worth noting
that the addition of the new measures is not directly related to the cloud migration
process or the updated frozen data implementation. These fields were just added
simultaneously with the other changes to make the fact table more useful for
analysts. The second change that was made to the business logic was the frozen
data implementation. By using the bitemporal nature of the source data, the new
solution can build a star schema that can be replicated multiple times and produce
the same result every time, independently of when the processing of the data was
done. This makes the data more reliable as users do not need to consider potential
differences that may be caused depending on when data was loaded. Additionally,
this means that corrections and additions, like new fields, can be made to the

solution without affecting already loaded information.

The bitemporally frozen solution also caused some new challenges relating to
performance and added complexity. Creating the bitemporally frozen data means
that more processing needs to be done compared to the previous solution. This has
caused some performance issues, especially on the on-premises platform. The
computing of the frozen data also means that more intermediate tables and
additional logic is needed, which makes the overall solution slightly more complex.
However, both the added complexity and increased computation requirements are
needed to create a solution with reliable data and, therefore, these drawbacks cannot

be avoided. Some of these concerns are partially mitigated using dbt for clearer

58

code, making the added steps needed for the frozen data intuitive and easy for
developers to understand. Databricks can be used to help alleviate performance

issues caused by the more complex transformation.

The new solution uses dbt for the transformation logic in favour of the stored
procedures used in the previous implementation. Using dbt has proven to be
beneficial in many ways. Firstly, the improved CI/CD process removes much of the
manual work that developers would have needed to do previously, both when
setting up a development environment and when deploying changes. The main
reason for this is that dbt automates the DDL, which means that there is no longer
a need to manually update table definitions in production, or manually create tables
in the test environment. Additionally, due to the good Git integration and using
deployment pipelines, the code in Git is guaranteed to be the same as the code that
is scheduled to run on the database. This was not necessarily the case with the stored
procedure-based solution, as deployments and synchronization to Git were done

manually.

Working with dbt has also made cooperation easier due to the before mentioned
good Git integration, making coordinating the work of multiple developers easier.
Automated testing is another factor that has made cooperation easier as the tests can
be used to control that the changes a developer has made do not affect any
unexpected parts of the code. In addition, testing has helped catch and resolve errors
in the source data and the transformations at an early stage before production
deployments, usually when running the CI pipeline. Several errors have been caught
using this approach that, if the stored procedure-based approach was used, may
have gone unnoticed for a long time. Therefore, it is apparent that automated testing

is important and a big improvement over the previous solution.

As a possible further use case for dbt, it would be worth investigating using dbt for
creating unit tests. This would allow designing more specific test cases, and
checking edge cases would become more efficient. This can be done by changing
the source data of dbt models when unit tests are run. When running unit tests, mock
source data containing the test case would be used. Otherwise, the normal source
data would be used. The output of the models using the mock data would then be

compared with the expected output. Using unit tests would mean that developers

59

can receive quick feedback on their work, based on the unit tests, instead of running

the models using all the data, leading to increased development speed.

The last improvement provided by using dbt is Jinja templating. Using Jinja reduces
code duplication, as macros can be defined for commonly used code. Jinja also
helps make the code more concise and easier to read by using features such as the
previously mentioned macros, if statements, and for loops. These features are
familiar from other programming languages and, thus, something many developers
are already familiar with. The use of Jinja also ensures that a DAG can be built of
all the dependencies between the models in the dbt project. This, together with the
documentation features of dbt, provides a good overview of the whole process,

making it easier for both the end users and new developers to understand.

Converting the code to dbt has also led to a couple of challenges that are mostly
related to performance issues, especially when using the on-premises Teradata
platform for the transformation. The main problem has been the performance of
long common table expression CTE code blocks. The dbt code is commonly written
in a CTE format, as it is more readable compared to using subqueries. These CTEs
can sometimes become quite long, which has, in turn, led to Teradata having trouble
optimizing the queries in a performant way. When using stored procedures, this
issue was solved by materializing intermediate results in volatile tables [41], which
are only kept for the duration of a session. Indexes and partitions can then be used
on these volatile tables to store intermediate results in a way that makes further
computations efficient, in other words helping the optimizer find the best plan.
Volatile tables cannot be used in dbt, as one model consists of only one select
statement. However, splitting the models into multiple intermediate models is
possible and achieves the same result. This approach has the drawback that the
DAG becomes unnecessarily cluttered, and as the materialization must be done
using physical tables, it also leads to a significant amount of redundant storage of
intermediate results taking up disc space. In some cases, the performance issues
could also be solved by tweaking and optimizing the queries. However, this is quite
time-consuming and a clear drawback of using dbt when compared to the previous

solution.

60

Moving the processing from the on-premises platform to Databricks had several
benefits. Initial tests show that the processing time on Databricks is faster when
compared to the on-premises platform. The execution time of a full refresh on the
on-premises platform takes around 5 hours and requires the overall load to be low
when the transformation is run. This has made testing and development difficult.
All the needed models have not yet been converted to Databricks, meaning that a
complete comparison is not possible. However, the execution times of a few dbt
models have been compared, and we can see that the Databricks platform was

significantly faster. Table 14 shows the differences in runtimes between the

platforms.
Model On-premises execution | Cloud execution
time time
A small dimension 4m Ss Im 15s
A larger intermediate model | 10m 59s 6m 6s

Table 14 Comparison of execution times between on-premises and cloud platforms.

Another important feature provided by using a cloud-based solution is scalability.
During the testing phase, a medium-sized Databricks SQL warehouse [42] was
used. However, upgrading to a larger or smaller cluster, depending on the needs of
the workload, is relatively simple. This also means that we can avoid situations
where one needs to wait for an optimal time when the system load is low to be able

to run a heavy job successfully.

Databricks also offers a modern, intuitive, and graphical query profile that can be
used to help identify what causes certain queries to perform poorly and improve
them. Some examples of optimizations that are easy to find using this method are
identifying when filters could be applied at an earlier stage to reduce the number of

rows processed at later stages.

The use of Databricks has also provided some challenges. One new challenge is
moving data between on-premises and the cloud, which adds complexity and can
be time and resource-heavy. The migration process also requires some work with
rewriting the dbt code in a way that works on the new platform. This process was
made significantly easier by using dbt instead of migrating stored procedures, as

dbt adapters take care of many differences between the two platforms.

61

6. Conclusion

This thesis describes the modernization process of an ETL pipeline. The benefits
and drawbacks of a cloud-based ETL process that uses Databricks as the
computation platform and dbt as the transformation tool are compared with the
previous on-premises platform that used stored procedures for the transformation
logic. Simultaneously with updating the used tools and platform, improvements
were made to the business logic of the ETL process. Most importantly, the method
for freezing data was changed from a snapshot-based method that stored the active
data, as it was recorded in the database at the time of loading, to a more dynamic
method that uses the bitemporal source tables. This means that the process is

idempotent and can be run multiple times and produce the same result every time.

The new solution allows for more flexibility and scalability because of the cloud-
based platform. Simultaneously, the load on the on-premises platform is reduced.
The new transformation tool has helped in creating reusable code that can be ported
between execution environments with relatively low effort. Using dbt has also
improved and helped automate the testing and deployment, which translates to

faster and easier development as well as higher data quality.

Moving the processing to the cloud also means the first steps towards a data
lakehouse architecture, where all data is made available in one central place, and
the same platform can be used for reporting, business intelligence, data science, and
machine learning. This would remove the need to maintain two separate platforms
and thus simplify the overall architecture. However, before a data lakehouse
architecture can be used, there is still much work to be done. Data currently
available only on the on-premises platform needs to be made available in the cloud

as well so that users can switch to the cloud platform.

6.1 Further Work
The development of the new implementation is still not complete. Further

development that is currently planned is to move the processing for the fact table to
the cloud so that the whole solution can be run on the same platform. Once that is
done and the data replication is ready for production use, the processing for the
production runs of the whole solution should be moved to the cloud, where we have

seen better performance. Moving to the cloud will also reduce the load on the on-

62

premises system, which will mean more computing resources are freed up for other

work.

There are also plans to connect more dimensions to the fact table to have more
information available for analysis. This means that new dimensions need to be
converted from stored procedures to dbt, and the frozen logic needs to be
implemented to create dimensions that are resistant to changes in the source data.
For this work, the knowledge gained during the initial work outlined in this thesis

will be valuable and help make the new development a simpler process.

63

Svensk sammanfattning

Inledning
Data spelar en stor roll i beslutsprocessen for dagens foretag. Tillgang till data av

hog kvalitet mojliggor att beslutsfattare 1 foretagen kan fatta datadrivna beslut. For
att dstadkomma detta méste data forst integreras. Data integrering har darfor blivit
en alltmer viktig process for foretagens IT-avdelningar att skota. Dataintegration
innebér att transformera data som finns utspridda mellan flera olika kéllsystem till
ett och samma homogena datalager. I denna avhandling kommer en sadan process
hos ett foretag att beskrivas och moderniseras med hjélp av nya verktyg. Foretaget,
vars dataintegrationsprocess studeras, ar ett stort foretag inom finansbranschen med
verksamhet 1 hela Norden. Detta betyder att minga olika kéllsystem anvinds och
beroende pa land kan strukturen pd dessa vara véldigt olika. Darfor dr det viktigt att
data i1 det slutliga datalagret anvéinder sig av samma struktur si att jimforelser
mellan ldnder och system blir sa enkelt som mojligt, vilket gor att slutanvéindarna

enkelt kan analysera data samt fatta vél informerade beslut pé basis av data.

Malet med denna avhandling dr att modernisera en dataintegrationsprocess pa

foljande sétt:

e Skapa en ny 16sning som anvénder sig av moderna verktyg

o Effektivera processen sd att data blir redo for anvindare 1 ett tidigare skede.

e For att 4 en 16sning med bittre skalbarhet och minska belastningen pd den
lokala databasplattformen ska bearbetningen av data flyttas till molnet.

e Underlitta samarbete mellan utvecklare genom att skapa en 16sning som &r
vélintegrerad med Git-versionshanteringsprogrammet.

e Anvinda en automatiserad CI/CD (continious integration / continious
deployment) process for test och produktionsséttnigsprocesserna.

o Forbittra datakvalitén genom att inkorporera automatiserade test i den nya
16sningen.

e Den nya l6sningen borde ocksd vara “frusen” sd att samma resultat kan
astadkommas oberoende av nér transformationen kors. Detta &dr viktigt for
att fa pélitliga data som é&r jamforbara oberoende av nir sjdlva

laddningsprocessen utfordes.

64

Datalager

Ett foretag har ofta tvd typer av databassystem, ett for online
transaktionsbearbetning OLTP (Online Transaction Processing) och ett for online
analytisk bearbetning OLAP (Online Analytical Processing). OLTP-system &ar
oftast realtidssystem som anvénds for foretagets dagliga operativa verksamhet.
OLAP-system anvinds for analys av data och innehéller ofta dven historiska data
for att kunna analysera trender. I denna avhandling studeras en process for

dataintegrations 1 ett datalager som alltsa ar ett OLAP system.

For att data ska vara ldtt att anvénda &r det viktigt att modellera data pa rétt sitt.
Data i ett datalager kan modelleras pa olika sétt beroende pa vad malet dr. Ralph
Kimball foresldr anvindning av stjdrnschema [2]. Mélet med en stjdrnschema-
arkitektur &r att presentera data i ett format som &r enkelt for slutanvéndare att
anvianda. Stjarnschemat bestar av tva typer av tabeller, faktatabeller och
dimensionstabeller. Flera dimensionstabeller kan kopplas ithop med en faktatabell
vilket gor att modellen pAminner om en stjirna. Kimball argumenterar ocksa for en
processdriven modellering, vilket betyder att ett stjairnschema representerar en av
foretagets processer. Faktatabellen innehéller métt, alltsd varden som &ndras ofta
och beskriver ofta en transaktion. Faktatabellen ska vara pa den ldgsta mojliga
detaljnivén; eventuella aggregationer kan goras senare av anvéndaren.
Dimensionstabellerna innehaller 6vrig information som inte dr pa en lika 1ag niva
och éndras darfor mer sdllan. Faktatabellen innehéller dven nycklar som mojliggor
att enkelt koppla ihop faktatabellen med de dimensionstabeller man &r intresserad

av.

Bill Inmon har en annan synvinkel pa hur modellering av data i ett datalager borde
goras [5]. Han foresprikar en sd kallad EDW (Enterprise Data Warehouse) baserad
16sning. Idén &r att ha en och samma datamodell for hela foretaget som en grund;
sedan kan olika avdelningar enklare bygga sina egna losningar som alla baserar sig
pa en och samma EDW. Till skillnad fran den processdrivna modelleringen fran
stjdirnschemat ar tanken bakom EDW att vara dataorienterad. Malet &r alltsa att
skapa en modell som baserar sig pé strukturen av underliggande data. En annan
skillnad fran stjarnschemat &r att data 1 EDW é&r normaliserat vilket medfor att
uppdaterande av data &r lattare och hela 16sningen kraver mindre lagringsutrymme.

Eftersom en normaliserad struktur &r mera komplicerad blir hopkoppling av data

65

svérare. Denna typ av typ av modellering ar darfor inte lika anvéndarvanlig som

stjarnschemat; storre fokus lidggs i stillet pd prestanda.

For att populera data till ett stjdrnschema eller EDW maste data forst ldsas fran en
eller flera kéllor och sedan transformeras for att fa ritt struktur. Slutligen laddas det
transformerade data in datalagrets tabeller. Denna process kallas i sin helhet
extrahering, transformering och inldsning ETL (Extract, Transform, Load).
Processen kan ofta vara rétt invecklad eftersom kélldata ofta dr bristfalligt.
Dessutom har sérskilt storre foretag ofta flera olika system som alla producerar
kélldata 1 varierande format vilket gor att det krévs en hel del transformationslogik

for att {4 data i ett och samma format i de slutliga tabellerna i datalagret.

Implementation

I denna avhandling moderniseras en ETL-process som laddar ett stjirnschema som
innehéller en faktatabell samt fyra dimensionstabeller. Som killdata for processen
anvinds data fran ett EDW. Anvindningen av EDW som datakilla gér processen
aningen enklare eftersom en del av stegen som behovs for dataintegration redan
gjorts dé data laddats in i EDW. Data i stjarnschemat uppdateras en gang per manad
sd att alla rader som ar aktiva i slutet av manaden l4ggs till tabellen. Den tidigare
16sningen var gjord med hjilp av lagrade procedurer (stored procedure) och kordes

pa en lokal Teradata-databas.

Fran affarsverksamhetens sida var det storsta problemet med den gamla 16sningen
att data laddades en gang per manad, sd som det existerade i databasen vid
laddningstidpunkten. Om samma data laddas pé nytt vid en senare tidpunkt skulle
resultatet inte ldngre bli samma som f6ljd av forsenade uppdateringar 1
kéllsystemens data. For att 16sa detta problem édndrades ETL-processen sé att man
1 stéllet for att alltid ldsa de rader som for tillfillet &r aktiva anvinder den
bitempordra naturen av underliggande kélldata. Eftersom kélldata dr bitemporara
betyder det att inga data raderas fran databasen utan ndr dndringar kommer in 1
databasen uppdateras de tidigare aktiva raderna till att inte l&ngre vara aktiva. Detta
gor det mojligt att aterskapa samma data som fanns i databasen vid vilken som helst
tidpunkt 1 historien. Med hjdlp av den nya metoden blir det alltsd mojligt att
reproducera samma resultat oberoende av den verkliga laddningstidpunkten. Detta

ar viktigt for att kunna garantera jamforbara data mellan rapporteringsménader och

66

for att kunna korrigera fel i data utan att samtidigt inféra odnskade dndringar, som

foljd av den nya laddningstidpunkten.

Samtidigt med forbéttringar 1 affarslogiken moderniserades hela processen genom
att byta verktyg for transformationen samt exekveringsplattform. Det nya verktyget,
som anvéndes for transformationen dr dbt som é&r ett Oppen kéllkods verktyg for
datatransformation, underhallet av dbt Labs. Dbt gor det mojligt att skriva SQL-
kod och samtidigt anvinda sig av Jinja-syntax for att skapa makron, if-satser och
for-loopar. Koden som skrivs i dbt kompileras till vanlig SQL kod som sedan
exekveras mot en databas. Anvdndning av dbt medfor att utvecklare inte sjilva
behover skriva datadefinitionssprdk DDL (data definition language) uttryck for att
skapa tabeller och vyer i databasen, utan de dr ndgot som dbt tar hand om. Detta
betyder att utvecklaren endast skriver select-uttryck, dbt anvinder sig sedan av
adapters som skapar behovlig DDL beroende pa databasen som anviands. Malet med
anviandning av dbt &r att skapa lédttare underhallbar kod som samtidigt blir mera

portabel vilket gor byte av exekveringsplattform enklare.

Efter att lagrade procedurerna konverteras till dbt-kod och den uppdaterade logiken
for fryst data implementeras, testades koden forst pd lokala plattformen. Nir koden
fungerade pé ett nojaktigt sitt blev det aktuellt att forsoka flytta exekveringen till
molnet. For detta anvdndes Databricks SQL, som dr en molnbaserad plattform for
datalager. For att astadkomma molnmigrationen kan néstan samma dbt-kod, som
skapats for den lokala 16sningen, anvidndas. Det enda som kridvde dndring var vissa
Teradata-specifika funktioner som inte &r tillgidngliga 1 Databricks och maste darfor
omskrivas med hjidlp av dbt makros. Det mest komplicerade med att flytta
transformationen till molnet visade sig vara att Overfora kédlldata fran lokala
plattformen till molnet och sedan 6verfora transformerade data tillbaka fran molnet
till lokala plattformen. Datamédngderna som maéste overforas dr ritt stora vilket gor
att Gverforingsprocessen maste vara effektiv. Lyckligtvis kunde vi anvidnda oss av
ett in-house utvecklat program for att ta hand om den delen vilket medforde att

sjdlva molnmigrationen blev ritt enkel.

Evaluering och avslutning

Denna avhandling har beskrivit moderniseringen av en datatransformationsprocess.

Denna process anviande ursprungligen lagrade procedurer och kordes pd en lokal

67

databas. Efter moderniseringen anvindes transformationsverktyget dbt och
molnbaserade Databricks-plattformen. Samtidigt gjordes ocksé andra dndringar i

transformationslogiken for att &stadkomma palitlig och hogkvalitets data.

Den nya implementationen har visat att anvdndningen av dbt-verktyget medfor
stora fordelar nir det géller produktivitet och garanterande av datakvalitet. Dbt
visade sig ocksd vara ett bra verktyg nér flera utvecklare arbetar med samma
projekt, eftersom dbt naturligt integreras bra med Git. Dessutom forenklar dbt
skapande av utvecklings och testmiljoer som foljd av automatiserad DDL vilket
innebdr att tabeller enkelt kan skapas i olika miljoer utan manuellt arbete. Processen
for produktionssittning har ocksa blivit enklare och med mindre risk for fel.
Andrande av metoden for att frysa data har ocksd visat sig vara fungerande och
mojliggjort mera flexibilitet for vidare utveckling av 16sningen och fortfarande

kunna producera samma resultat oberoende pa nir laddningsprocessen kors.

Genom att flytta processeringen av losningen till molnbaserade Databricks
minskade belastningen pa lokala plattformen och processeringstiden minskade
ocksé betydligt. Samtidigt mojliggdr en molnbaserad tjianst ocksa battre skalbarhet
for eventuella framtida behov. Den storsta utmaningen med en molnbaserad 16sning
var att killdata forst médste overforas till molnet och efter att data transformerats i
molnet behdver data dnnu dverforas tillbaka till lokala plattformen, vilket orsakar
en del onddig komplexitet. Forhoppningsvis kommer denna process att kunna
forenklas 1 framtiden dd kéllsystem erbjuder allt mera data direkt i molnet och

slutanvéndare ocksa har mojligheten att anvénda data direkt frdn molnet.

68

References

[1]

[2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

N. Mali and S. Bojewar, “A Survey of ETL Tools,” International Journal of
Computer Techniques, vol. 2, no. 5, pp. 20 - 27, 2015.

M. Ross and K. Ralph, The Data Warehouse Toolkit : The Definitive Guide
to Dimensional Modeling, John Wiley & Sons, Incorporated, 2013.

A. Silberschatz, H. F. Korth and S. Sudarshan, Database system concepts,
McGraw-Hill US Higher Ed ISE, 2019.

P. PONNIAH, “DATA WAREHOUSING FUNDAMENTALS A Comprehensive
Guide for IT Professionals,” John Wiley & Sons, 2004.

M. Breslin, “Data warehousing battle of the giants: Comparing the Basics
of the Kimball and Inmon Models,” Business intelligence journal, vol. 7, pp.
6 - 20, 2004.

Fivetran - Michael Kaminsky, “Data warehouse modeling: Star schema vs.
OBT,” [Online]. Available: https://www.fivetran.com/blog/star-schema-vs-
obt. [Accessed 30 April 2023].

P. Ziegler and K. R. Dittrich, “Data Integration — Problems, Approaches,
and Perspectives,” in Conceptual modelling in information systems
engineering, Springer, 2007, pp. 39 - 58.

IBM, “ELT (Extract, Load, Transform),” IBM, [Online]. Available:
https://www.ibm.com/topics/elt. [Accessed 30 December 2022].

T. Johnston, Bitemporal data: theory and practice, Newnes, 2014.

M. Armbrust, A. Ghodsi, R. Xin and M. Zaharia, “Lakehouse: a new
generation of open platforms that unify data warehousing and advanced
analytics,” in Proceedings of CIDR, 2021.

Apache, “ORC Specification v1,” [Online]. Available:
https://orc.apache.org/specification/ORCv1/. [Accessed 30 April 2023].

Apache, “Apache Avro™ 1.11.1 Documentation,” [Online]. Available:
https://avro.apache.org/docs/1.11.1/. [Accessed 30 April 2023].

B. Inmon, M. Levins and R. Srivastava, Building the Data Lakehouse,
Technics Publications, 2021.

69

[14]

[15]

[16]

[17]

(18]

(19]

(20]

[21]

[22]

(23]

(24]

[25]

(26]

Apache, “Encodings,” [Online]. Available:
https://parquet.apache.org/docs/file-format/data-pages/encodings/.
[Accessed 29 January 2023].

Databricks, “What is Parquet?,” [Online]. Available:
https://www.databricks.com/glossary/what-is-parquet. [Accessed 29
January 2023].

B. Haelen, Delta Lake: Up and Running Modern Data Lakehouse
Architectures with Delta Lake, O’Reilly Media, Inc, 2022.

D. Lee, T. Das and V. Jaiswal, Delta Lake: The Definitive Guide, O’Reilly
Media, 2021.

dbt Labs, “What is dbt?,” [Online]. Available:
https://docs.getdbt.com/docs/introduction. [Accessed 4 February 2023].

dbt Labs, “Supported data platforms,” [Online]. Available:
https://docs.getdbt.com/docs/supported-data-platforms. [Accessed 4 February
2023].

Jinja documentation, “Introduction,” [Online]. Available:
https://jinja.palletsprojects.com/en/3.1.x/intro/. [Accessed 6 February 2023].

YAML Language Development Team, “YAML Ain’t Markup Language (YAML™)
version 1.2,” [Online]. Available: https://yaml.org/spec/1.2.2/. [Accessed 17
February 2023].

dbt Labs, “Materializations,” [Online]. Available:
https://docs.getdbt.com/docs/build/materializations. [Accessed 4 February
2023].

dbt Labs, “Jinja and macros,” [Online]. Available:
https://docs.getdbt.com/docs/build/jinja-macros. [Accessed 4 February 2023].

dbt Labs, “Tests,” [Online]. Available:
https://docs.getdbt.com/reference/resource-properties/tests. [Accessed 6
February 2023].

dbt Labs, “Refactoring legacy SQL to dbt,” [Online]. Available:
https://docs.getdbt.com/docs/get-started/learning-more/refactoring-legacy-sql.
[Accessed 11 February 2023].

Databricks, “What is Databricks?,” [Online]. Available:
https://docs.databricks.com/introduction/index.html. [Accessed 18 February
2023].

70

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

Databricks Inc., “Databricks Cloud Partners,” [Online]. Available:
https://www.databricks.com/company/partners/cloud-partners. [Accessed 12
February 2023].

Microsoft, “What is Azure Databricks?,” [Online]. Available:
https://learn.microsoft.com/en-us/azure/databricks/introduction/. [Accessed 12
February 2023].

Microsoft, “Query profile,” [Online]. Available: https://learn.microsoft.com/en-
us/azure/databricks/sql/admin/query-profile. [Accessed 12 February 2023].

Microsoft, “What is Unity Catalog?,” [Online]. Available:
https://learn.microsoft.com/en-us/azure/databricks/data-governance/unity-
catalog/. [Accessed 12 February 2023].

Microsoft, “Configure SQL warehouses,” [Online]. Available:
https://learn.microsoft.com/en-us/azure/databricks/sql/admin/sqgl-endpoints.
[Accessed 12 February 2023].

Microsoft, “Azure Data Factory,” [Online]. Available:
https://azure.microsoft.com/en-us/products/data-factory#resources. [Accessed
27 February 2023].

dbt Labs, “Incremental models,” [Online]. Available:
https://docs.getdbt.com/docs/build/incremental-models. [Accessed 23 February
2023].

dbt Labs, “Project variables,” [Online]. Available:
https://docs.getdbt.com/docs/build/project-variables. [Accessed 27 February
2023].

BMC, “Control-M,” [Online]. Available: https://www.bmc.com/it-
solutions/control-m.html#. [Accessed 9 March 2023].

Red Hat, “What is CI/CD?,” [Online]. Available:
https://www.redhat.com/en/topics/devops/what-is-ci-cd. [Accessed 9 March
2023].

Microsoft, “What is Azure Pipelines?,” [Online]. Available:
https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-
azure-pipelines?view=azure-devops. [Accessed 9 March 2023].

Microsoft, “Introduction to Azure Blob Storage,” [Online]. Available:
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-blobs-
introduction. [Accessed 29 April 2023].

Databricks, “Create Tables,” [Online]. Available:
https://docs.databricks.com/data-governance/unity-catalog/create-tables.html.
[Accessed 03 April 2023].

71

[40]

[41]

[42]

Databrics Inc., “Data skipping with Z-order indexes for Delta Lake,” [Online].
Available: https://docs.databricks.com/delta/data-skipping.html. [Accessed 13
April 2023].

Teradata, “Volatile Tables,” [Online]. Available:
https://docs.teradata.com/r/rgAb270_xRmMVc_aQqg2VGw/mplFlz_vSIpMbZYxF
mRIJfA. [Accessed 20 March 2023].

Microsoft, “Configure SQL warehouses - Cluster size,” [Online]. Available:
https://learn.microsoft.com/en-us/azure/databricks/sql/admin/create-sql-
warehouse#cluster-size. [Accessed 16 April 2023].

72

