
Quantized Mesh Generation:
Software for Transforming Altitude Data into Tiled

Representations

Max Lundström

Master’s Thesis

Supervisor: Jan Westerholm

Department of Information Technologies

Faculty of Science and Engineering

Åbo Akademi University

Student Number: 41247

May 2023

Abstract
This thesis presents the design and implementation of a software tool for Navielek-

tro Ky that generates QuantizedMesh tiles from elevation data. While maps are

incredibly useful for geographical analysis and visualization, achieving desirable

results when utilizing them for more precise analysis and visualization can prove

challenging. One solution to this problem is the use of digital elevation models

(DEMs), which capture the topographical structure of the Earth’s surface. DEMs

can be used to create highly accurate and detailed maps, but unfortunately, most

of them are distributed in formats that themselves are not especially flexible, and

require further processing for specific use cases.

QuantizedMesh tiles provide a solution to this problem by dividing the Earth’s sur-

face into square tiles of terrain of varying levels of detail. These tiles are com-

pressed and can be dynamically loaded and replaced during runtime, which proves

especially useful in cloud-based applications, as the users only load tiles at the lo-

cation and the level of detail they are interested in, resulting in lower bandwidth

requirements. The use of QuantizedMesh tiles is increasingly popular in various

applications, such as virtual globes, online maps, and flight simulators.

The algorithm presented in this thesis used to generate the QuantizedMesh tiles

involves first creating a high-detail level of tiles and then sampling data from that

layer to create the lower-detail levels. It begins with segmenting input elevation

data into tile map service (TMS) grid cells. The data in these cells are then used to

create QuantizedMesh tiles. In the case that the data for one TMS cell is sourced

from multiple sources of elevation data, the resulting tile automatically merges both

datasets to complete the tile. The resulting QuantizedMesh tiles are optimized into

triangulated irregular networks (TIN) to reduce the number of redundant data points

while retaining the shape of the original mesh. The tile creation algorithm scales

linearly in terms of the amount of input data in relation to computing time, and al-

lows for processing large datasets without memory issues.

The development of this tool was necessary as there are hardly any publicly avail-

able options for generating QuantizedMesh tiles that can handle the potential scale

of computation required by the project stakeholders. The tiles produced by the tool

can be used for various different use cases, such as line of sight calculations and

terrain visualization.

1

Contents

1 Introduction 4

2 Map projections and coordinate systems 6
2.1 Overview . 6

2.2 Projection . 6

2.3 Projection types . 8

2.4 Coordinate systems in cartography 9

2.4.1 Earth-Centered, Earth-Fixed coordinate system 9

2.4.2 Ellipsoidal coordinate system 10

2.4.3 Universal Transverse Mercator coordinate system 11

2.4.4 Tile Map Service . 11

3 Quantized Mesh 13
3.1 Overview . 13

3.2 Header . 14

3.3 Vertex Data . 15

3.4 Index Data . 16

3.5 Edge Indices . 17

3.6 Extensions . 19

4 Project Introduction 20
4.1 Project overview . 20

4.2 Design . 20

4.2.1 Creation of tiles . 22

4.3 Tools . 23

5 Project Implementation 25
5.1 QuantizedMesh I/O . 25

5.2 Input data . 26

5.3 Data segmentation . 28

5.3.1 First look . 28

5.3.2 The problem with gaps . 28

5.3.3 Algorithm extension . 29

5.4 Mesh creation . 32

5.4.1 Triangulation . 32

5.4.2 Edge preservation . 33

5.4.3 Mesh merging . 36

5.4.4 Mesh sampling . 38

5.5 Mesh optimization (TIN) . 40

6 Algorithm scalability analysis 44
6.1 Overview . 44

6.2 Data collection . 44

6.3 Results . 45

7 Discussion 47

8 Conclusion 49

9 Generering av kvantiserade nät - Svensk sammanfattning 51

3

Chapter 1

Introduction

Monitoring our surroundings, and keeping track of their evolution over time, is a

fundamental part of modern society. It enables us to collectively make informed

decisions regarding logistics, development of industry, national security, etc. The

process of surveying the local land can in theory be performed by any individual

group or organization. However, the important assignment of periodically con-

ducting nationwide land surveys is generally entrusted to a governmental land sur-

veying agency. In the United States, this agency is the United States Geological

Survey (USGS), while in Finland, the equivalent organization would be the Na-

tional Land Survey of Finland (NLS) or Geolocial Survey of Finland (GTK). These

agencies provide the public with readily available information regarding their sur-

roundings. This information includes maps, spatial data, property lines, etc. Ad-

ditionally, aerospace agencies such as the European Space Agency (ESA) publish

data gathered by their satellites, such as imagery of the Earth as well as various

other observations and measurements.

While aforementioned geospatial data is generally readily available, it is usually

distributed in only a few different formats, none of which might be appropriate for

some particular use cases. Thus, it is up to individual organizations themselves to

further transform the source data into a format more suitable for their particular use

case. The objective of this thesis is to demonstrate how public geospatial data can

be transformed into a tile-based mesh format for the purpose of visualization and

topographical analysis. This project was developed for Navielektro Ky, a Finnish

company specialized in surveillance and communication systems for civilian as well

as military purposes. The project involves transforming, segmenting, and utilizing

elevation data published by the NLS to create tiles of optimized 3D terrain meshes

of varying levels of detail. This thesis will mainly cover the findings made during

the development of said project, as well as offer solutions pertaining to how various

hurdles during design and development were addressed. Additionally, this thesis

covers the background knowledge required to tackle a problem of this nature.

4

The target output format of the data is referred to as "QuantizedMesh", which is a

tile based mesh format optimized for a small file size. While the QuantizedMesh

format has become somewhat established, it still lacks well-supported open source

libraries that aid in the reading and writing of QuantizedMesh tiles. Although there

are a few open source tools that can produce QuantizedMesh tiles, none is capable

of operating with the massive amounts of data (areas covering countries/continents)

that are required for this particular project. While it might have been possible to

modify some available tool to fit the project requirements, it was deemed as more

beneficial to implement the QuantizedMesh format, as well as the entire production

pipeline, from scratch. The main reason behind this is that it allows for much more

control over the pipeline, as well making it easier to integrate the project into exist-

ing environments.

The main issue that needs to be solved is how to manage dense elevation data cov-

ering large areas such as countries and continents quickly and without running out

of memory on a standard workstation (approx. 16 GB of memory). Most available

open source tools can only handle small amounts of data, are difficult to operate,

and do not support the file format or coordinate system of our elevation data. The

project demonstrated in this thesis can handle virtually unlimited amounts of data

in a manner that does not consume memory excessively. Additionally, the quality

of the resulting QuantizedMesh tiles is kept high, while the file size is minimized.

The second chapter of the thesis will establish the underlying fundamentals of co-

ordinate systems, map projections, etc., needed to understand why different chal-

lenges regarding the project occurred and how they were solved. After this, chapter

three provides an insight into the QuantizedMesh format. The chapter aims to pro-

vide an adequate understanding of the format in order for the reader to better under-

stand why certain features of the pipeline were necessary. Chapter four covers the

design and methodology behind the project. It provides a brief overview of the var-

ious design-related problems that occurred during development and their respective

solutions. In chapter five, the implementation of the project is explained in detail. It

aims to provide a more detailed view of the aforementioned problems and solutions,

as well as cover the details of how the design was implemented. Finally, chapter

six and seven complete the thesis with a discussion about the findings throughout

the project as well as a conclusion, summarizing the main points of interest and

providing an overall impression of the results.

5

Chapter 2

Map projections and coordinate
systems

2.1 Overview

Maps are essential tools when it comes to visualizing and analyzing our surround-

ings and have been a vital part of any explorer’s toolkit for thousands of years.

The impact that maps have had on the world throughout history should not be un-

derstated. Maps have aided in everything from navigation at sea to meeting an

acquaintance who lives a few towns away or planning intercontinental voyages to

countries on the other side of the Earth. In this day and age, with the widespread

accessibility of smartphones, maps are used more than ever before.

Most people employ the use of standard flat rectangular maps, as those are most

readily available from online map providers. However, as the shape of the Earth

is an oblate spheroid and not a flat rectangle, there are great difficulties when de-

ciding how its surface should be visualized. Nevertheless, if visualizing the earth

on a flat surface is difficult, why not always use globes that can more accurately

display the actual shape of the earth instead? The main reason for this is due to

that when using maps for every-day navigation, most people are only interested in

smaller areas. Using a globe for small scale visualization is usually not feasible, as

the globe would have to be very large for anyone to make out any small features.

Additionally, rectangular images or data are much simpler formats to process on

computers, which is how most people interface with maps.

2.2 Projection

In cartography, projection is the "systematic representation on a flat surface of fea-

tures of a curved surface, as that of the Earth"[11]. As previously mentioned, this

can be quite a complicated process. Nevertheless, what is actually so complicated

6

regarding the projection of the Earth’s surface onto a flat plane?

The first reason is distortion. For every type of map projection, there is always

some compromise. A flat map can only be accurate at certain locations. This means

that there is not one map projection that could be used for every instance, thus there

is a need for multiple types of projections depending on the type of interest[9].

The second reason is due to the Earth’s irregular shape. The Earth is not a perfect

sphere, instead it is more akin to an oblate spheroid, where the radius of the equator

is greater than the polar radius. It is believed that this phenomenon is caused by the

rotation of the Earth. Other irregularities of the shape are due to the gravitational

differences across the Earth as it varies in density. How this variation affects the

Earth is defined by the geoid (Fig. 1). The geoid is a reference of the true surface

of the Earth.

Figure 1. A reference geoid of the Earth, released in 1996 by NASA[10].

In the regions with negative height the gravity is stronger, while in regions with positive

height the gravity is weaker.

The final reason is due to irregular measurements. Whether it is due to some incon-

sistency in the measuring device or in the assumptions that are made when analyzing

the measurement, the methods used virtually always introduce some form of error.

Additionally, some measurements might become inaccurate over time due to plate

tectonics and changes in the Earth’s crust.

7

2.3 Projection types

As mentioned in the previous section, a rectangular map can only be accurate in

specific areas. Where the map is accurate depends on what type of projection was

used for its creation. Some commonly used types of map projections are cylindri-

cal, conical, and azimuthal.

A cylindrical projection places the Earth at the center of a cylinder and stretches

the surface of the Earth onto the surface of the cylinder. Altering the orientation

of the cylinder in relation to the Earth yields maps with differing qualities. In ad-

dition to projecting the Earth on a cylinder, the surface of the cylinder then has to

be truncated in the Y-axis as the distortion becomes too great. The poles have to

be excluded, as they are parallel to the surface of the cylinder (Fig. 2). A vertical

cylindrical projection is most accurate around the equator while a horizontal cylin-

drical map is most accurate around the central meridian. In the case of a vertical

cylindrical projection, distortion occurs when moving away from the equator. The

closer to the poles that features are located, the more distorted they will be. There-

fore, this type of projection is not suitable for locations such as any of the Nordic

countries, which are located far up north away from the equator. A common verti-

cal cylindrical map projection is the Mercator projection, widely used for maritime

purposes (Fig. 2). Web Mercator[4], a variation of the standard Mercator projec-

tion, is extensively used in digital mapping software such as "Google Maps".

Figure 2. Mercator projection[12].

Projecting Earth surface onto surface of cylinder.

8

2.4 Coordinate systems in cartography

To understand how coordinate systems in cartography work, it is vital to know the

difference between a geographic coordinate system (GCS), and a projected coordi-

nate system (PCS). In essence, a GCS is what defines a model of the Earth, while

a PCS projects a GCS onto a flat surface. A PCS is created by using a projection

such as Mercator or Robinson in conjunction with a unit type (and other various

parameters depending on the PCS) to map the ellipsoid to a plane, as described in

the previous section[5]. The different types of coordinate systems relevant to this

thesis are the following:

• Earth-Centered, Earth-Fixed coordinate system

• Ellipsoidal coordinate system

• Universal Transverse Mercator coordinate system

• Tile Map Service

2.4.1 Earth-Centered, Earth-Fixed coordinate system

Earth-Centered, Earth-Fixed (ECEF) is a 3D geocentric coordinate system that

places the center of the earth (or any reference ellipsoid) at the origin. It is based on

the standard cartesian coordinate system most commonly used in mathematics[6].

In the ECEF system, the X-axis passes through the point where the equator and

the prime meridian intersect (Fig. 3). The prime meridian is a plane that splits the

globe into a western and an eastern hemisphere. On the Earth, it passes through

Greenwich, London, England and, along with the equator, functions as a reference

line in many geographic coordinate systems. The Z-axis in the ECEF system passes

through the north and south pole, while the Y-axis is perpendicular to both the X-

and Z-axis, according to a right-handed coordinate system. An ECEF coordinate

simply defines a point in 3D space in relation to the center of the Earth.

9

Figure 3. Point of intersection between the equator (horizontal) and prime meridian

(vertical).

The ECEF system is used in conjunction with a geodetic datum such as the World

Geodetic System (WGS84), which provides the reference ellipsoid for the Earth.

As mentioned, ECEF coordinates are 3D Cartesian coordinates with the center of

the Earth as the origin. While ECEF coordinates are useful for locating objects

around the Earth such as satellites, they are not especially suited for use on the sur-

face. This is primarily due to how ECEF coordinates are defined, i.e., using an X-,

Y-, and Z-coordinate in relation to the center of the Earth. This means that when

defining a point on the Earth’s surface using ECEF, the reference ellipsoid always

has to be taken into account, as to calculate the value for the individual axes. While

a computer is easily able to handle such a problem, it can be counterintuitive for

a human, especially if the objective is to define a point on a 2D surface. To solve

this issue, coordinates measured in the ECEF system are transformed into ellipsoid

coordinates. In the rest of this thesis, whenever WGS84 coordinates are mentioned,

it is implied that they are formatted as ellipsoid coordinates.

2.4.2 Ellipsoidal coordinate system

The Ellipsoidal Coordinate System defines coordinates by latitude, longitude, and

altitude over a reference ellipsoid. Latitude is the angle between two lines originat-

ing at the center of the Earth and extending out towards two points on the meridian

plane, where one of the points exists on the equator. Longitude is measured in the

same manner as latitude, but with two points in the equatorial plane, where one

point exists on the prime meridian. Latitude is positive towards the north, while

longitude is positive towards the east. The altitude is the distance from a point on

the reference ellipsoid to a point on the surface of the Earth. The line that these two

10

points form should be perpendicular to the surface of the ellipsoid[7]. Although an

ellipsoid coordinate is defined using three axes, only the first two, i.e., latitude and

longitude, are needed to reference a point on the surface of the Earth. This is the

format that most people are familiar with, as it is widely used in consumer-oriented

products such as "Google Maps".

2.4.3 Universal Transverse Mercator coordinate system

Up until now the focus has been on clarifying the systems related to geographic co-

ordinate systems. Universal Transverse Mercator (UTM)[2] is a type of projected

coordinate system that splits the Earth into 60 different zones, each covering six

degrees on the equatorial plane. These zones are labeled with a number, projected

onto a plane using a horizontal cylindrical projection, and subsequently stitched

together. The map is then segmented into a grid, with the zone number (1-60) sig-

nifying the X-axis and a letter (A-Z) signifying the Y-axis. Zones 1-30 are east of

the prime meridian while zones 31-60 are to the west. Letters A-M are south of

the equator while letters N-Z are to the north. For instance, the cell 32U contains

most of Germany, while the U.S. state of Florida is contained in cell 17R. Finding a

coordinate inside a grid cell is as simple as locating its X- and Y-coordinate, which

are defined in meters. As each zone’s meridian runs through its center, an offset of

500 000 meters is used to avoid negative X-coordinates inside a grid cell. This is

called a "false easting"[2].

2.4.4 Tile Map Service

Tile Map Service (TMS) is a method of subdividing a projection of the Earth into

different levels of detail. Level zero, the root level, contains a square tile of the

entire Earth, while level one splits the tile at the center of both the X- and Y-axis,

dividing the tile into four new tiles. While TMS is not useful in itself as a pre-

cise coordinate system, it is used extensively in digital maps, such as Google Maps.

When zooming in on a digital map, the images are replaced dynamically to display

the highest detail map necessary for that specific level of zoom. It also doubles as a

way to reduce the number of images the user needs to load to view the map, as only

the tiles that are visible on the screen are necessary.

The indexing method for these tiles is quite simple. It uses a "level" in addition

11

to X- and Y-coordinates. The number of tiles increases with the level, as lower-

level tiles are split into four smaller ones for each level increase. When a tile is

split, the X- and Y-coordinates of the new tiles become the same as their parent tile,

multiplied by 2. The new tiles not overlapping the origin of the parent tile gain an

offset of one in either or both the X- and Y-axis. In the official TMS implemen-

tation, the Y-axis increases upwards, while the version of TMS that Google uses

increases downwards.

The method by which tiles are indexed makes for a simple file system structure for

storing tiles. At the root there are directories for all desired levels, labeled accord-

ing to their depth. Inside the level directories there are directories for all necessary

columns, i.e., the X-coordinates. Finally, inside the column directories there are

files representing the tiles, labeled according to the row, i.e., the Y-coordinate. For

instance, accessing the map tile image for X = 17 and Y = 21 at level 5 involves

locating the level directory labeled "5", then the column directory labeled "17",

and finally locating the file labeled according to the row, "21.png". This simplicity

enables developers to integrate TMS into their applications quickly and in an error-

proof way.

Figure 4. Subdivision of TMS tiles with the increase of level.

12

Chapter 3

Quantized Mesh

3.1 Overview

The QuantizedMesh format, developed by Cesium GS, has become somewhat of an

unofficial standard for encoding 3D geographic data with multiple levels of detail

(LOD). The reason why this is the case is primarily due to the fact that the Cesium

platform has seen a great deal of success over the years as it was able to provide “the

world’s most accurate, performant, and time-dynamic virtual globe”[8]. A Quan-

tizedMesh file uses the extension “.terrain” and represents a square tile of geometry.

Although the tile’s header specifies the location of the tile, the data it contains is not

bound to a specific location or place. It is primarily a collection of vertices and

indices defining a 3D mesh (Fig. 5). A QuantizedMesh file is composed of little-

endian binary data, structured into multiple different sections in the following order:

1. Header

2. Vertex data

3. Index data

4. Edge index data

5. Extensions (optional)

As the name of the format suggests, the data in a tile is quantized. Quantization is

a form of lossy compression where a set of values is segmented into subsets where

those values are represented by a single value[14]. Quantizing data is preferable

in the case that a small file size is more important than maintaining a high level

of detail in the data, as values can be encoded using fewer bytes. Keeping the file

size low achieves more data throughput, which improves the feasibility of streaming

tiles over the internet. This approach is seen in many aspects of the design of this

format, where various compression techniques are used to further reduce size at the

cost of some processing power during tile creation and decompression.

13

Figure 5. Quantized Mesh tile displayed in a 3D viewer.

Left - tile with colored planes. Right - tile as wire mesh.

3.2 Header

The header of a tile contains data that provides a viewer with the information needed

to calculate when and how to display the mesh. The most vital parameters of the

header are the minimum and maximum height of the vertices described in meters,

as it allows the viewer to position tiles at the correct height in relation to each other

as well as to properly scale the actual height values of the tile.

In order to figure out whether a tile should be displayed or not, a bounding sphere

as well as a horizon occlusion point present in the header of the tile can be utilized.

The bounding sphere is the smallest sphere that contains the entirety of a mesh in a

tile. If this sphere exists anywhere outside of the view frustum (a 3D volume that

contains everything visible on the screen[19]), then it means that the tile is outside

of screen space and should not be rendered. The horizon occlusion point, which is

expressed as an ellipsoid-scaled coordinate, is used to calculate whether the tile is

currently beyond the horizon. If this is indeed the case, then the tile will not be ren-

dered. Utilizing this type of precomputed information means that, when rendering,

it is not required to perform back-face culling for tiles beyond the horizon where not

a single triangle is visible, thus improving performance. The actual position of the

tile is given as its center point expressed as an Earth-centered, Earth-fixed (ECEF)

coordinate.

14

3.3 Vertex Data

Directly after the header is the vertex data section. A vertex is a point where two or

more lines or edges meet[18]. In this thesis, when referring to a vertex, it is implied

that it is part of a 3D mesh. The data in this section is split into three arrays: U-

coordinates (X-axis), V-coordinates (Y-axis), and heights (Z-axis). The arrays are

all of the same length, as specified by an unsigned integer at the start of the vertex

data section (Table 1).

Vertex Data
Field Type Size
vertexCount Unsigned Integer 4 bytes

u Array of Unsigned Short 2 bytes * vertexCount

v Array of Unsigned Short 2 bytes * vertexCount

height Array of Unsigned Short 2 bytes * vertexCount

Theoretical section length: 4 + 3 (2 * X) bytes

Table 1. Vertex Data section

Together, these arrays contain the X-, Y-, and Z-coordinates of a set of vertices.

These vertices represent WGS84 coordinates with the axes normalized to the bounds

of the tile and scaled by 32767, effectively placing all values in the range of 0 and

32767. By normalizing the coordinate values from 8-byte doubles to 2-byte un-

signed shorts in this range, the vertex data size can be reduced by a significant

amount while still maintaining an acceptable level of detail for convincing terrain

visualization. Using the formula:

max−min
32767

where max is the greatest and min is the smallest value present for some axis in this

particular set of vertices, it is quite clear how to estimate the degree to which values

can be represented. E. g. for a tile with a height range (max−min) of 350 meters,

each meter could be expressed with a precision of approx. one centimeter. This

process of losing detail but reducing tile size is what was described in section 3.1 as

quantization. Finally, when encoding the vertex data, the values are all represented

as the difference from the previous value which is then zigzag encoded within the

tile.

15

3.4 Index Data

The next section in the QuantizedMesh file is the index data, which describes how

the vertices are connected to one another. In the vertex data section, the vertices

were stored in arrays. The indices to those vertices are now used in this section

to refer to a specific vertex, which eliminates the need to declare the same vertex

multiple times. This is a very common method used to define meshes and is used by

other widely used mesh formats such as Wavefront (.obj)[17]. This is also the pre-

ferred way to handle meshes in graphics APIs such as OpenGL[13], as it improves

performance when rendering by allowing the GPU to better utilize its cache.

Figure 6. The number of vertices needed without and with indexing

Each triplet of indices corresponds to one triangle in the mesh. These triplets are

stored in an array one after another (Fig. 6). Therefore, the length of this array is

the number of triangles present in the mesh, multiplied by three. This section can

be encoded in two different ways: storing the indices as unsigned shorts (2-byte),

or as standard 4-byte integers. While the default is to use unsigned shorts, in some

cases, when the mesh contains more than 65535 vertices, using only two bytes to

store each index is no longer possible as it exceeds the maximum value of a 2-byte

integer. Encoding more than 65535 vertices will therefore require the use of 4-byte

integers as indices. A mesh exceeding 65535 vertices is therefore not advisable,

as it effectively doubles the size of the index data section (Table 2). Thankfully,

the vast majority of tiles do not require such a large number of vertices to clearly

visualize their geometry. As a reference, there are approximately 1000 vertices in

any given tile produced during the course of this project.

16

Index Data 16
Field Type Size
triangleCount Unsigned Integer 4 bytes

indices Array of Unsigned Short 2 bytes * 3 * triangleCount

Theoretical section length: 4 + (2 * 3 * X) bytes
Index Data 32

Field Type Size
triangleCount Unsigned Integer 4 bytes

indices Array of Unsigned Integer 4 bytes * 3 * triangleCount

Theoretical section length: 4 + (4 * 3 * X) bytes

Table 2. Index Data section (16- and 32-bit versions)

3.5 Edge Indices

This section contains the indices of all the vertices that are located on the edge of

the tile. The structure is similar to the previous section of index data, as the values

can be encoded using either 2-byte or 4-byte indices (Table 3). However, the reason

why it is desired to keep track of this kind of data is quite different compared to the

previous section. Knowing which vertices exist on the edge is mainly important for

visual fidelity but can also have an impact on various geometric calculations due

to surface inconsistencies. Therefore, it is vital for tiles to have their edges line up

correctly in order for them to form a continuous surface without gaps. Edge vertices

should optimally overlap between neighboring tiles. The reason why these indices

are maintained separately from other index data is due to various different use cases,

e.g., when sampling tiles, instead of having to perform expensive checks on each

vertex to detect if it exists on the edge during runtime, the information is already

available in a separate precomputed section of the file. The trade-off is that file sizes

are slightly larger than otherwise required. In addition to being useful during tile

processing, edge indices could also be used to easily stitch multiple tiles into one

connected mesh, which can be useful in cases when tiles are not optimal.

17

Edge Indices 16
Field Type Size
westVertexCount Unsigned Integer 4 bytes

westIndices Array of Unsigned Short 2 bytes * westVertexCount

southVertexCount Unsigned Integer 4 bytes

southIndices Array of Unsigned Short 2 bytes * southVertexCount

eastVertexCount Unsigned Integer 4 bytes

eastIndices Array of Unsigned Short 2 bytes * eastVertexCount

northVertexCount Unsigned Integer 4 bytes

northIndices Array of Unsigned Short 2 bytes * northVertexCount

Theoretical section length: 16 + (2 * (A + B + C + D)) bytes
Edge Indices 32

Field Type Size
westVertexCount Unsigned Integer 4 bytes

westIndices Array of Unsigned Integer 4 bytes * westVertexCount

southVertexCount Unsigned Integer 4 bytes

southIndices Array of Unsigned Integer 4 bytes * southVertexCount

eastVertexCount Unsigned Integer 4 bytes

eastIndices Array of Unsigned Integer 4 bytes * eastVertexCount

northVertexCount Unsigned Integer 4 bytes

northIndices Array of Unsigned Integer 4 bytes * northVertexCount

Theoretical section length: 16 + (4 * (A + B + C + D)) bytes

Table 3. Edge Indices section (16- and 32-bit versions)

18

3.6 Extensions

The last section of a QuantizedMesh tile is the optional extensions. Every type of

valid extension has a 1-byte integer identifier to express what kind of data it con-

tains. The actual structure of the extension data can be of any type, which is why

the extension header only contains an integer expressing the length of the section of

data that is to come, expressed in bytes (Table 4).

Extension Header
Field Type Size
extensionId Unsigned Char 1 byte

extensionLength Unsigned Integer 4 bytes

Theoretical section length: 5 bytes

Table 4. Extension Header section

The actual extension data could in theory be virtually anything. The only require-

ment is that the identifier (extensionId) does not collide with any other type of ex-

tension. There are however a few officially supported extensions available. One

example is the metadata type (Table 5). The data in this extension is formatted as

a JSON string and could essentially contain any type of data. However, its main

use case would be to describe the geographic properties of a tile[15]. Using this

extension, a developer could, for instance, implement functionality to select an area

or terrain and be presented with what kind of vegetation or bedrock is present there.

Any type of data that needs to remain human-readable would be suitable to store in

this extension.

Metadata (extensionId = 4)
Field Type Size
jsonLength Unsigned Integer 4 bytes

json Char 1 byte * jsonLength

Theoretical section length: 4 + X bytes

Table 5. Metadata section

19

Chapter 4

Project Introduction

4.1 Project overview

The project for this thesis is to build a software tool that transforms large amounts

of geographical height data into multiple levels of QuantizedMesh tiles of varying

levels of detail. The main area of interest that is to be transformed is the surface

of Finland. The file format of the Finnish height data is ASCII grid, while the con-

tents are ETRS-TM35FIN coordinates (UTM coordinates in zone 35), and N2000

height values (relative to mean sea level)[16]. However, despite the focus on pub-

licly available Finnish height data, the application should also be able to easily be

adapted to handle other kinds of formats used in different contexts. The mesh it-

self should optimally be a Triangulated Irregular Network (TIN), which is a mesh

where only vertices that have a large impact on the overall shape of the mesh are

retained. With a TIN mesh, the file size is smaller while the visual clarity remains

roughly the same.

The reason for developing this project was to have a consistent and flexible way

of creating QuantizedMesh tiles for use in other applications. For instance, when-

ever there is a need to visualize geometry or utilize line of sight, having this type of

data available aids in quickly and intuitively adding the desired functionality.

4.2 Design

As for the design of the application, the overall process is split into two major

segments: creation of the highest level of detail tiles, and the creation of all other

requested lower-level tiles (Fig. 7). The reason for this decision was a few different

factors. First, this method requires programs to read and process the input data only

once, as it is only necessary when creating the initial high detail tiles. This is due

to the fact that when creating the lower levels, the high detail tiles that were just

produced can be used to sample data which has already been processed. The high

20

detail tiles are combined and reduced to create tiles that cover a larger area, yet

contain less detail. Secondly, handling each level separately instead of processing

all levels for each input file at once reduces the number of tile mergings necessary.

Instead of a need to merge tiles for every level, it is only needed during the first (i.e.,

highest) level.

Another important decision was to decouple the input handling section from the

tile creation pipeline and use a common type of input for the data processing sec-

tion. This was to allow for easier future implementations of other input data formats

and is generally a good way to structure an application. As QuantizedMesh tiles are

designed to use WGS84 coordinates, this was a natural choice as the common input

type.

Figure 7. High level diagram of the entire application pipeline.

21

4.2.1 Creation of tiles

As mentioned, the objective is to transform height data from large geographical

areas into QuantizedMesh tiles. The tiles are to be structured and indexed using

TMS, which features its own grid system, i.e., the QuantizedMesh tiles that are

produced should coincide with the TMS grid cells. However, input data are not

guaranteed to align with the TMS grid. If the data remains axis-aligned, only minor

steps need to be taken to adhere to the TMS grid. In those cases, data can be loaded

and processed in chunks that themselves are perfectly aligned with the grid. What

causes the majority of issues is whenever the input data is tilted or distorted and i no

longer axis-aligned with the TMS grid, such as when converting coordinates from

one system to another (Fig. 8). The data now has to be treated as a simple set of

coordinates, which eliminates numerous assumptions that could otherwise be made

regarding the data.

Figure 8. Corner coordinates of ETRS-TM35FIN rectangle in WGS84 (Web Mercator).

The red rectangle on the right represents the left rectangle transformed into WGS84.

This showcases how the rectangle is no longer axis-aligned after transformation.

Dealing with non-aligned data can be rather difficult. If the input files are naively

loaded and processed one by one, it will result in many unfinished QuantizedMesh

tiles. This is due to the fact that the input data only partly covers the TMS tile.

Furthermore, whenever processing input data of areas that are adjacent to previously

processed areas, the unfinished tiles on the edges between the regions of input data

will be overwritten. One method to mitigate this problem is to load all input data

files at once and process them as one large set of data. However, when processing

large regions such as entire countries, the amount of memory needed to load all files

at once is simply too large for most workstations (Table 6). Therefore, the solution

that was chosen in the context of this project was to load the input files one by

one but merge the data of the new and the existing tile into one whenever identified

instead of overwriting the tile. This means that whenever a tile is about to be written

22

to disk, a check is made to see if the tile already exists. If the tile exists, it is loaded

and merged with the newly created tile before being written to disk. This way, no

matter how many files need to be processed, the memory overhead will be roughly

the same, at the cost of some performance. As for creating the lower level tiles, the

process is quite straightforward. Using higher detail tiles as a source, the meshes

are combined and subsequently reduced. This results in tiles covering the same area

as the source tiles, but containing much fewer vertices, as that kind of detail is not

as necessary when visualizing large areas. This process is repeated for every lower

level until level 0 or for as long as the user has defined.

Data point
density

Area per input
file

Max loaded size Finland memory
requirement

10m 288 km² 57.6 MB 67.7 GB

2m 36 km² 180 MB 1.69 TB

Table 6. Table highlighting the amount of memory needed to keep data in memory.

The area of Finland is approx. 338 440 km²

4.3 Tools

The decision of what tools to use for this project was quite clear from the beginning.

The project was developed for Navielektro Ky and, as such, needed to fit their en-

vironment, which heavily utilizes Java. Beside that, some tools were found during

the development process that proved to be very useful. Thus, the tools chosen for

the development of this project were the following:

• Java

• Maven

• IntelliJ IDEA

• Quantized-mesh-viewer

• Maptiler.com

• Proj4j by locationtech

• Poly2tri

Maptiler.com and quantized-mesh-viewer were some tools found during develop-

ment that ended up becoming essential to the overall development process. Map-

tiler.com provides a digital map that properly displays TMS tiles, their coordinates,

23

and other useful information such as the bounds of the tile in WGS84 coordinates.

This tool was vital when implementing the TMS system into the project, and to ver-

ify that the implementation was able to accurately index tiles. The tool also proved

to be useful when there was any need to find the coordinates of specific tiles during

debugging.

Quantized-mesh-viewer is an open-source project on GitHub that includes a Quan-

tizedMesh implementation for the CesiumJS JavaScript library, as well as a Quan-

tizedMesh tile debugger. The debugger can be used to inspect individual tiles on

a deeper level. It includes features such as visualization of a wire mesh, triangle

planes, vertices, edge vertices, and more. This tool was vital when implementing

the mesh creation component of the application in order to see if tiles are displayed

as intended.

24

Chapter 5

Project Implementation

5.1 QuantizedMesh I/O

The first part of the project entailed implementing an encoder and a decoder for

the QuantizedMesh format in Java. This would preferably have been avoided, but

as there were not any readily available open-source implementations of the Quan-

tizedMesh format for Java, there were unfortunately no other options. However,

implementing the encoder and decoder proved to be especially useful in gaining a

better understanding of the format right from the onset of the project. The expe-

rience gained during the format’s implementation informed many of the decisions

that were made during development. Aside from the experience, another positive

aspect of implementing the format is the direct ownership of the code.

A slightly troublesome detail of the implementation of the format was the choice

of programming language. The QuantizedMesh format contains plenty of unsigned

variables which, unfortunately, Java does not support. However, despite this being

the case, it is still possible to work with unsigned values in Java, but they must be

stored in a data type at minimum one size larger. For instance, an unsigned short (2-

byte) must be stored in a regular integer (4-byte) so as not to lose any information.

Luckily, Java does provide some functionality to perform these conversions, but it

remains far from ideal. While this does increase the memory usage of the program,

not all benefits of using unsigned data types are lost. QuantizedMesh files stored

on disk or transferred through the internet still benefit from being encoded using

smaller unsigned data types as it reduces the size of each file to some degree.

The decoder ended up being implemented before the encoder. The motivation be-

hind this decision is that this was the starting point of the development process, and

at the time there was no way to produce any proper data. Therefore, by implement-

ing the decoder first, it could be used to load sample ".terrain" files that could then

be used as testing data when implementing the encoder. When implementing the

decoder, multiple open-source QuantizedMesh decoders written in other languages

25

were used as references to verify the validity of the decoded results. As for im-

plementing the encoder, it became necessary to build a small tool to identify the

differences between the original sample ".terrain" file and the newly encoded file.

The tool would report the byte position at any instance where the two files did not

perfectly match. By utilizing this tool, it became much easier to identify bugs dur-

ing development.

5.2 Input data

The main format of the input data used in the application is ASCII grid, which is

a non-proprietary version of the Esri grid format. As the name implies, the format

is grid based and primarily used for storing elevation data. All cells in the grid are

of equal size and are able to store one value. The format is entirely text-based and

does not use any special method of encoding. As for the contents of the format, it

contains a header, which covers the first six lines of the file, and a segment of raster

values for each cell, delimited by single space characters (Fig. 9). The header con-

tains metadata for the file. It includes parameters for the size of the grid, measured

in columns and rows, and the size of each grid cell, defined in meters. Calculating

the coordinates of the cells (bottom left corner of each cell) is quite straight-forward

as well. The header contains parameters for the X- and Y-origin coordinates, and

by knowing the size of each cell, take the x and y position of the cell in the grid,

multiply them by the cell size, and add the results to the X- and Y-origin. Finally,

the header contains a value for signifying that a cell has no data. If any cell contains

this value, the cell is empty or contains some null data.

26

Figure 9. ASCII grid format.

The red segment are the six lines representing the header.

The black segment is the grid cell values.

Parsing the data is fairly straight forward. As the header of the file always follows

the same format, it can be assumed that the first six lines always contain the header,

which can easily be parsed by removing white spaces on each line and splitting

them accordingly to extract the required values. As for the grid of height values, the

section is oriented as it would be when overlaid on a map, with the origin in the bot-

tom left corner and the X- and Y-axis extending to the right and upwards. Parsing

this section entails traversing the grid one line (i.e., row) at a time and extracting the

values from the line by splitting at every space character. After extracting the height

values, the coordinate for each cell is properly offset as explained in the previous

segment. In this case, the coordinate data that these values represent is format-

ted to the ETRS-TM35FIN system. This is the official coordinate system used for

anything regarding land maps localized to the country of Finland. The coordinate

system uses UTM coordinates, which have to be converted into latitude/longitude

coordinates in order to conform to the specifications of the QuantizedMesh format.

When performing the conversion, the horizontal datum used for the output coordi-

nates have to be taken into account. In this case, the desired output coordinates are

formatted according to WGS84. In practice, UTM coordinates were converted into

WGS84 by using the Proj4j library. However, this only converts the X- and Y-axis

of the coordinate. Additionally, the vertical datum also has to be taken into account,

or it will lead to the QuantizedMesh tiles containing incorrect height data. This

process is a bit more complicated than the horizontal conversion, as a valid geoid is

needed to correctly offset the height. The height values supplied in the input data are

measured as meters above the mean sea level around Finland. However, as WGS84

coordinates specify height values over the reference ellipsoid, these values have to

27

be offset by the height of the geoid at that point. However, producing intuitively

useful data representing the geoid is easier said than done. Although geoids are

distributed to the public by various government agencies, they are usually not sup-

plied in any useful form. Thankfully, the NGA (National Geospatial-Intelligence

Agency), a US government agency, provides code to produce a .csv file from a ref-

erence geoid. By utilizing this data as a source, it is trivial to create an interface to

sample the geoid height at specific lat/long coordinates. The height values sampled

from the geoid are then used to offset the height over mean sea level to produce the

proper ellipsoid height of the coordinate.

5.3 Data segmentation

5.3.1 First look

When segmenting the input coordinates into their respective locations, there were

a few different ideas that needed to be explored in order to have the correct spread

of data available during the mesh creation process. The main idea is to place coor-

dinates into the correct TMS tile according to the location given by the coordinate.

As previously mentioned, there is no guarantee that the transformed input data is

aligned with the TMS grid. This unfortunately means that the input data, which

is stored in standard arrays, cannot be split into segments using array indices as

the collection essentially functions as a set of points. Instead, to guarantee that the

correct coordinate is placed into the correct TMS tile, every coordinate needs to

be checked individually to verify its location. Processing the data in this manner

results in a set of TMS tiles containing coordinates that exist within the perimeters

of the tile.

5.3.2 The problem with gaps

While the above method accomplishes the goal of segmenting coordinates into their

respective tiles, it fails to address a major issue, i.e., enabling the preservation of the

edges of the tiles. Preserving the edges of tiles is important for properly representing

the geometry and plays a large part in the overall complexity of the project. At

this instance, because the input data is not necessarily aligned with the TMS grid,

coordinates rarely exist perfectly on the edges of the tiles. This results in large gaps

between meshes, which compromises the quality of the final QuantizedMesh tiles

(Fig. 11).

28

Figure 11. Gaps between QuantizedMesh tiles without preserved edges.

Tiles displayed in Cesium.

Currently, the segmented collections of coordinates are completely independent of

one another. This is positive as it allows for easily processing tiles in parallel with-

out any major complications. However, this also means that during the processing

of tiles in the mesh creation stage, there is no way of accessing neighboring tiles

to "stitch" them together and remove the gaps. As this is a two-part issue, starting

with how data is segmented and concluding with how that data is processed, it was

necessary to analyze what kind of information is required to stitch the tiles together.

In most cases, coordinates do not exist perfectly on the edges of tiles, but that data

is still required to properly construct the mesh. Therefore, if the coordinates right

outside the tile’s perimeters are known in addition to those inside the bounds, the

points existing perfectly on the edges can be interpolated. This means that the cur-

rent method of segmenting the coordinates must be expanded upon to also check

where in a given tile a point is located, and if that point should be copied to any of

the neighboring tiles.

5.3.3 Algorithm extension

To implement the new coordinate segmentation requirements, two additional bounds

were added to every tile: the inclusion bounds and the exclusion bounds. These

two bounding boxes are defined in relation to the previously established TMS tile

29

bounds by either adding or subtracting a small offset to its origin and dimensions.

The inclusion bounds define an area that surrounds the actual area of the tile, while

the exclusion bounds exist within the tile (Fig. 12).

Figure 12. The additionally defined TMS tile bounds and their coverage.

The purpose of these new bounding boxes is to be able to categorize coordinates in

relation to a tile. A coordinate is always added to at least one tile. When that coor-

dinate exists within the exclusion bounds of a tile, then the coordinate only belongs

to that specific tile and should not be evaluated further. When a coordinate exists

inside the tile bounds but outside the exclusion bounds, the coordinate belongs to

that specific tile, but should be further evaluated to check if it also exists inside the

inclusion bounds of any neighboring tiles. If it does, then the coordinate should be

added to those tiles as well (Alg. 1). While the inclusion bounds are required for

finding coordinates around the perimeter of tiles, the exclusion bounds are optional.

Its actual purpose is to avoid performing expensive checks on neighboring tiles for

every coordinate. Considering that most coordinates are located inside the exclu-

sion bounds, it results in quite a performance gain, reducing the segmentation time

by approx. 50%.

30

function PLACECOORDINATE(Coordinate, Zoom)

Tile← GetTileForCoordinate(Coordinate,Zoom)

Add Coordinate to Tile.Coordinates

if Coordinate not within Tile.ExclusionBounds then
for each NeighborTile do

if Coordinate within NeighborTile.InclusionBounds then
Add Coordinate to NeighborTile.EdgeCoordinates

end if
end for

end if
end function

Algorithm 1. How each coordinate is placed into the correct tiles.

Now that all coordinates have been segmented into the correct tiles, there is but one

final piece of information missing: the minimum and maximum height of the co-

ordinates present in each tile. Thankfully, this information can easily be calculated

while performing the coordinate segmentation. Whenever a coordinate is regarded

as belonging to a tile and subsequently added, its height is compared to the current

minimum and maximum height recorded in the tile. If the height of the coordinate

is less than that of the current minimum of the tile, the value is replaced. Similarly,

if the height is greater than the current maximum, the value is replaced. Once the

data segmentation is finished, every relevant tile that is now ready to be processed

contains the following information:

• Coordinates inside the tile

• Coordinates around the perimeter of the tile

• The minimum and maximum height of the coordinates present inside the tile

• The bounds of the tile (x, y, width, height), in WGS84 format

31

5.4 Mesh creation

Once all points have been segmented into their correct tile, the mesh creation pro-

cess can begin. All collections of segmented points are completely independent of

one another, which allows for easy parallelization of this section of the pipeline.

Parallelizing the process can lead to great speedups depending on the number of

cores available in the CPU. On a modern desktop CPU, featuring six cores and 12

threads, a speedup of a factor of around three was achieved. This speedup is quite

significant, as the time to process very large areas, such as entire countries, can still

be up to several hours.

Currently, the points are using latitude and longitude for the X- and Y-axis. Lon-

gitude values are defined as decimal values in the range of -180.0 to +180.0, while

latitude covers the range -90.0 to 90.0. However, the Z-axis, which contains height

values, has no range of values to adhere to. This means that variations in the Z-axis

can be much larger than in the X- and Y-axis, which can potentially lead to inconsis-

tencies during triangulation as all three axes are not scaled to one another. To miti-

gate this issue, the axes are normalized to the range [0,1] by utilizing the minimum

and maximum values that were computed during the data segmentation process. As

the normalization of these values has to be performed regardless, scheduling the

process to occur before triangulation rather than after solves the issue and avoids

any expensive scaling operations.

5.4.1 Triangulation

Triangulation is the process of calculating how points are connected to one another.

The results of these calculations is what is used to create the index data section of

QuantizedMesh tiles. Essentially, triangulation is the process of creating a mesh

from a set of points/coordinates. While there are many different methods of trian-

gulation, one commonly known algorithm is "Delaunay triangulation", named after

Boris Delaunay, a Soviet mathematician who made important contributions to the

topic from 1934 onward[1]. As standard mesh triangulation is a heavily researched

topic with a great deal of available open-source software resources, there was no

reason to implement the triangulation algorithm from scratch. Therefore, to avoid

any potential bugs and speed up the overall development process, the Java version

of the open-source library "Poly2Tri" was chosen as the triangulation library for

this project. The library implements a triangulation algorithm based on the paper

"Sweep-line algorithm for constrained Delaunay triangulation" by V. Domiter and

32

B. Zalik[3].

The normalized point data is handled by the library as a point set with no pre-

existing connections or relations. After triangulation, the user can access informa-

tion about the finished mesh, such as triangles present in the mesh, the points that

make up those triangles, and the indices of those points. This data is later used as

input for constructing the different segments of the QuantizedMesh tile.

5.4.2 Edge preservation

Preserving the edges of tiles is a major component of the mesh creation process. As

mentioned in section 5.3.2, the issue with not properly preserving the edges of tiles

is that it results in tiles not lining up in the correct manner and leaving large gaps

between the tiles. This is not only visually jarring when viewing terrain tiles but

can also cause inconsistencies when using the data for analysis. Therefore, elim-

inating the gaps between tiles is of utmost importance. As previously mentioned,

the solution to this issue is a two-step process, starting with how data is prepared,

and concluding with how it is processed. At this stage, every relevant tile contains

a list of coordinates that exist inside the tile, as well as another list of coordinates

around the perimeter of the tile. The reason for collecting coordinates existing out-

side the tile was to utilize them to interpolate any coordinates that exist precisely on

the edge.

The idea is to triangulate all coordinates into a mesh that, in the X- and Y-axis,

slightly extend past the bounds of the tile. The next step would be to find all trian-

gles in the mesh that cross the border of the tile in any manner. The points that make

up these triangles can then be used to define vectors originating inside the bounds

of the tile and extending outwards. These vectors can then be utilized to find the

intersection point on the border of the tile. Although the concept itself does not

necessarily require anything extraordinary to be implemented, there are many pit-

falls that need to be considered, especially the implementation of various geometric

equations(Fig. 13).

33

Figure 13. Interpolating points that appear on the edge of the tile.

The triangle mesh is not aligned to the TMS grid.

Triangulating the coordinates results in a list of triangles present in the mesh. To

find the triangles that cross the edge of the tile, the triangles are investigated one

by one. The points that make up these triangles are checked to establish whether

they are located inside or outside the tile perimeters. When a triangle contains some

points on the inside and some on the outside, it means that the triangle crosses the

perimeter. By keeping track of the inside and outside points, it is possible to identify

all pairs of points that make up lines which are guaranteed to cross the border. These

pairs of points can be utilized to define vectors that originate inside the bounds of

the tile and extend outwards. The inside points serve as the origin of the vector

while the outside points are used to set the direction of the vector. Conveniently,

as all points are normalized to the bounds of the tile, it can be assumed that the

axes of the tiles range from 0 to 1. This information is utilized to define the planes

and normals of a box that surrounds the perimeters of the tile. Now all that is left

is to calculate the intersection between the vectors and bounding box planes. The

resulting point of intersection is a point that exists precisely on the edge of the tile.

This process is repeated until all triangles have been investigated.

While this method works perfectly to interpolate the points that exist on the edges,

it fails to find the points located at the corners. It is vital that the tile, when ob-

served from above, is a perfect square. Without the corner points, there will be

gaps between tiles where the corners meet. To solve this issue, whenever a triangle

34

is confirmed to cross an edge, an additional check is made to see if any of the four

corners of the tile exists within the triangle. The method that was chosen for solving

this issue is quite elementary. First, the area of the triangle is calculated. Secondly,

three new triangles are created by connecting the corners of the original triangle

to the point of interest. If the sum of these three areas is equal to the area of the

original triangle, it can be confidently stated that the point of interest exists inside

the original triangle.

If, as a result of the corner check, a corner of the tile is confirmed to pass through

the triangle, then an additional calculation needs to be performed to find the point

of intersection. Fortunately, in this case, there is quite a bit of information that can

be utilized to aid in finding the point. First, the triangle provided by the previous

step is confirmed to exist on the corner. Secondly, the X- and Y-coordinates of each

corner are known. By utilizing this information, the following equation can be used

to find the Z-coordinate of a point on the triangular plane:

When the following parameters are known:

• Points A, B, and C of a triangle confirmed to exist on the corner

• X- and Y-Coordinates of the corner/intersection point

The following formula can be utilized:

z = Az +
(Bx−Ax)(Cz−Az)− (Cx−Ax)(Bz−Az)

(Bx−Ax)(Cy−Ay)− (Cx−Ax)(By−Ay)
(y−Ay)

−
(By−Ay)(Cz−Az)− (Cy−Ay)(Bz−Az)

(Bx−Ax)(Cy−Ay)− (Cx−Ax)(By−Ay)
(x−Ax)

Once the point of intersection is known, the point is saved in the same manner as the

other interpolated points, which in conjunction with one another, form the border of

the tile and coincide with the edges of neighboring tiles, thus eliminating gaps.

35

Figure 14. Interpolating points that appear on the edge of the tile.

Tiles displayed in Cesium (height exaggerated by factor of 10).

5.4.3 Mesh merging

As input files are handled one by one, there are multiple instances per file where the

resulting QuantizedMesh tiles are on the edge of the area that the coordinates cover.

This means that many tiles are only partially covered by points as the remaining

points need to be sourced from another file. To complete a partial tile, multiple

instances of that tile containing various parts of the final mesh need to be merged

into one. In practice, whenever a mesh is about to be written, a flag is checked to

see if the tile should be overwritten or merged. In the case that the tile should be

merged, only a few steps need to be performed. First, the existing tile needs to be

loaded, secondly, the tiles are merged into one, and finally, the tile is overwritten.

As it is only possible to create one instance of a tile from any given input file, only

at most two tiles will ever be merged at any point in time.

36

Figure 15. Interpolating points that appear on the edge of the tile.

Tiles displayed in debug viewer.

While this method does introduce a small performance overhead by loading and

merging tiles, it allows for processing one input file at a time and using much less

memory. The merging operation begins by loading and decoding the existing tile

that is to be merged with the current tile instance. It then proceeds by denormalizing

the height values of the vertices from both tiles back into their original values. The

reason for performing this step is due to the fact that both tiles have been normal-

ized according to the maximum and minimum height of their own set of vertices

which most likely differ. If the vertices were combined into one set of points and

triangulated, the final mesh would not properly reflect the actual terrain. For in-

stance, in the case that one part is normalized according to the range of 15 to 30,

while another part is normalized to the range of 10 to 100, the part of the mesh with

a smaller range will have its height scaled incorrectly when merged with the other

part. However, if all height values are denormalized back into their original form,

they can then be renormalized using an updated height range and thus retain the

shape of the terrain. Once the points have been denormalized, they are placed into a

combined set. Additionally, as these tiles have already been processed before, there

is no need to interpolate the points on the edges once again. Finally, the collections

of points are processed by the mesh creation pipeline as per usual, without the in-

terpolation stage activated. At this point, the two tiles have been merged into one

which replaces the old partial instance of the tile.

37

5.4.4 Mesh sampling

Up until this point, everything that has been covered pertains to how the initial high-

est level of tiles is created, modified, and optimized. This covers the first segment

of the design presented in the previous chapter. However, to complete the second

and final segment, all other layers of tiles have to be created as well. While there

are many different ways to achieve this, the method used in this project was based

on relying on previously computed data. By sampling previously constructed tiles,

it eliminates the need for converting coordinates, segmenting them into tiles, inter-

polating edges, and finally optimizing the mesh.

In the TMS system, for each increase in the level of zoom, each tile is subdivided

into four smaller tiles. In the same manner, when decreasing the level of zoom, four

smaller and higher detail tiles can be used as a source to construct one new tile.

Therefore, by combining tiles that have already been constructed into larger tiles, it

is possible to skip most of the work needed to create a brand-new tile. However, the

detail that needs to be established, is how to know which larger, lower detail tiles en-

compass the tiles that have already been created. This issue was solved by utilizing

the way that TMS tiles are saved on disk (Zoom/X/Y.terrain). By walking through

all files of a specific level of zoom and checking their paths, the coordinates of all

tiles are simple to extract. Each tile will have a path that looks somewhat like the

following: ./tiles/15/18420/23305.terrain. From this path, the X- and Y-coordinates

are extracted and used to calculate the X- and Y-coordinates of the encompassing

tile by dividing the coordinate values by a factor of two, multiplied by the number

of steps between the levels of zoom. By performing this check on all file paths for

the level that is being sampled, a set of keys for the new tiles has been created. Now,

each key can be used to know which source tiles should be sampled to construct that

tile. Conveniently, as each source tile only belongs to one encompassing tile, the

notion of parallelizing the computation becomes quite intriguing. This is due to the

fact that there will naturally be no data overlap between tiles and no risk for any

collisions anywhere while sampling.

When all the necessary source tiles that are needed to build the new tile are loaded,

the sampling process begins. The data in all tiles is normalized to the range 0 to

32767. Thus, if the vertices of the source tiles are naively combined, the resulting

tile will contain the data from all four tiles stacked on top of each other. To avoid

this, the X- and Y-coordinates of all vertices are divided by two. That way, each

source tile covers a fourth of the new tile. Additionally, the vertices of the source

38

tiles that are not located in the bottom left of the encompassing tile will gain an

offset of 16383 to one of both of the X- and Y-axes. By performing these trans-

formations, the vertices are now in the correct locations. However, as it currently

stands, the inner edge vertices of the source tiles create a cross through the cen-

ter of the new tile where the source tiles would usually line up. To mitigate this,

all inner edge vertices are removed. As the vertices were virtually all interpolated

from actual points, removing them does not impact the overall shape of the mesh.

Removing these points allows us to reduce the file size of the new tile somewhat.

Up until this point, the vertices are in their correct locations, and redundant vertices

have been removed. Now comes the question of how many of the remaining vertices

are to be removed, as keeping all of them would increase the overall resolution of

the new mesh significantly. The point of using a TMS-based system is to be able to

switch out tiles depending on the level of zoom to best fit the situation. This means

that tiles with a lower zoom cover a larger area but contain less detail. However, to

make the transitions between zoom levels less jarring, all tiles, no matter the level of

zoom, should contain around the same number of points. Thus, by removing 75%

of the source vertices, the resolution of the tile remains the same as the source tiles,

but the area that it covers is four times as large.

Figure 16. Sampling of higher detail tiles.

Tiles displayed in debug viewer.

39

5.5 Mesh optimization (TIN)

A Triangulated Irregular Network(TIN) is a mesh consisting of irregularly spaced

points where vertices that do not provide much additional information to the overall

shape are discarded. As for why this is relevant to this particular project, it primar-

ily comes down to reducing the file size. When converting large areas of terrain

into layers of QuantizedMesh tiles, up to hundreds of thousands of files are cre-

ated. Even small reductions in the file size of each tile can have great impacts on

the overall size. Reducing the original mesh to a TIN mesh allows us to drastically

lower the overall file size while still maintaining the overall shape of the geometry

as well as possible (Fig. 17). How much the file size of each tile is reduced de-

pends on the geometry of the mesh. If the mesh contains many small variations in

the terrain, then the reduction will not be as significant as when the mesh consists

of larger flatter areas. Overall, the average reduction in size that this converter is

able to achieve, is around 73% (Table. 7), which is quite significant. An additional

benefit of reducing the mesh is that it further speeds up the processes that follow the

mesh creation stage. When there are fewer vertices and indices to process, it leads

to major speedups in the creation, encoding, and writing of QuantizedMesh tiles. In

this case, a speedup of around 32% was achieved.

Non-optimized mesh TIN mesh Reduction (%)
Time 67836 ms 46067 ms ≈ 32%

size 292 MB 79 MB ≈ 73%

Table 7. Differences in performance and size between a regular mesh and a TIN mesh.

The experiment was run on the same 4 adjacent input data tiles producing 4431 unique

QuantizedMesh tiles covering six layers (15 to 10). Time is the how long the converter

took to produce the tiles, while Size is the size of the resulting tiles on disk.

The goal is to remove vertices that provide little to no additional information to the

shape of the mesh. The first aspect that needs to be addressed, is which properties of

the mesh can be utilized to decide the value of any given vertex. When displaying a

flat area, there is no need to use a dense mesh, as the shape is simple and there is no

obvious visual improvement gained from increasing the number of vertices in the

mesh. What makes a shape complex are all the sharp edges and crevices present in

the shape. Therefore, by finding the triangles that make up the sharp edges in the

mesh, it is possible to flag the points that make up these triangles as being impor-

tant to the overall shape of the geometry. Points that are not flagged can freely be

removed from the mesh, as they are deemed to not contribute much to the overall

40

shape. The method for finding these important triangles is to compare the angle

between the surface normals of the triangles and their neighbors. This is called the

dihedral angle. A surface normal is a vector that is perpendicular to a plane, in

this case, the triangular plane. If the angle between the normals is above a certain

specified threshold, it means that the two triangles create an edge or crease that is

deemed as having great impact on the shape of the mesh. The points of both trian-

gles are then flagged as valuable and should not be removed during future pruning.

Figure 17. Point density difference.

Visualizing the point density between a non-optimized mesh and a TIN mesh of the same

area.

In essence, calculating the surface normal amounts to calculating the cross product

between two vectors that make up the plane. The cross product (or vector product)

is a vector that is perpendicular to two vectors that exist on the plane. As the rule

A⃗∗ B⃗ = −⃗B∗ A⃗ states, there is a need to differentiate which vector is used as the sur-

face normal. In this case, the vector extending outward is chosen. The only other

requirement applied to these vectors is that they should be linearly independent.

This means that the vectors cannot have the same nor the opposite direction of one

another.

41

First, both plane vectors need to be defined. One method to ensure that the vec-

tors are linearly independent is to use a common point as their origin and subtract

that point from some other point on the plane. Naturally, the points that are used

to calculate these starting vectors are the points that define the corners of the plane.

Once these vectors have been defined, the cross product is calculated in order to

create the surface normal (Alg. 2).

function CALCULATESURFACENORMAL(Triangle)

VectorU ← Triangle.point.B−Triangle.point.A

VectorV ← Triangle.point.C−Triangle.point.A

Normal.X ← (VectorU.Y ∗VectorV.Z)− (VectorU.Z ∗VectorV.Y)

Normal.Y ← (VectorU.Z ∗VectorV.X)− (VectorU.X ∗VectorV.Z)

Normal.Z← (VectorU.X ∗VectorV.Y)− (VectorU.Y ∗VectorV.X)

return Normal

end function

Algorithm 2.

Calculating the surface normal of a triangle.

As established earlier in section 5.4.2, for each tile that is processed in the Quan-

tized Mesh creation pipeline, each triangle in that mesh is investigated at some

point. However, now in addition to interpolating edge and corner points, the surface

normal for each triangle is also calculated and compared with the surface normal of

each of the triangle’s neighbors to find the dihedral angle. If the angle is sharp, then

both triangles whose surface normal was used in the calculation are placed into a

protected set of triangles. During a later stage of the pipeline when unwanted tri-

angles are pruned, the triangles in the protected set are not processed. As for the

pruning stage, while it would be feasible to remove every triangle that is not in the

protected set, it requires considerable adjustment of the dihedral angle threshold to

produce good results. There is a tendency to remove either too many points or not

enough, as the results can differ greatly depending on the input topography. When

too many important points are not correctly flagged and therefore removed, the over-

all shape of the tile can be significantly altered. When too few points are removed

overall, while the shape of the tile is kept intact, there are too many redundant points

remaining, leading to unnecessarily large file sizes. To mitigate this issue, there is

a need for some leeway. If the dihedral angle threshold is set to effectively remove

42

too many points, instead of immediately removing them, the pruning routine can

be configured to remove each point with e.g., a 90% probability. While this will

ultimately remove most unprotected points, it results in a somewhat uniform dis-

tribution of points throughout areas of the tile that would otherwise be completely

empty. This leaves slight variations in flatter areas with points that would have been

regarded as insignificant by the angle check, which gives a more natural look to

the terrain. However, as this means that the mesh contains a few more points, the

file size is also slightly larger. While it is of course up to the user to decide if this

tradeoff is worth it, largely, the increase in fidelity is worth it for most, given the

small cost.

43

Chapter 6

Algorithm scalability analysis

6.1 Overview

While performance was an important aspect during development, the main issue to

solve was the memory usage scalability of the algorithm. It should be capable of

handling vast amounts of elevation data, which, in order to not run out of memory,

would require that the algorithm maintains minimal state. To eliminate the need to

maintain state, the algorithm should be indifferent to the data that it is processing. It

should therefore be possible to process input data in an arbitrary order and still pro-

duce the same results. With these rules in place, input data can be loaded, processed,

and discarded without regards to other data, eliminating the need to maintain this

type of information. With these considerations in mind, the time complexity of the

algorithm would scale according to the total number of points processed, given that

the terrain complexity remains somewhat similar throughout the data set. Memory

usage remains constant during processing.

6.2 Data collection

The algorithm presented in this thesis consists of many parts, but can generally be

segmented into three different areas of processing. Namely, segmentation, mesh

creation, and tile completion (using the results of the other steps to producing the

tile). The mesh creation phase contains many different sections itself, such as tri-

angulation, TIN optimization, and normalization. Collecting the necessary data re-

quired for performance analysis entailed measuring the elapsed time for these tasks

for each produced QuantizedMesh tile. All measurements are then combined to find

the average for each measurement. In this case, finding the average was preferred

as the vast majority of tiles contain roughly the same number of points. The tests

included producing tile levels 15 to 10 using increasingly larger samples of input

data tiles from the same set of tiles. While these tiles were quite similar to each

other in terms of size and terrain, there were some small discrepancies which lead

to slight variations in the test results. Therefore, the results were scaled to the av-

44

erage number of points per tile across all tests in order to reduce these variations as

much as possible.

6.3 Results

Using samples of 6, 12, 25, 50, and 100 input data tiles, the total processing time is

shown to grow linearly (Fig. 18). This is to be expected, as the creation of each tile

is its own independent action, given that the input data tiles are roughly of similar

size. What these results show is that depending on how much data is provided to

the algorithm, the execution time grows in proportion.

Figure 18. Total processing time of the QuantizedMesh creation algorithm.

The average tile processing times show where the algorithm spends most of its

time. The three sections that stand out are triangulation, TIN optimization, and tile

completion (Fig. 19). Triangulation and TIN optimization depend on the density of

points in the tile. With high point density, triangulating the mesh takes longer. If the

mesh is larger and more complex as a result of high density, then TIN optimization

takes longer. Tile completion depends on how many points the TIN mesh contains,

which varies depending on the terrain of the tile (constant terrain variations lead to

fewer points being removed from the mesh during optimization).

As the results show, the average processing time remains roughly the same as the

amount of input data increases (Fig. 19). This further proves that processing indi-

vidual tiles is an independent operation not influenced by any outside factors.

45

Figure 19. Average processing time of sections in the QuantizedMesh creation algorithm.

46

Chapter 7

Discussion

This chapter will serve as a discussion about the topics covered throughout this the-

sis. The main focus will be on the more challenging problems and their solutions

that were encountered during the development of the project. To begin the discus-

sion, let us reiterate what the purpose of the project was, its requirements, and if

those requirements were fulfilled.

The purpose was to create a software tool that is able to convert large amounts

of altitude data into a format more viable for visualization and analysis. As the re-

sulting software tool does indeed produce this data correctly, it can be confidently

stated that this requirement has been fulfilled. However, why was this tool needed

in the first place? While there are readily available tools for producing a myriad of

different geographical data formats, they usually require the user to provide data in

specific formats and coordinate systems. Additionally, most of the available tools

that are able to produce QuantizedMesh tiles are cloud-based. This is unfortunately

not viable, as the converter should be able to work in environments that are restricted

in terms of network accessibility. These factors (among others) considered, makes

it more beneficial to create an in-house tool for the task. While an in-house tool has

more initial costs, and requires further maintenance in the future, it also provides

more control. If there is ever a need in the future to support a new file format or to

implement a new feature, it can be achieved considerably faster in comparison to

requesting said functionality from a third party.

This project proved to be quite challenging, both in terms of design and implemen-

tation. The requirement which became the main challenge during this project, due

to being quite complex and labor-intensive, was the elimination of gaps between

tiles due to the input data not being aligned with the tile grid. The essence of any

solution to the problem was to interpolate points using the provided data to keep

the edges straight. In this project, the chosen solution was to interpolate the points

by finding the intersection between lines crossing the edge of the tile. These lines

were defined by linking together points on both the inside and outside the tile. As

for the corners, the points were generated by calculating the z-coordinate of a point

47

on a triangular plane at the corners, given the x- and y-coordinates. While this so-

lution managed to produce some good results, a great deal of uncertainty remained.

Is this solution fast or slow? Could the same results have been produced using

a simpler method? Another solution to the problem, which was theorized by Jan

Westerholm, the supervisor of this thesis, was to deal with the issue of misaligned

data by interpolating coordinates to fit the tile axis first, and then further process

the coordinates into tiles. Using that method, the process of segmenting coordinate

data into the correct tiles could have been much faster, as coordinates would not

need to be checked one by one to verify which tile they belonged to. Instead, they

could be segmented in bulk, leading to a potential performance gain. Additionally,

the implementation would be easier to understand for someone not as familiar with

the ins and outs of this project, as some steps in the pipeline could be removed. The

drawback is that it would use more memory, as it needs to keep multiple input data

files loaded to fully cover the area of the tile currently being processed. Addition-

ally, unless tiles were processed in an efficient order with some predictive caching

mechanism, thus a minimal need to constantly load new data, an additional over-

head caused by file reading operations would be introduced. The takeaway of this

would be that while both methods have their fair share of advantages and disadvan-

tages, combining some aspects of each method could produce overall better results,

mainly in terms of performance. However, by the time of writing this thesis, there

is unfortunately no definitive answer as to which method or combination of meth-

ods would produce the best results, as there is no previously established reference

implementation.

48

Chapter 8

Conclusion

Maps are an invaluable tool in modern society and have been for thousands of years.

While all maps provide some geographical information, some types of maps are

unable to convey the required information accurately enough depending on the use

case. In this particular situation, the requirement is primarily to be able to perform

calculations using altitude at varying scales. However, the desired format to be used

for this purpose is unfortunately not distributed by local land surveying organiza-

tions. Additionally, for the data that is distributed, there are no readily available

tools for converting said data to QuantizedMesh tiles. Therefore, the solution was

to build this tool from the ground up, in order to transform the available altitude

data into tiles.

When starting the project, it was vital to gain an adequate understanding of map

projections, coordinate systems, and how they relate to one another. This knowl-

edge was very important, as it enabled thinking about the problem at hand much

more freely and allowed for designing the application around these requirements

and restrictions. It also aided in understanding the thought behind the different pa-

rameters of the tile-based QuantizedMesh format. As for the format itself, it proved

to be a somewhat involved process to implement the encoder and decoder. This

was mainly due to understanding and implementing the different compression algo-

rithms in use in the format and the meticulous verification of the results. However,

as this stage of the project was completed, it became clear what kind of data is

needed and how it needs to be structured in order to properly produce tiles. These

requirements played a significant role in the design of the project.

Designing the pipeline for how raw input data is processed and transformed into

QuantizedMesh tiles of different levels was quite complicated, but proved to be

a good exercise in problem-solving. It mainly required identifying the core chal-

lenges of the problem and dividing them into smaller tasks that could be isolated

and implemented separately. Initially, the main issue proved to be the processing of

massive amounts of data too large to fit into working memory all at once. Data from

one file could be spread over multiple output tiles which themselves may contain

49

data found in other input data files. As the files cannot all fit in working memory at

once, it was not possible to create tiles from one unified source data set. Therefore,

the implemented solution was to handle input files one by one, but merging data of

those output tiles whose content was not mutually exclusive. Finally, these gener-

ated output tiles would then be used as a source to sample from when creating the

less detailed tile layers.

However, this was not the most challenging problem of the project. That award

goes to eliminating gaps between tiles, which turned out to be substantially more

complicated than anticipated. In this project, the method to eliminate gaps contains

a several steps. First, we gather points that exist inside and right outside the borders

of the tile. Secondly, we use those points to generate a mesh that extends out past

the bounds of the tile. Third, we find all points of intersection between the borders

of the tile and the mesh, discarding all other points outside the bounds of the tile.

Finally, we use that collection of points to create the final version of the tile, having

eliminated any occurrences where the edge of the tile mesh did not line up with the

border of the tile bounds.

The different aspects of these problems could all be further divided into seemingly

smaller and smaller tasks. This ended up providing a greater understanding of the

problem at hand, as well as a clearer path through the implementation phase of the

project. However, the solutions to these problems were not clear from the start,

and even when the actual ideas became clearer, they still required a fair number

of iterations to properly apply. Overall, the largest amount of time was spent iter-

ating upon and tweaking the gap elimination and mesh optimization passes of the

pipeline. While the current result is quite satisfactory, there could still be some im-

provements in quality and efficiency, e.g., further reducing redundant points in large

flat areas such as bodies of water.

Although the design and implementation of the project required considerable thought

and many iterations, the result was satisfactory. The project was successful in per-

forming the task as per its requirements. While challenging, the design and imple-

mentation phase of the project provided valuable hands-on experience in building a

complicated piece of software from the ground up.

50

Chapter 9

Generering av kvantiserade nät -
Svensk sammanfattning

Kartor är ett ovärderligt verktyg i dagens samhälle och har varit det i tusentals

år. Även om alla kartor förmedlar någon slags geografisk information, klarar vissa

typer av kartor inte av att förmedla den efterfrågade informationen tillräckligt nog-

grant beroende på användningsfallet. I det här specifika fallet är kravet främst att

kunna utföra beräkningar med hjälp av höjddata på olika skalor. Tyvärr är det

önskade formatet för detta syfte inte tillgängligt på lokala lantmätningsorganisa-

tioner. Dessutom finns det inga tillgängliga verktyg för att konvertera dessa data till

QuantizedMesh-rutor. Lösningen var därför att bygga detta verktyg från grunden

för att producera rutorna med hjälp av tillgängliga höjddata och möjligtvis övriga

format såvida behovet uppstår.

När projektet att designa och utveckla detta verktyg inleddes var det viktigt att

få en tillräckligt bra uppfattning om kartor, kartprojektioner, koordinatsystem och

hur de förhåller sig till varandra. Denna bakgrundskunskap var mycket viktig för

att verkligen förstå problemet och designa applikationen med hänsyn till dess krav

och begränsningar. Bakgrundskunskapen var även nödvändig för att förstå tanken

bakom de olika parametrarna i QuantizedMesh-formatet. Formatet i sig själv är väl

upplagt och det enda som till en början var något utmanande var implementationen

av dess kodare och avkodare, eftersom många sektioner i formatet använder sig av

diverse metoder för datakompression. Efter att detta skede av projektet var färdigt

blev det klart vilka data som egentligen behövs för att producera dessa filer, vilket

hade stor inverkan på projektets design.

Att komma fram till en pipeline hur källdata bearbetas och omvandlas till QuantizedMesh-

filer med varierande detaljnivåer var ganska komplicerat. Det krävde att identifiera

problemets grundläggande utmaningar och dela upp dem i mindre uppgifter som

kunde isoleras och behandlas separat. Huvudproblemet visade sig vara de enorma

datamängderna som måste behandlas. Mängden data som krävs för att represen-

tera stora områden, t.ex. länder, är för stor för att samtidigt rymmas i arbetsminnet

51

på en modern arbetsstation. Koordinater från en fil källdata kunde vara utspridda

över flera outputfiler som i sig själva kunde innehålla koordinater från andra käll-

datafiler. Eftersom alla filer inte ryms i arbetsminnet samtidigt var det inte möjligt

att producera output filer från en enhetlig datauppsättning. Den slutliga lösningen

var att hantera källfilerna en efter en, och att sammanfoga data från de resulterande

outputfilerna vars innehåll inte var ömsesidigt uteslutande. Slutligen används dessa

output filer som ny källdata när de mindre detaljerade detaljnivåerna skapas.

Detta var dock inte det mest utmanande problemet i projektet. Det visade sig att

eliminera glappet mellan QuantizedMesh-rutorna var betydligt mer komplicerat än

alla andra problem som påträffades. Metoden som användes för att eliminera glap-

pet innehåller flera olika steg. Först samlar man in punkter som befinner sig precis

utanför rutans gränser. Sedan användes dessa punkter i kombination med tidigare

insamlade punkter för att generera en mesh som sträcker sig utanför rutans gränser.

Därefter ska man hitta alla skärningspunkter mellan meshens och rutans gränser

samt kasta bort alla övriga punkter utanför gränserna. Slutligen användes denna

samling punkter för att skapa den slutliga versionen av meshen för denna specifika

ruta, efter att ha eliminerat alla förekomster där meshens gränser inte ligger i linje

med rutans gränser.

De olika delmomenten i dessa problem kunde alla delas upp i allt mindre uppgifter.

Detta ledde till att man fick en bättre uppfattning av problemet och en tydligare

plan genom implementationsfasen av projektet. Lösningarna till dessa problem var

dock inte klara från början, och även efter att idéerna blev tydligare krävdes det

fortfarande en hel del iterationer för att kunna tillämpa dem på rätt sätt. Totalt

gick största delen av tiden åt till att iterera och justera algoritmerna för eliminering

av glapp och optimering av meshen. Även om de nuvarande resultaten är ganska

tillfredsställande, är det fortfarande möjligt att förbättra både kvaliteten och effek-

tiviteten av algoritmerna. Speciellt på stora flata områden som vattenmassor är det

möjligt att vidare reducera antalet redundanta punkter.

Även om projektets design och implementation krävde mycket genomtanke och

många iterationer, var resultatet tillfredsställande. Projektet var framgångsrikt i sin

uppgift att utföra den specificerade uppgiften enligt kraven till en bra nivå. Pro-

cessen visade sig även vara mycket givande i och med att den möjliggjorde mycket

värdefull praktisk erfarenhet att designa och implementera en komplicerad applika-

tion från grunden.

52

References

[1] B. Delaunay. “Sur la sphère vide. A la mémoire de Georges Vorono¨ . In:

Bulletin de l’Académie des Sciences de l’URSS. Classe des sciences math-

ématiques et na 6 (1934), pp. 793–800. URL: http://mi.mathnet.ru/

im4937.

[2] The Universal Transverse Mercator (UTM) Grid. 2001. URL: https : / /

pubs.usgs.gov/fs/2001/0077/report.pdf.

[3] V. Domiter and B. Žalik. “Sweep-line algorithm for constrained Delaunay

triangulation”. In: International Journal of Geographical Information Sci-

ence 22.4 (2008), pp. 449–462. URL: https : / / doi . org / 10 . 1080 /

13658810701492241.

[4] Implementation Practice Web Mercator Map Projection. National Geospatial-

Intelligence Agency (NGA), 2014. URL: https://web.archive.org/web/

20141009142830/http://earth-info.nga.mil/GandG/wgs84/web_

mercator/(U)%20NGA_SIG_0011_1.0.0_WEBMERC.pdf.

[5] Heather Smith. Geographic vs Projected Coordinate Systems. 2020. URL:

https : / / www . esri . com / arcgis - blog / products / arcgis - pro /

mapping/gcs_vs_pcs/.

[6] URL: http://dirsig.cis.rit.edu/docs/new/coordinates.html.

[7] URL: https://cgrsc.ca/resources/geodetic-reference-systems/

ellipsoidal-coordinate-system/.

[8] About Cesium. URL: https://cesium.com/about/.

[9] Paul Bolstad. GIS Fundamentals, 6th Edition. Chap. 3. Geodesy, Datums,

Map Projections, and Coordinate Systems. URL: https://www.dropbox.

com/s/t00mopkay3jdsrh/Chapter3_6th_small.pdf?dl=0.

[10] Earth Gravitational Model 1996. URL: https://cddis.nasa.gov/926/

egm96/egm96.html.

[11] The Editors of Encyclopaedia Britannica. Projection - cartography. URL:

https://www.britannica.com/science/projection-cartography.

[12] Mercator projection. URL: https://www.britannica.com/science/

Mercator-projection#/media/1/375638/231099.

[13] OpenGL Vertex Specification. URL: https://www.khronos.org/opengl/

wiki/Vertex_Specification.

[14] Quantize Definition. URL: https://www.merriam-webster.com/dictionary/

quantize.

[15] quantized-mesh-1.0 terrain format. URL: https://github.com/CesiumGS/

quantized-mesh.

[16] Theoretical mean water and geodetical height systems in Finland. URL: https:

//en.ilmatieteenlaitos.fi/theoretical-mean-sea-level.

[17] Wavefront .obj description. URL: https://www.loc.gov/preservation/

digital/formats/fdd/fdd000508.shtml.

[18] Eric Weisstein. Vertex. URL: https://mathworld.wolfram.com/Vertex.

html.

[19] What Is a View Frustum. URL: https://learn.microsoft.com/en-us/

previous-versions/windows/xna/ff634570(v=xnagamestudio.42).

54

