
GUI Element Identification with
Semantic Mapping

Evanfiya Logacheva 2001779
Master’s thesis in Information Technology
Supervisor: Ivan Porres Paltor
The Faculty of Science and Engineering
Åbo Akademi University
2023

Abstract

User Interface test automation faces significant obstacles due to test failures connected to
application changes. Additionally, current User Interface testing methods are not context
aware and usage-based, which makes exploring web application functionality challeng-
ing. Robots used for crawling web application interfaces are slow and do not reflect
human interaction with them. Semantic mapping (semantic matching) has been proposed
as a method for reusing existing tests between web applications in the same domain to
mitigate issues with testing speed and context awareness. This thesis explores semantic
mapping for robust User Interface element identification that could alleviate the issue with
test failures upon application changes.

Semantic mapping uses textual cues of User Interface elements neighboring testable
features to identify similar features in other applications of the same domain. This work
argues that the same technique can be applied to various versions of the same web applica-
tion. Existing tools leverage text attributes of features’ neighbors based on the hierarchy
and position of an element, while this study applies semi-supervised learning methods
to extract relevant text from elements surrounding features. It uses state-of-the-art pre-
trained language models for embedding textual cues. To find similar features, it uses
cosine similarity between sentences as a measure of semantic similarity.

This implementation of semantic matching has demonstrated promising results for
User Interface element identification between two versions of the same web application.

Keywords: semantic mapping, semantic matching, user interface testing, test automa-
tion, machine learning.

2

Preface

This thesis was written as part of the AIDOaRt project under the supervision of Professor
Ivan Porres Paltor. I would like to thank Professor Ivan Porres Paltor for providing guid-
ance and support during the writing process.

Evanfiya Logacheva

May 2, 2023

3

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Structure of the Thesis . 3

2 Background 4

2.1 Automated GUI Testing . 4

2.2 Semantic Mapping for GUI Testing . 6

2.2.1 Evaluating Similarity Based Tools 8

2.3 Machine Learning . 9

2.3.1 Self-Organizing Maps . 10

2.3.2 Label Propagation and Label Spreading 13

2.4 Text Representation and Semantic Similarity 14

2.4.1 Word2Vec . 17

2.4.2 Context-dependent Embeddings 17

2.4.2.1 Sentence BERT Models 20

4

3 Implementation of Semantic Mapping 21

3.1 Parsing the Web Document . 21

3.2 Grouping the Web Elements . 23

3.3 Semantic Mapping . 28

3.4 Results . 30

3.4.1 Parameter Tuning . 30

3.4.2 Semantic Similarity Estimation 41

4 Conclusion 47

5 Summary in Swedish – Svensk sammanfattning 49

Bibliography 52

Appendix A – Parameter Tuning 60

Appendix B – Code 62

1 Introduction

1.1 Motivation

This thesis investigates the topic of Graphical User Interface (GUI) element identification
for GUI testing. The primary goal of the study is to explore methods that could reduce
time and effort associated with GUI testing. Studies [1]–[3] indicate that manual GUI
testing is prevalent despite its high cost, which is explained by intensive effort required
for automated test maintenance. In addition, many existing techniques for automated
testing are time-consuming [4], [5] and not usage-based [4], [6], which leads to some
functionality of applications being left unexplored. For example, users asked to make an
online purchase would follow a simple route of adding products to their cart and paying
for their order. Robots used for testing web applications are not capable of constructing
such a course of actions on their own; instead, they exhaustively crawl applications by
interacting with available GUI elements until they succeed in finding a path that leads
them to completing the purchase [4], [5]. Such time-consuming crawling does not reflect
how users interact with applications. Rau et al. propose a method of semantic mapping
(semantic matching) for reusing existing tests between web applications in the same do-
main to mitigate issues with testing speed and context awareness [4], [5]. They suggest
that once there is a test suite that includes a set of interactions for testing a certain func-
tionality, it can be adapted for another application that has the same functionality, e.g.,
tests for one online store can be reused for another.

Nass et al. [2] argue that there are many challenges that prevent full automation of
GUI tests, one of which is test execution failure after a system under test (SUT) has
been altered. Tests fail due to changes in GUI element locations, and researchers suggest
that robust identification of GUI elements could remedy existing obstacles [2]. Semantic

1

Figure 1: An example of semantically identical web elements

mapping, which is based on semantic similarity between GUI elements, could alleviate
the issue of text execution failure upon SUT changes. It allows context-aware test transfer
between different applications in the same domain [4], [5], [7]–[10], and it is especially
successful when used with applications developed by the same company [6]. Figure 1
provides an example of two user interfaces that allow users to authorize into their account
or create a new one. Since textual features in both of them are semantically similar, for ex-
ample, log in has the same meaning here as sign in, it is possible to identify these elements
as sharing the same functionality. Natural language processing (NLP) provides means to
represent semantic meaning of texts and measure the strength of semantic similarity be-
tween them. Using NLP methods, we can leverage textual content of web elements for
semantic mapping by finding the most semantically similar elements. It is then assumed
that such elements also share similar functionality and can be validated using the same
GUI tests.

In this work, semantic mapping is proposed for matching GUI element locators be-
tween different versions of the same web application within the framework of Continuous
Integration, Delivery, and Deployment (CI/CD). The CI/CD approach emphasizes reduc-
tion of human effort in software testing through automation [11]. Semantic mapping has
the potential for solving certain issues of GUI test automation maintenance and decreasing
associated manual effort through test reuse.

Semantic mapping can be described as a two-step procedure. The initial step involves
identifying what GUI features are to be tested and grouping remaining GUI elements
around them for the purpose of extracting text attributes. Existing techniques for obtain-

2

ing attributes rely on visual web page segmentation [4], [5] and leveraging neighboring
and hierarchical structure of applications [7]–[9], [12]. The procedure may be improved
with an introduction of machine learning methods for GUI element grouping and text at-
tribute extraction. The second step measures semantic similarity between text attributes to
identify the most semantically similar units. Previous studies use older language models
to represent text attributes, while this work relies on state-of-the-art contextual embed-
dings.

This thesis aims to answer the following questions:

1. Are machine learning methods suitable for extracting textual cues from GUI ele-
ments?

2. Do sentence embeddings produced by pre-trained language models provide ade-
quate representation of web element attributes?

3. Is it possible to identify web elements by finding semantically similar groups within
different versions of a web application?

1.2 Structure of the Thesis

Chapter 2 discusses current research in the field of UI testing and obstacles to its automa-
tion. Chapter 2 introduces research on semantic mapping for GUI testing related to this
work. It outlines architecture and methods used in existing tools as well as their evaluation
metrics. It provides a brief introduction of machine learning methods used in this study:
semi-supervised learning algorithms, word and sentence embeddings, and the notion of
semantic similarity. Thus, Chapter 2 includes background information related semantic
mapping.

Chapter 3 describes the design of a semantic mapping implementation step by step
and explains technologies involved in it. It discusses the results of its application on the
example of a small web application and explains the difficulties involved in the execu-
tion of the experiment. Chapter 4 summarizes the findings of the study and introduces
suggestions for future research on semantic mapping.

3

2 Background

2.1 Automated GUI Testing

Banerjee et al. [13] define GUI testing as examining the functionality of a front-end side
of an application by following a sequential order of events through interaction with GUI
widgets. Although testing can be performed manually or automatically, all testing tech-
niques represent sampling of input space, since it contains a large number of executable
event sequences [13]. The authors also state that GUI test oracles are essentially based
on sampling of output space, because its evaluation as a whole is impractical. Automated
testing seeks to emulate human interaction with SUT through software or robotics (or
their combination) and should reduce high cost and effort associated with manual testing
[2]. However, automated tests often break and require alterations anytime applications
undergo changes [1]. As a consequence, testers might choose manual testing over auto-
mated scripts when they are faced with a tight deadline [1].

In spite of a growing body of research on GUI test automation, manual GUI testing is
still practiced, which indicates numerous obstacles to test automation [2], [3], [13]. Nass
et al. [2] have reviewed 49 publications on automated GUI testing and identified common
issues encountered by researchers. The challenge mentioned in the article that is central
to this work is preventing test execution from breaking after application changes. The
authors mention seventeen publications released in the 2010s that report this issue. They
consider this challenge to be essential due to the fact that large-scale SUT alterations
should break test execution. Nass et al. [2] divide SUT changes into intentional, in
case of which tests should be adjusted to them, and unintentional, which are caused by
deliberate modifications but remain unaccounted for in tests. Since small changes can
break automated tests while remaining obscure to testers, the researchers suggest that

4

future work should concentrate on solving issues with unintentional changes.

Nass et al. [2] suggest that robust identification of GUI widgets could improve the
existing situation with test breaks appearing after SUT changes. They consider some fail-
ures to be anticipated, for example, if a widget is missing, while others, e.g., if a widget
is located in another place, are not. Certain proposed solutions for improved accuracy
of GUI element identification focus on harnessing information of surrounding GUI wid-
gets. Nguyen et al. [14] propose a method to locate a target GUI widget using its own
attributes (unique IDs and anchor texts, textual attributes of images and links) or its neigh-
bors’ locators (a candidate locator without numbers or a closest locator containing unique
text). Their experiments show that applications whose structure is stable across versions
benefit from their approach; however, when GUI widgets do not contain the same at-
tributes and are relocated from their initial component, the method fails. They also men-
tion that the approach is not successful when neighbors’ text changes along with GUI
widget attributes. Another solution that leverages surrounding GUI widgets is proposed
by Yandrapally et al. [15]. Their method relies on contextual cues, which are essentially
neighboring labels, e.g., text values of buttons and links. It is, similarly to the technique
proposed by Nguyen et al. [14], vulnerable to label changes and DOM reorganization.

In addition to the challenges described above, Lin et al. [9] and Rau et al. [4], [5]
argue that current testing approaches are not context-aware but use random inputs, which
can prevent exploration of SUT’s functionality. Rau et al. [4], [5] note that exhaustive
crawling of web applications is time-consuming and not representative of how a human
would use an application. They state there is a slim chance that crawling results in discov-
ering a sequence of actions that completes a meaningful task. They provide an example
of how easy it is for users to make an online order by following well-known steps: adding
products to a cart, pressing a checkout button, and paying for it. Crawlers are not aware of
the steps. Instead, they interact with GUI elements until they find a path that leads them
to a desired outcome, which is completing the order in this particular case.

Semantic mapping is a technique proposed to mitigate certain challenges associated
with GUI testing. It relies on semantic similarity between textual attributes of GUI wid-
gets. Since it employs existing GUI tests to generate new ones, it makes test inputs more
contextualized when compared to exhaustive GUI crawling [4], [5]. As semantic map-
ping is not based on unique locators of GUI widgets, it can also help mitigate issues with
automated GUI testing that appear as a result of SUT changes.

5

2.2 Semantic Mapping for GUI Testing

Applications in the same domain often share functionality, which is why their GUIs are
similar. This makes it possible to transfer GUI tests from one application to another or use
them to generate new tests [4]–[9], [12]. For example, many applications offer users to
log into their account or create one. In Figure 1, there are two login forms. Based on the
assumption of similarity between their GUI elements, proposed semantic mapping tools
[4], [5], [7]–[9], [12] can leverage textual data to match the elements in UI 1 with those
elements in UI 2 they have the highest similarity score with, e.g., the Sign up button with
the register here link.

Tool Application Features Similarity Measure Language
Model

Poster [4], [5] Web Labels
grouped
with VIPS
[16]

Normalized pair-wise
cosine similarity be-
tween word vectors

Word2vec

GUITestMigrator
(GTM),
AppTestMi-
grator (ATM)
[7], [8]

Android Attributes
derived
from
neighbors
determined
by proxim-
ity

Normalized pair-wise
cosine similarity or
edit distance scores
between word vectors

WordNet,
Word2vec

CRAFTDROID
[9]

Android Attributes
derived
from parent
and sibling
elements

Normalized pair-wise
cosine similarity be-
tween word vectors

Word2vec

SemFinder [12] Android Attributes
derived
from neigh-
boring,
parent,
and sibling
elements

Similarity between sen-
tence embeddings of
concatenated attributes

Various
word and
sentence
embedding
techniques

Table 1: Comparison of GUI tools that use semantic mapping for test reuse and transfer

Table 1 describes existing semantic similarity tools discussed in this section. Research
by Rau et al. [4], [5] is dedicated to GUI test transfer for web applications. The semantic
mapping technique introduced by Rau et al. starts with an existing web application test.
A source application, from which tests are transferred, contains states that are created

6

by individual steps of the test. Semantic features, which are interactive GUI widgets
and surrounding them text labels, are compared with those in a target application, which
receives tests from the source application. To extract semantic features, Rau et al. use a
visual page segmentation algorithm (VIPS) [16] to group widgets and related labels. The
authors mention that a threat to validity of their work lies in the feature identification,
since there are features without text attributes that use image or iconic content instead.
What they do not discuss is the performance of VIPS – a widget can potentially be placed
into an incorrect feature group, which would then hinder the accuracy of their semantic
mapping algorithm.

GTM, ATM, CraftDroid, and SemFinder are meant for Android application test reuse
(Table 1). ATM is a more recent technique based on GMT. The tools are built on the same
premise of applications in the same domain sharing comparable GUIs, which makes it
possible to migrate test cases from one application to another. Similarly to Poster, ATM
computes a static graph where nodes are windows and edges are transitions between them.
CraftDroid also statically analyzes an application to create a transition graph describing
how the application’s Activities1 interact with each other. It traverses the meta data in
Resource files2 to identify statically created GUI widgets and the source code of Activ-
ities/Fragments3 to identify dynamically created GUI widgets. GTM [7] analyzes the
hierarchical structure of each screen, flags interactable elements, and stores each screen
as a set of features. SemFinder [12] uses both neighboring and hierarchical approaches to
extract information.

The next step of semantic mapping is matching events in the source application and the
target application. In the articles by Rau et al. [4], [5], this step is called the feature map-

ping phase, where every feature in the source application is evaluated against features in
the target application using cosine similarity (9). Text labels are preprocesssed, stemmed,
and lemmatized, stop words are removed from consideration. Similarity is calculated for
each individual word only once, word order is disregarded. Resulting similarity scores are
then normalized to be within the interval [−1,1]. GMT [7] determines similarity based on
the type of an event’s action and its target. If there is no corresponding action in the target
application, GMT assigns 0 to its similarity score. To compare the target and source appli-
cations further, GMT extracts neighboring labels for non-image elements and meta data

1"An activity is a single, focused thing that the user can do. Almost all activities interact with the user,
so the Activity class takes care of creating a window for you in which you can place your UI" [17].

2"Resources are the additional files and static content that your code uses, such as bitmaps, layout
definitions, user interface strings, animation instructions, and more" [18].

3"A Fragment is a piece of an application’s user interface or behavior that can be placed in an Activity"
[19].

7

for image elements. ATM [8] also extracts surrounding labels and other attributes for all
elements and, additionally, filenames for image elements. ATM uses an ontology based
on Word2Vec, which is pre-trained on user manuals for mobile applications, to produce
embeddings for similarity evaluation. The similarity score is based on cosine (9) and edit
distance [20], which is used for measuring string similarity. CraftDroid [9] also leverages
additional information about GUI widgets from its attributes and neighboring elements
to compute similarity. Likewise, it uses Word2Vec and cosine (9) similarity; however, it
normalizes obtained cosine scores between widgets so that GUI widgets that are closer
to the currently considered state are given a higher overall score. Lin et al. explain their
decision to normalize textual similarity scores with the idea that the number of steps that
are required to test a specific functionality should be roughly the same in similar appli-
cations. Generally, all the techniques use GUI widgets’ neighbors to extract additional
data, which is proposed by Yandrapally et al. [15]. To summarize, while Poster, ATM,
and CraftDroid use Word2Vec for word embeddings, GMT uses WordNet4. According to
Church [21], although not producing the best results in terms of accuracy, Word2Vec has
become popular due to its accessibility and simplicity. Thus, the proposed tools could be
enhanced by choosing a more advanced method for embedding, for example, contextual
embedding [22]–[25]. The similarity metric for semantic mapping is mostly calculated
as cosine (9), but other techniques [7], [8], [20] are additionally used. Mariani et al.
[12] compare the existing tools by Lin et al.[9] and Behrang et al.[7], [8] to their own
implementation of semantic matching using both word and sentence level embeddings.
Their results indicate the following: sentence level word embeddings outperform word
embeddings, since many attribute descriptions include numerous words; the algorithm
computing the semantic similarity score has a bigger impact on performance than other
factors, e.g., the type of features extracted or language models.

2.2.1 Evaluating Similarity Based Tools

Works using semantic mapping for test transfer and reuse do not have standardized met-
rics to measure their performance. Zhao et al. have created a framework for UI test reuse
evaluation that accounts for both fidelity and utility of proposed solutions [6]. Although
this study does not introduce any test transfer per se, certain metrics suggested by the
authors can be applied to measure the quality of improved element identification. Most
of existing research on test reuse with semantic mapping focuses on fidelity, i.e., how
well tests from the original application match the new one. Zhao et al. use seven fidelity

4WordNet is a lexical database available at https://wordnet.princeton.edu/

8

metrics [6], [26]:

1. True Positive (TP), when a match is correct

2. False Positive (FP), when a match is incorrect

3. True Negative (TN), when a match does not exist

4. False Negative (FN), when a match is missed

5. Accuracy = T P+T N
P+N

6. Precision = T P
P∗

7. Recall = T P
P

Additionally, they introduce two utility metrics that evaluate how useful a transferred
test is: the effort metric, which is defined as Levenshtein distance between tests [27] mea-
suring a required number of steps to convert one test to another by performing insertion,

deletion, substitution. The other metric is reduction, which shows manual effort needed
for the test transfer compared to creating a new test. The latter can be negative if the test
transfer takes more steps. The suggested utility metrics are useful for evaluating an actual
test transfer tool, as the primary goal of such a system is to reduce manual efforts involved
in GUI testing.

2.3 Machine Learning

According to Murphy [28], machine learning comprises automated methods that uncover
underlying patterns in data, which then assist us in decision-making under uncertainty and
future data prediction. This study applies machine learning to achieve the primary goal of
improved GUI element identification. This section introduces machine learning methods
required for further discussion of the similarity-based tool introduced in this work.

Typically, machine learning methods are grouped into supervised and unsupervised
[26], [28], [29], where the first requires a labeled data set with each data point xi having
a label yi, and the latter allows us to find patterns in an unlabeled data set. Common
supervised tasks belong to either classification, when a target variable yi is categorical,
or regression, when yi is real-valued. Unsupervised learning presumes that there are no

9

known values of yi. As James et al. [26] note, unsupervised learning is more challenging
than supervised due to the absence of widely accepted validation mechanisms. Another
class of machine learning methods is semi-supervised, which takes both labeled and unla-
beled samples as input [30]. Labels for unlabeled data points are then determined during
learning. Semi-supervised learning is useful when there is a small amount of labeled data.
In this study, manually annotated data are not available as input for training, which is why
three semi-supervised methods are applied for the task of web page element classification.

2.3.1 Self-Organizing Maps

Self-organizing maps (SOMs) are built on a shallow artificial neural network (ANN)
architecture (Figure 2) [31]. It consists of an input layer fully connected to a two-
dimensional output layer [32]. Neurons in the output layer are interconnected (Figure
2), and changing one neuron has an effect on neighboring neurons as a result their re-
lationship. The advantages of SOMs include a lower chance of overfitting due to this
neighborhood relationship of neurons and easy visual comprehension of the output two-
dimensional grid [32].

This work uses the semi-supervised implementation SOM by Riese and Keller [32].
The unsupervised SOM algorithm can be broken down into the following steps, where
{x(t)} is a sequence of real n-dimensional Euclidean vectors x, the integer t is a step in
the sequence [33]:

1. Initialization of a SOM, choosing weights randomly, and setting t to 1.

2. Randomly selecting an observation x(t).

3. Finding the Best Matching Unit (BMU) c(x). The selected observation is compared
to all weight vectors in the grid, and the closest one is chosen with the Euclidean
distance (1) as a metric.

d(x,x′) =

√
n

∑
i=1

(xi− x′i)2 (1)

4. Calculation of the learning rate α(t) and the neighborhood function σ(t). The learn-
ing rate α is "a positive scalar determining the size of the step" [29], i.e. controlling

10

Figure 2: The basic architecture of SOM consisting of two fully connected layers
[31].

the rate of weights changing. It decreases from the start value α0 as t grows. The
implementation by Riese et al. [32] also includes the end value αend:

α(t) = α0 ·
(

αend

α0

)t/tmax

(2)

The neighborhood function is also decreasing with the number of iterations and has
the initial value of σ0:

σ(t) = σ0 ·
(

1− t
tmax

)
(3)

5. Calculation of the neighborhood distance weight hc,i(t) between the BMU c and
and the neuron i:

hc,i(t) = exp
(
− d2

2 ·σ(t)2

)
, (4)

11

where the distance d(c, i) is the Euclidean distance (1) between the BMU c and the
neuron i in the two-dimensional grid (Figure 2).

6. The SuSi framework [32] uses the online implementation of SOM by default, but
the batch option is also available. Kohonen [33] recommends it for practical appli-
cations of SOMs. In this mode, all input data points N are fed into the algorithm
and used in each iteration. Each weight wi is adapted as follows:

wi(t +1) =
∑

N
j=1 hc,i(t) ·x j

∑
N
j=1 hc,i(t)

, (5)

where hc,i(t) is defined in Equation 4.

7. Steps 2-6 are repeated until tmax is reached. At this point, the model is trained and
the BMU for every data point is determined.

Figure 3: The flowchart of supervised SOM, the blue boxes and arrows are for the Clas-
sification algorithm

[32]

This study uses the semi-supervised SOM algorithm by Riese and Keller [32], which
combines the unsupervised version introduced above and the supervised Classification
SOM algorithm (Figure 3). The unsupervised algorithm is applied to all data points, then

12

the supervised part is applied to labeled data. The Classification SOM implementation
by Riese and Keller [32] introduces the class-change probability (Figure 3). Data sets
are often imbalanced in terms of the distribution of classes, i.e., some classes have more
observations than others. To mitigate the issue, Riese and Keller propose the option to
re-weight the data set. The optional class weight wclass(j) for the data set with N data
points and the number of data points N j in class j is defined as follows:

wclass(j) =

N/(nclasses ·N j), if class weighting,

1, otherwise.
(6)

The probability Pc,i(t) of class change for a node i is as follows:

Pc,i(t) = wy(t) ·α(t) ·hc,i(t), (7)

where α(t) is defined in Equation 2, hc,i(t) is defined in Equation 4, and wy(t) is as in 6.
The decision whether to change a class for a specific node depends on a binary decision
rule. A random uniformly distributed value ui(t) is generated per node in each iteration,
and the modification of the weights is defined as follows:

wi(t +1) =

y(t), if ui(t)< Pc,i(t),

wi(t), otherwise.
(8)

In the case of the semi-supervised SOM, which is a combination of both algorithms
discussed above, more weight is given to labeled data points compared to unlabeled ones.

2.3.2 Label Propagation and Label Spreading

Label propagation is based on the idea of graph representation of data points. Such an
empirical graph g = (V,E) consists of nodes V , which are data points, and edges E, which
are similarities between them. The weight of the edge between the nodes i, j depends on
the local Euclidean distance di, j given in 1 between the nodes i, j so that the closer they
are, the larger the weight Wi, j [34] is.

Nodes 1,2, ..., l are labeled, and nodes l + 1, ...,n are not. Predicted labels are Ŷ =

(Ŷl,Ŷu) for labeled and unlabeled data points. Ŷl is equal to Yl = (y1, ...,yl). Known labels
are binary (−1,1), unknown are equal to 0. Data sets with more than two classes can be
one-hot encoded.

13

The algorithm is defined as follows [34], [35]:

1. Computing a weight matrix W defined as Wi, j = exp
(
−d2

i, j
σ2

)
2. Computing a diagonal degree matrix D by Dii← ∑ j Wi j

3. Initializing Ŷ (0)← (y1, ...,yl,0,0, ...,0)

4. Iterating until converging to Ŷ (∞)

(a) Ŷ (t+1)← D−1WŶ t

(b) Ŷ (t+1)
l ← Yl

5. A data point xi is assigned a label ŷ(∞)
i

Label spreading was introduced by Zhou et al. [36]. Given a data set containing data
points X = {x1, ...,xl,xl+1, ...,xn} ⊂ Rm and labels L = {1, ...,c}, the points xi(i ≤ l) are
labeled and the rest xu(l +1≤ u≤ n) are unlabeled.

The algorithm is defined as follows [35], [36]:

1. Computing an affinity matrix W defined as Wi, j = exp
(
− d2

i, j
2σ2

)
if i ̸= j and Wii← 0

2. Computing a diagonal degree matrix D by Dii← ∑ j Wi j

3. Computing a normalized graph Laplacian matrix L← D−1/2WD−1/2

4. Initializing Ŷ (0)← (y1, ...,yl,0,0, ...,0)

5. Selecting a parameter α ∈ [0,1)

6. Iterating Ŷ (t+1)← αLŶ (t)+(1−α)Ŷ (0) until converging to Ŷ (∞)

7. A data point xi is assigned a label ŷ(∞)
i

2.4 Text Representation and Semantic Similarity

Since the basis of semantic similarity originates from linguistics and information retrieval,
this section provides a brief introduction to vector semantics and similarity measures. The
idea that semantically similar words appear in similar contexts, and the notion that there

14

Figure 4: Word embeddings in the vector space
[39]

is a connection between the meaning of a word and the frequency of its occurrence in
certain environments is called distributional hypothesis [37], [38].

Word similarity is often conveyed through word embeddings, where a word is rep-
resented as a vector in a continuous space. Since it is possible to calculate similarity
between vectors using cosine similarity (9), a pair of word vectors v,w can have a nu-
merical value [25], [40]. Such vectors are frequently called word embeddings [40] . To
create such embeddings, vectors are represented in the vocabulary Rd , where d is the
dimensionality of the vector space [40].

sim(v,w) =
v ·w

|| v |||| w || (9)

Distributional hypothesis has given a basis for the computational framework of dis-
tributional semantics, which is also called distributional similarity [40]. According to
distributional semantics, words can be represented within a data set D containing word
context pairs (w,c). Here, by contexts, Levy [40] means documents, sentences, or words.

15

The data set D produces Vw, a vocabulary of words that are to be represented, and Vc, a
vocabulary of contexts. The data is stored in a matrix, where each cell illustrates an oc-
currence of a word w in a context c. Figure 4 provides an illustration of word embeddings,
where words are placed into the rows of the matrix, and the columns represent contexts
(in this case, these are dimensions in a corpus). In Figure 4, context d1 represents living
beings, which is why the word houses has a negative value in d1, whereas dog, puppy,

cat, man, woman, king, queen, which are living beings, have positive values [39]. Using
dimensionality reduction methods, words can be visualized in the vector space. As Figure
4 shows, the word vectors dog, puppy, cat are positioned closer to each other than to the
term houses.

The similarity between the words in Figure 4 can be measured with cosine similarity
between respective word vectors. Smaller similarity values correspond to larger degrees
between vectors, thus, representing words that are less semantically similar.

Figure 5: Word embedding types
[24]

Word embeddings as a means of text representation can be viewed as context-independent,
such as Word2Vec, and context-dependent, for example, those based on the Transformer
architecture (Figure 5) [24], [25]. The first category produces word representations that
are not sensitive to context, since they are obtained through shallow neural network mod-
els or co-occurrence matrix factorization, whereas the second type is context aware, which
allows for the same word to be encoded differently based on the context it is encountered
in. Wang et al. provide an example of the polysemy bank, which can mean a financial
institution or a piece of land along a river, and thus requiring a different representation
based on its situational definition [24]. The following sub-chapters focus on Word2Vec,
a context-independent word representation method, which has previously been applied in
semantic mapping works, and context-dependent language models based on the Trans-

16

former architecture.

2.4.1 Word2Vec

Word2Vec is a distributional method that has been used for semantic mapping in GUI
test transfer research. Church [21] states that the popularity of Word2Vec [41]–[43] in a
supporting role in numerous research works is due to its accessibility and simplicity. The
idea of Word2Vec lies in representing linguistic patterns as linear relations. There is an
example provided by Mikolov [42], where the result of vec(“Madrid”) - vec(“Spain”) +

vec(“France”) is closest to vec("Paris"). The analogy here is that Madrid to Spain is the
same as Paris to France, where Paris is the best candidate word. In order to solve the task
in the example, the Word2Vec model finds the embedded vectors xa,xb,xc for the words
in the analogy a:b c:d, where d is unknown, and calculates y = xb− xa + xc, which is the
continuous space representation of the best candidate [43]. Word2Vec determines the best
candidate word for d by iterating through all words x′ in the vocabulary V , and finding the
one that satisfies (10). The similarity measure in (10), sim, is cosine, defined in (9) [21].

ARGMAXx′∈V sim(x′,c+b−a) (10)

2.4.2 Context-dependent Embeddings

Similarly to word embeddings, text can be represented with sentence embeddings [25].
Sentence embeddings used in this work are obtained with a pre-trained language model
based on the Transformer network architecture (Figure 6)[22], [44]. Liu et al. note that
the Transformer excels at modeling sequential data and, as a result, has become popular
for various natural language processing tasks [25].

The Transformer has an encoder-decoder structure. The encoder represents an input
(x1, ...,xn) as a sequence z = (z1, ...,zn), and the decoder accepts z and outputs (y1, ...,yn)

symbols. The encoder consists of 6 layers, each having a multi-head self-attention sub-
layer and a position-wise fully connected feed-forward sublayer. The sublayers have a
residual connection followed by layer normalization. The multi-head attention sublayer
has multiple attention heads. A head is a representation of a scale dot-product attention
(Figure 7):

17

Figure 6: Transformers architecture
[44]

Attention(Q,K,V) = so f tmax
(

QKT
√

dk

)
V, (11)

where Q is a matrix of queries q, K is a matrix of keys k, V is a matrix of values v, and dk

is a dimension of vectors of q and k.

The input, which contains matrices of Q, K, and V , is used to calculate the dot prod-
uct (11). The scaled dot-product attention mechanism assigns weights to scale each V by
multiplying each Q by K and dividing the result by

√
dk. The multi-head attention then

uses linear projections of V , K, and Q h times to calculate their scale dot-product atten-
tion and concatenate results of h outputs (Figure 7). The final output is then once again

18

Figure 7: Attention mechanism
[44]

projected. The multi-head attention architecture allows to learn information from various
representations of sub-spaces. It has three applications in the Transformer [44].:

1. Queries originate from the previous decoder layer, and memory keys and values are
from the encoder output in "encoder-decoder attention" layers.

2. The encoder has self-attention layers, which means that all keys, values, and queries
are taken from the previous layer of the encoder.

3. The decoder similarly has self-attention layers.

Another feature of the Transformer is positional encoding, which represents the order
of the tokens in a sequence (Figure 6). The encoding has the same dimension as the
embedding and is determined by the sinusoidal functions:

PE(pos,2i) = sin(
pos

100002i/dmodel
) (12)

PE(pos,2i+1) = cos(
pos

100002i/dmodel
) (13)

Vaswani et al. conclude that self-attention layers are faster than recurrent layers for

19

such tasks as machine translation and word-piece representations. They are also less com-
putationally expensive than convolutional layers, which are even more expensive than re-
current layers. What is more, attention heads allow models to learn syntactic and semantic
structures of sequences [44].

2.4.2.1 Sentence BERT Models

Figure 8: Attention mechanism
[22]

State-of-the-art language models like BERT use the Transformer architecture for solv-
ing such tasks as semantic textual similarity (STS) [22], [23], [44]. Reimers and Gurevych
argue that using BERT for STS is computationally expensive and sub-optimal for prob-
lems requiring semantic similarity search [22]. They propose Sentence-BERT (SBERT)
as a more efficient solution for embedding sentences that need to be evaluated in terms
of cosine similarity. SBERT uses siamese and triplet networks [45] to create embeddings
that can be used for cosine similarity (9) comparisons (Figure 8). The default strategy
is to add the MEAN pooling operation to the BERT output, which means that the model
computes the mean of all output vectors [22]. The authors conclude that SBERT shows
improved performance in terms of the quality of sentence embeddings and computational
efficiency for STS tasks when compared to other embedding strategies.

Liu et al. note that transferred models are capable of extracting large amounts of
information from language, which is why they can be used for various tasks once they are
trained on data [25]. Such models are Pre-trained Language Models (PLM), and SBERT
is one of them. PLMs can be applied to various tasks by fine-tuning a model to any
specific input and receiving token representation as its output.

20

3 Implementation of Semantic Mapping

The semantic mapping implementation is in Python and consists of three stages. The first
stage involves parsing a web application and extracting attributes and properties of HTML
elements. Interactive elements, which are determined by their HTML tags, are assigned
individual class labels in ascending order starting from 0, while remaining elements are
labeled as -1. The goal of the second stage is to group the unassigned elements around the
labeled interactive elements using a machine learning classifier. The final stage includes
finding semantically similar web elements between different versions of the web applica-
tion by measuring cosine similarity between sentences that consist of concatenated text
features of each class.

3.1 Parsing the Web Document

Retrieving data from the web application1 is the first stage of semantic mapping. The
initial step is parsing an HTML document obtained from a given web link. This task is
completed using the Selenium WebDriver API, which provides access to the web page and
its elements by controlling a browser window, and the lxml XML toolkit, which allows
one to obtain an HTML tree from the web page [46], [47]. The following code snippet
contains a Python function for initiating a Selenium webdriver and parsing the web page.
It returns an ElementTree object containing the entire structure of the web page.

1 import lxml.html
2 from selenium import webdriver
3

1In this study, the web application has only one page, which is why web application and web page are
used interchangeably.

21

4 def get_html_tree(link):
5 driver = webdriver.Chrome(service=
6 ChromeService(ChromeDriverManager ().install ()))
7 driver.get(link)
8 tree = lxml.html.fromstring(driver.page_source).getroottree ()
9 return tree

To access individual elements, the implementation iterates through the elements of the
object and retains their XPath2 values. Each element’s Xpath value is evaluated against a
list of interactive elements (forms, links, buttons, drop-down menus, input fields, options,
selections etc.). If the element’s path ends with an interactive tag, it is assigned an indi-
vidual class label, otherwise it is given -1 as its class label. In practice, any element can
be assigned its own class label if necessary. The web application used for testing the im-
plementation contains large text paragraphs, which is why their parent headers were also
given individual labels, so that the paragraphs could be grouped around them. If the ele-
ment is hidden, its CSS3 property is changed to "display: block"; and if the driver cannot
access the element by its XPath, it is omitted. Once the element is located, it is possible
to obtain its attributes and position on the web page. The code snippet below retrieves
any available properties and attributes of the HTML elements present in the ElementTree

object obtained earlier.

1 def get_features(tree , interactive_list):
2 labeled_class = 0
3 errors = []
4 data = []
5 display_style = "arguments [0]. style.display = ’block ’;"
6 #Iterating through the ElementTree tree
7 for e in tree.iter():
8 path = tree.getpath(e)
9 #Checking if the element ends with an interactive tag

10 if [i for i in interactive_list if re.search(i, path)]:
11 element_class = labeled_class
12 labeled_class += 1
13 else:
14 element_class = -1
15 #Trying to find the element by its XPath
16 try:
17 element = driver.find_element(By.XPATH , path)
18 if not element.is_displayed ():
19 driver.execute_script(display_style , element)

2Xpath is an HTML locator used to access HTML elements with the Selenium API.
3"Cascading Style Sheets (CSS) is a stylesheet language used to describe the presentation of a document

written in HTML or XML" [48].

22

20 location = element.location
21 except (InvalidSelectorException , NoSuchElementException ,

ValueError , TypeError):
22 errors.append(path)
23 #Extracting the element ’s attributes
24 values = [path , location[’x’], location[’y’],
25 element.get_attribute(’alt’),
26 element.get_attribute(’title ’),
27 element.get_attribute(’name’),
28 element.get_property(’value’),
29 element.get_attribute(’id’),
30 element.get_attribute(’type’),
31 e.text , element_class]
32 data.append(values)
33 return data , errors

As the result of the first stage, the web page has been parsed and stored in the Element-

Tree object, any available attributes and properties of each HTML element located in the
object have been retrieved. Those unassigned elements that do not have any attributes that
could be used for semantic mapping, i.e., their ’alt’, ’title’, ’name’, ’value’, ’id’, ’type’,

’text’ attributes are empty, are removed from the data used in the consecutive stages. This
step is performed for two versions of the application: the source version and the target
version. Thus, two data sets containing information extracted the web pages are obtained.

Compared to the existing tools described in Table 1, this implementation lacks a test
suite, which is why the interactive features are identified by the type of their HTML tag.
For the same reason, this solution does not construct a graph to retain information about
states and transitions between the elements in the web application.

3.2 Grouping the Web Elements

The goal of the second stage is to assign the unlabeled elements to an interactive ele-
ment class. Three semi-supervised machine learning classifiers have been proposed to
achieve the goal: Self-Organizing Maps, Label Spreading, and Label Propagation. Each
algorithm has been introduced in Chapter 2. The SOM algorithm implementation used
in the experiment is from the SuSi package, the implementations of Label Spreading and
Label Propagation are from the scikit-learn package [32], [49]. The performance of the
semi-supervised models is also compared a supervised classifier.

23

Although the semi-supervised methods should be able to assign class labels without a
large amount of labeled data, they still need to be optimized in terms of both feature and
model parameters. The basic assumption of this study is that once a model has been op-
timized for the web application, it can be successfully applied to another version without
fine-tuning unless the application undergoes significant changes. In order to choose ap-
propriate parameters, the scikit-learn package provides methods that run all possible com-
binations of any given parameters and output their performance metrics. In this particular
case, accuracy introduced in Chapter 2 is the metric that has been used to evaluate every
model’s performance. The data obtained in the first step include the HTML elements with
their Xpath values and attributes. In order to evaluate the classification models, the data
have been manually annotated to assign each element to its true class based on its position
on the web page and its relation to the neighboring elements.

Although there is a number of features extracted in the first step, only the XPath values
and location coordinates are used for the classification task. The motivation behind using
only these features is that certain words are often repeated in unrelated HTML elements.
This results in them being erroneously placed in the same class, which lowers the overall
accuracy of semantic mapping. An Xpath value example is provided below:

1 "/html/body/div/div/main/div [1]/ section/div [1]/ div [1]/ div [2]/
label"

Since it is a string, it can be represented as a text input. Language models intro-
duced in Chapter 2 are not necessarily pre-trained on HTML tags, which on their own do
not have the same semantic and syntactic meaning as natural languages. Nevertheless,
they can be encoded as a term-document matrix. Each HTML tag becomes a term and
each HTML element is a document. It is possible to use n-grams of different lengths as
terms. N-grams are sequences of length N comprised of tokens [50]. Here, since tokens
are individual tags, a trigram from the XPath example above is "div[1], section, div[1]"

and a bigram is "div[1], section" or "section, div[1]". N-grams can be used as raw or
binary counts; however, it is possible to give more weight to more representative terms
that could potentially improve classification accuracy. The scikit-learn package provides
CountVectorizer and TfidfVectorizer feature extractors [51]. The first returns an ordinary
term-document matrix, and the latter produces a matrix of TF-IDF features (TF-IDF is the
product of term-frequency and inverse document-frequency). It is calculated as follows
[50], [51]:

24

t f(t,d) = count(t,d) (14)

id f(t,d) = log
1+n

1+d f (t)
+1 (15)

The location attributes are x and y positions on the web page, their values can be within
hundreds. They need to be scaled to be within the interval [0,1], since the semi-supervised
models in this study use the Euclidean distance measure (1). If they are not scaled to
be within the same interval as the text features, they will have a disproportionately big
impact on learning. Both feature extraction and scaling constitute preprocessing. The
Python code snippet below shows a scikit-learn column transformer preprocessor, which
produces a dense matrix containing both TF-IDF features and re-scaled location attributes.

1 preprocessor = make_column_transformer(
2 (TfidfVectorizer(token_pattern = r’(?u)\b\w+(?:\[.?\])?’),

’xpath ’),
3 (MinMaxScaler (), [’x’, ’y’]),
4 sparse_threshold =0
5)

The feature extractors have certain parameters that can be optimized:

1. max_df, a float or an integer: if a term appears in the number of documents above
the given threshold, it is ignored.

2. ngram_range, a tuple represents the range of n-grams; for example, (1,2) would
result in unigrams and bigrams.

3. binary, a boolean allows CountVectorizer to return binary values for term frequen-
cies.

4. sublinear_tf, a boolean transforms tf to 1+ log(t f) in TfidfVectorizer; it can be
useful in cases where a term appears multiple times in a document.

5. norm, ’l1’ or ’l2’ specifies output row unit norm: ’l1’ for the sum of absolute vector
values equal to 1 and ’l2’ for the sum of squares of vector values equal to 1.

The implementations of Label Propagation and Label Spreading used in this study
allow parameter optimization for both algorithms. The algorithms represent relationships
between data points in a graph. The main difference between the two that is important

25

here is that Label Spreading performs soft clamping, which means that by changing the
parameter α , the algorithm controls how much data points learn from their neighbors
compared to their original label. Label Propagation uses hard clamping, which means
that original data points do not change their labels [52]. Both algorithms implemented
in the scikit-learn package use a Radial Basis Function (RBF) kernel to determine edge
weights between points. The parameter σ is replaced by γ in the scikit-learn library[34],
[35], [52]:

exp(−γ|xi− x j|2),γ > 0 (16)

By changing γ , we can regulate the width of the RBF kernel.

There are numerous parameters that could be optimized for SOMs. Since it is a neural
net, starting and ending learning rates are of great importance. The authors of the SuSi
package suggest a range of values that can be tried. The size of a learning grid, which is
the number of rows and columns, is challenging to choose. Riese et al. suggest starting
with a grid of 5 by 5. The larger the grid is, the longer it takes to fit a model, hence without
having an educated guess about this parameter, it is hard to start with an appropriate
value. Opting for a large size grid can lead to overfitting, and the authors consider grids
of size 100∗100 to be large. There is also a possibility to select various distance metrics,
the default being Euclidean; however, the model takes a considerable amount of time to
converge with a non-default choice.

The Python code below shows how the parameters for feature extraction are tested.
The scikit-learn package provides a Pipeline module, which allows us to include both pre-
processors and classifiers as steps in learning. GridSearchCV fits the Pipeline model to the
data and chooses the best estimator using cross validation; it calculates accuracy with the
true labels obtained from the manual annotation and returns the metric for each combina-
tion of the parameters discussed earlier. GridSearchCV cannot be applied to the data used
in this study in a straightforward fashion because each class contains only one data point,
which prevents splitting the data into portions for cross validation. The semi-supervised
models take both unlabeled and labeled data for fitting, which is why GridSearchCV can-
not be used to obtain the best estimator for Label Spreading, Label Propagation, or SOM.
Nevertheless, it can be used with supervised methods to explore what feature parame-
ters perform the best and determine how they compare to the semi-supervised algorithms.
This implementation uses its own Python solution to determine how the parameters affect

26

the performance of SOM, Label Spreading, and Label Propagation (see Appendix B).

1 import pandas as pd
2 from sklearn.model_selection import GridSearchCV
3 from sklearn.pipeline import Pipeline
4

5 def opt_classifier(parameters , preprocessor , classifier , data ,
pathCV):

6 #Determing the indices of training and test data sets
7 condition = data[’class’] != -1
8 train_idx = data.index[condition]. values
9 test_idx = data.index [~ condition]. values

10 #Defining the steps of the Pipeline
11 steps = [("preprocessor", preprocessor),
12 ("classifier", classifier)]
13 model = Pipeline(steps=steps)
14 #Defining the GridSearchCV
15 #Instead of cross validation , the GridSearchCV fits
16 #the model to the training data and evaluates it
17 #on the test data
18 search = GridSearchCV(model , param_grid=parameters ,

cv=[(train_idx , test_idx)])
19 search.fit(data , data[’true_label ’])
20 #Storing the GridSearchCV results
21 params = pd.DataFrame(search.cv_results_["params"])
22 accuracy = pd.DataFrame(search.cv_results_["mean_test_score"],
23 columns = ["Accuracy"])
24 tuning_data = pd.concat ([params , accuracy], axis =1)
25 tuning_data.to_csv(pathCV)
26 return tuning_data

The main difference of this study’s approach to extracting relevant textual cues is the
use of machine learning classifiers. The tools described in Chapter 2 mostly use an ar-
bitrary distance in the hierarchy of UI elements or their position to determine whether
another element is related a widget. The technique by Rau et al. [4], [5] uses a propri-
etary algorithm; the authors do not discuss its accuracy. This work tests three classifiers
(Label Spreading, Label Propagation, and SOM) that take the tokenized XPath values
and location of the elements as input and determine what classes the elements belong to.
Thus, the selection of a method for extracting cues is based on the performance of the
chosen parameters and models.

27

3.3 Semantic Mapping

The final stage of the semantic mapping implementation is finding equivalent class labels
between the data sets containing the HTML elements extracted from the source and target
versions of the application during the previous stages. Once all the data points in both
data sets have been assigned labels in the second stage, their text data are concatenated
based on their class into sentences, i.e., each class’ ’text’, ’value’, ’id’, ’input’, ’title’,

’name’, ’type’ contents are merged. Before being concatenated, long texts are limited to
50 characters. The reason behind this is SBERT truncating long sequences. Next, each
sentence from the source and target data sets is embedded using a pre-trained SBERT
model [22]. The embeddings and their labels are then stored as two lists and compared
using cosine similarity. It is calculated for each pair of the sentences and the highest
scored pairs are considered to be semantically similar, for example, a group with label
0 in the source application is closest to the one with label 15 in the target application.
Knowing which groups are the most similar, we can find corresponding interactive tags
within them for GUI element identification.

The code below shows how semantic similarity between the two versions of the web
application is calculated. It is adapted from the official SBERT documentation on seman-
tic similarity [53]. It takes two Pandas DataFrames4 containing concatenated texts and
labels and a pre-trained model as input and returns two Pandas DataFrames: one contain-
ing the pairs of the most similar classes and a cosine similarity matrix for each sentence
pair.

1 from sentence_transformers import SentenceTransformer , util
2

3 model = SentenceTransformer(’all -distilroberta -v1’)
4

5 def measure_similarity(model , target_app_data , source_app_data):
6 # Adapted from https :// www.sbert.net/docs/usage /

semantic_textual_similarity.html
7 #Extracting sentences and labels
8 sentences1 = target_app_data.iloc[:, 1]. to_list ()
9 sentences2 = source_app_data.iloc[:, 1]. to_list ()

10 labels1 = target_app_data.iloc[:, 0]. to_list ()
11 labels2 = source_app_data.iloc[:, 0]. to_list ()
12 #Embedding the sentences
13 embeddings1 = model.encode(sentences1 , convert_to_tensor=True)

4Pandas is a Python library for data analysis [54]. A Pandas DataFrame is a two-dimensional data
structure.

28

14 embeddings2 = model.encode(sentences2 , convert_to_tensor=True)
15 #Obtaining cosine similarity scores
16 cosine_scores = util.pytorch_cos_sim(embeddings1 , embeddings2)
17 data = []
18 #Finding the pairs with the highest scores
19 for i in range(len(sentences1)):
20 for j in range(len(sentences2)):
21 values = [labels1[i], labels2[j], cosine_scores[i]

[j].item(), sentences1[i], sentences2[j]]
22 data.append(values)
23 df_cos = pd.DataFrame(data , columns =[’label2 ’, ’label1 ’,

’cosine ’, ’text2’, ’text1 ’])
24 idx = df_cos.groupby ([’label2 ’])[’cosine ’]. transform(max) ==

df_cos[’cosine ’]
25 df_cos = df_cos[idx]
26 cos_matrix = pd.DataFrame(data=cosine_scores.numpy(),

index=labels1 , columns=labels2)
27 return df_cos , cos_matrix

This approach to determining similarity is similar to the one used in the implementa-
tion by Mariani et al. [12]. Instead of using word embeddings, both solutions use sentence
embeddings. This work, however, does not average values, adapting a more straightfor-
ward way of using cosine similarity as is. Unlike the other tools described in Chapter 2,
the type of an event associated with an element is not considered in evaluating similarity,
because different events might perform the same function (however, the attribute type is
used as a text feature).

In conclusion, this semantic mapping implementation differs from the existing tools
discussed in Chapter 2 in the following ways:

1. There is no available test suite for the chosen web application, which is why in-
teractive elements are selected manually. For the same reason, the tool does not
extract any information about the elements’ interactions.

2. The implementation uses extracted XPath values and location attributes as input for
machine learning classifiers to assign class labels.

3. Semantic similarity is calculated as cosine similarity between sentence embeddings,
which consist of grouped labels. State-of-the-art pre-trained language models are
used for embedding text.

29

3.4 Results

This work uses a web application for generating privacy policies, which is available on-
line5 [55]. The source code for several versions can be found on GitHub6 [56]. The
chosen application has gone through several revisions, which is the reason it is suitable
for the experiment. Its source code is also freely available, which permits for further anal-
ysis of how the proposed solution works with data obtained from the web application.
There has been a number of changes in the UIs of the application, certain parts have been
re-positioned, a small number of new elements have been added. Nevertheless, the core
functionality of the application has remained the same, and the text content has remained
similar.

Using the processing methods described earlier in this Chapter, both versions of the
web application have been parsed. Only those HTML elements that have original individ-
ual labels and those that are unlabeled but contain textual attributes have been retained.
The resulting data set for the earlier (source) version contains 190 HTML elements, and
the data set for the newer (target) version has 153 HTML elements. Both are stored as
Pandas DataFrames for convenient data manipulation.

3.4.1 Parameter Tuning

The feature extraction methods used in this study have numerous parameters that can
be optimized. GridSearchCV is designed for tuning parameters with cross validation;
however, since there is only one data point per class in both data sets, all labeled points
are used for training and remaining points are used for testing. To explore how accu-
racy is affected by various combinations of parameters and establish the baseline perfor-
mance of a supervised classifier, GridSearchCV has been used with a Logistic Regression
model from the scikit-learn package. Appendix B contains the Python code for tuning the
semi-supervised models. The results of the Logistic Regression classifier are displayed
in Appendix A showing that longer range ngram and higher max_df values produce bet-
ter outcomes. However, the supervised model has produced modest outcomes, especially
when tested on the target data set. The CountVectorizer has led to higher accuracy for
both data sets (79% for the source data set and 67% for the target data set).

Figure 9 shows how the max_df and ngram parameters affect the performance of

5https://app-privacy-policy-generator.nisrulz.com/
6https://github.com/nisrulz/app-privacy-policy-generator

30

Figure 9: TF-IDF vectorizer parameters for the source application with Label Spreading

Figure 10: TF-IDF vectorizer parameters for the source application with Label Propaga-
tion

31

Figure 11: TF-IDF vectorizer parameters for the target application with Label Spreading

Figure 12: TF-IDF vectorizer parameters for the target application with Label Propagation

the Label Spreading classifier used with the TfidfVectorizer to assign labels in the source
application data set. The accuracy varies a lot depending on the values of parameters.
Generally, the longer ngram sequences and the higher values of max_df improve the
performance. Figure 9 suggests that the bigrams and trigrams are more suitable for the
classification. It appears that the application of sublinear tf does not make a significant
difference. Figure 10 describes the same parameters but used with the Label Propagation
model, which appears to produce similar results; however, the spread of the accuracy
range is wider with the Label Propagation classifier.

The results for the target application label prediction with the Label Spreading classi-
fier, depicted in Figure 11, show a lower overall accuracy of prediction. Here, similarly
to the outcomes of the previous classification, the max_df and ngram parameters seem

32

Figure 13: Count vectorizer parameters for the source application with Label Spreading

Figure 14: Count vectorizer parameters for the source application with Label Propagation

to affect the classification performance, whereas the effect of sublinear tf appears to be
limited. Generally, sublinear tf is useful in cases when a term reoccurs in a document nu-
merous times, while in this particular setting, terms are unlikely to reappear in the same
document. Figure 12 shows that the same input features produce slightly lower accuracy
scores when used with the Label Propagation classifier.

Figures 13 and 14 display the effect of max_df and ngram parameters on the perfor-
mance of the Label Spreading and Label Propagation classifiers used with the CountVec-

torizer to assign labels in the source application data set. The general results do not differ
from the outcomes with the TfidfVectorizer: the trigrams and bigrams perform the best,
and limiting the most frequent terms appearing across numerous documents improves the
performance of the model.

33

Figure 15: Count vectorizer parameters for the target application with Label Spreading

Figure 16: Count vectorizer parameters for the target application with Label Propagation

34

(a) α (b) γ

Figure 17: Label Spreading accuracy scores (the source data with the CountVectorizer
input)

accuracy count mean std min 25% 50% 75% max
α

0.01 320 0.8303 0.04276721958 0.74 0.79 0.855 0.86 0.88
0.06 320 0.8279 0.04545964313 0.74 0.79 0.86 0.86 0.88
0.11 320 0.8254 0.0466067954 0.74 0.7775 0.85 0.86 0.88
0.16 320 0.8234 0.04713811994 0.74 0.77 0.85 0.86 0.88

Table 2: Label Spreading accuracy scores for different α values (the source data with the
TfidfVectorizer input)

Figures 15 and 16 shows how the text feature parameters impact the performance
of the Label Spreading and Label Propagation classifiers applied to the target application
data set. The trends observed in previous figures remain, the trigrams and bigrams provide
better accuracy scores. Overall, the features produced by the CountVectorizer have lead
to better results in the target data set.

Figure 17, Table 2, and Table 3 show the distribution of the accuracy scores for the
Label Spreading classifier with respect to the parameters α and γ (for the source data
set). The smallest values of γ result in the highest median accuracy, whereas the best
performance is achieved with the highest values (for the CountVectorizer input). The
default value of 20 results in good prediction outcomes for both types of input features.
Changing α does not lead to better predictions. The default α is equal to 0.2, which
corresponds to the algorithm retaining 80% of the original label distribution, and the tested
values are below 0.2.

Figure 18 shows the distribution of the accuracy scores for the Label Propagation
classifier trained on the TfidfVectorizer output in respect of the parameter γ . Interestingly,

35

accuracy count mean std min 25% 50% 75% max
γ

5 160 0.8311 0.04472118376 0.74 0.8 0.86 0.86 0.87
10 160 0.8303 0.04458645584 0.74 0.8 0.85 0.86 0.87
15 160 0.8298 0.04616060969 0.74 0.7775 0.86 0.86 0.88
20 160 0.829 0.04563730234 0.74 0.79 0.855 0.87 0.88
25 160 0.8276 0.04513044511 0.74 0.79 0.85 0.8625 0.88
30 160 0.8255 0.04541557756 0.74 0.79 0.85 0.86 0.88
35 160 0.8222 0.04548757519 0.74 0.77 0.85 0.86 0.88
40 160 0.8185 0.04666486969 0.74 0.77 0.84 0.86 0.88

Table 3: Label Spreading accuracy scores for different γ values (the source data with the
TfidfVectorizer input)

Figure 18: Label Propagation accuracy scores for different γ values (the source data with
the TfidfVectorizer input)

36

accuracy count mean std min 25% 50% 75% max
γ

5 40 0.7045 0.0845 0.55 0.65 0.725 0.7625 0.81
10 40 0.7325 0.0809 0.57 0.68 0.745 0.81 0.81
15 40 0.737 0.079 0.6 0.7025 0.75 0.81 0.81
20 40 0.7375 0.0783 0.6 0.705 0.75 0.81 0.81
25 40 0.7365 0.0801 0.59 0.705 0.75 0.81 0.81
30 40 0.736 0.0808 0.59 0.7025 0.75 0.81 0.81
35 40 0.736 0.0808 0.59 0.7025 0.75 0.81 0.81
40 40 0.736 0.0808 0.59 0.7025 0.75 0.81 0.81

Table 4: Label Propagation accuracy scores for different γ values (the source data with
the CountVectorizer input)

(a) α (b) γ

Figure 19: Label Spreading accuracy scores (the target data with the TfidfVectorizer)

unlike in the case of the Label Spreading model trained on the CountVectorizer output
described in the previous paragraph, the highest median accuracy scores are not achieved
with the smallest values of γ . The median accuracy improves with γ values of 20 and
higher. Table 4 shows the equivalent data for the CountVectorizer input. The overall
accuracy is lower, but the smallest value of γ also results in the worst median score.
Small values of γ correspond to wider RBF kernels, which means that two data points are
estimated to be similar even if they are positioned far from each other, while the opposite
is true for large values of γ . Regardless of the type of input features, the default value of
γ (20) delivers optimal performance.

Figure 19, Table 5, and Table 6 shows the distribution of the accuracy scores in the
target application in respect to the parameters α and γ for the Label Spreading model.
It appears that using the default value for γ is optimal for both data sets. However, high
values of γ appear to hinder performance of the Label Spreading classifier on the target
data set. Similarly to the results obtained from the source data set, changing α does not

37

accuracy count mean std min 25% 50% 75% max
α

0.01 320 0.7394375 0.07137473957 0.63 0.66 0.755 0.81 0.82
0.06 320 0.74015625 0.06625901932 0.63 0.66 0.75 0.8 0.82
0.11 320 0.7398125 0.0649617382 0.64 0.66 0.75 0.8 0.82
0.16 320 0.73834375 0.06450248926 0.64 0.66 0.75 0.8 0.82

Table 5: Label Spreading accuracy scores for different α values (the target data with the
CountVectorizer input)

accuracy count mean std min 25% 50% 75% max
γ

5 160 0.750375 0.07090508759 0.64 0.66 0.79 0.82 0.82
10 160 0.741625 0.06881647729 0.63 0.66 0.77 0.81 0.82
15 160 0.74 0.06822087694 0.63 0.66 0.755 0.8 0.82
20 160 0.73825 0.06636614656 0.63 0.66 0.75 0.8 0.82
25 160 0.738 0.06569224991 0.63 0.66 0.75 0.8 0.82
30 160 0.7375 0.06628507141 0.63 0.66 0.75 0.8 0.81
35 160 0.7355 0.06395556634 0.63 0.66 0.75 0.8 0.8
40 160 0.73425 0.06363763374 0.63 0.66 0.75 0.79 0.8

Table 6: Label Spreading accuracy scores for different γ values (the target data with the
CountVectorizer input)

improve accuracy. Figure 20 and Table 7 show that opting for the default γ value leads to
optimal results with the Label Propagation algorithm. Similarly to the results of the Label
Propagation classifier applied to the source application, small values reduce accuracy.

accuracy count mean std min 25% 50% 75% max
γ

5 40 0.68175 0.04689800717 0.62 0.6475 0.66 0.74 0.76
10 40 0.69825 0.04012081115 0.64 0.65 0.695 0.74 0.75
15 40 0.72725 0.04574104929 0.66 0.68 0.725 0.77 0.79
20 40 0.729 0.04556201747 0.67 0.68 0.725 0.78 0.79
25 40 0.731 0.04589843861 0.67 0.68 0.725 0.78 0.79
30 40 0.73425 0.0430198225 0.68 0.69 0.73 0.78 0.79
35 40 0.73525 0.04332273046 0.67 0.69 0.73 0.78 0.79
40 40 0.7365 0.04329682881 0.67 0.69 0.73 0.78 0.79

Table 7: Label Propagation accuracy scores for different γ values (the target data with the
TfidfVectorizer input)

Tables 8 and 9 show the maximum achieved accuracy scores for both data sets. The
results of the SOM algorithm are not promising. As explained earlier, its training is
extremely time-consuming, and as a result, parameter optimization for SOM is practically

38

Figure 20: Label Propagation accuracy scores for different γ values (the target data with
the CountVectorizer input)

Vectorizer Label Spreading Label Propagation SOM Logistic Regression
CountVectorizer 87% 81% 53% 79%
TfidfVectorizer 88% 87% 66% 78%

Table 8: Classification accuracy results for the source application

impossible without additional computational resources. The highest obtained accuracy
with SOM has not exceeded 66% with a large grid of 100 by 100 rows.

The results for the source application are presented in Table 8. The best result for
the Label Propagation algorithm is 87% with the TF-IDF features and 81% with the term
frequencies; the highest accuracy for the Label Spreading algorithm is 88% with the TF-
IDF features and 87% with the term frequencies. Compared to best scores produced
by the Logistic Regression classifier (79%) and SOM (66%), the Label Spreading and
Propagation algorithms perform better for both types of input. It appears that the Label
Spreading algorithm makes better predictions with the term frequency features than the
Label Propagation model.

The outcomes for the target application are presented in Tables 9. The best result
for the Label Propagation algorithm is 79% with the TF-IDF features and 83% with the
term frequencies; the highest accuracy for the Label Spreading algorithm is 80% with
the TF-IDF features and 82% with the term frequencies. The overall performance of the
models is weaker for the target application. While Logistic Regression produces good

39

Vectorizer Label Spreading Label Propagation SOM Logistic Regression
CountVectorizer 82% 83% 60% 67%
TfidfVectorizer 80% 79% 54% 62%

Table 9: Classification accuracy results for the target application

results with the source application data, it barely outperforms SOM when used with the
target data set. The Label Spreading and Propagation algorithms display higher accuracy
overall. It appears that features extracted with CountVectorizer produce higher accuracy,
while the opposite is true for the source data set.

The parameter tuning performed in this study shows that the method for feature extrac-
tion and its parameters affect accuracy. The general trend is that longer ngram sequences
and max_df values of 0.2 and 0.3 improve performance; however, binarizing term fre-
quencies and using sublinear_tf do not seem to enhance accuracy scores. The default
values of γ and α parameters used by the scikit-learn implementation offer optimal per-
formance for both Label Spreading and Propagation.

The motivation for parameter tuning is that an optimized model can be used for various
versions of the same application. For both data sets, the Label Spreading model with term
frequency features has produced second best results, which is why its predictions are used
for the next step in semantic mapping. The chosen parameters for the CountVectorizer are
the following: ngram_range =(2 ,3) , binary = True , max_df =0.3. The parameters for
the Label Spreading model: alpha=0.16, gamma=20.

Figure 21 shows the CountVectorizer input consisting of the term frequency features
and location attributes mapped into a 2D space with t-SNE7; each data point is colored
according its label assigned by the Label Spreading model. The visualization shows that
certain classes overlap, while others appear to be well separated. Generally, the input
features represent the data in an adequate fashion.

Figure 22 shows the CountVectorizer input consisting of the term frequency features
and location attributes mapped into a 2D space with t-SNE; each data point is colored
according its label assigned by the Label Spreading model. The plot suggests that the
target application data are not as well separated as the source application data, as there
are many areas where classes overlap. Nevertheless, the accuracy is over 80%, which
means that the features extracted from the data suffice as the model’s input.

7The T-distributed Stochastic Neighbor Embedding is a dimensionality reduction method for visualizing
high dimensional data in a 2D space [57]

40

Figure 21: The source application embeddings

3.4.2 Semantic Similarity Estimation

After assigning labels to all the data points in both source and target application data
sets (there are no more elements whose label is equal to −1), their text attributes are
concatenated based on their class label, e.g., all the elements that belong to the class 5 are
merged. The outcome is a list of sentences for each data set that can be further embedded
using a pre-trained language model. The XPath values and location attributes used for the
classification task are not used for determining semantic similarity.

There are two Sentence-Transformer models (’all-mpnet-base-v2’ and ’all-distilroberta-
v1’) used for embedding the sentences, both of them are available through SBERT [22],
[58]–[60]. The models are chosen based on their reported average performance and the
base models they were trained on. Both models are pre-trained on large amounts of data
and fine-tuned in on a 1B sentence pairs data set. The resulting embeddings are N number
of 768 dimensional vectors, where N is the number of classes in each data set.

41

Figure 22: The target application embeddings

Figures 23 and 24 display cosine similarity matrices. The X axis represents labeled
sentences from the source application, and the Y axis contains labeled sentences from the
target application. The algorithm behind the construction of the matrices is introduced
earlier in the chapter. Essentially, each pair of sentences is used to calculate a cosine
similarity score. Since we are interested in finding a match for every target application
element, we choose pairs with the highest scores. In the visualizations, the lightest cells
represent semantically similar elements, whereas the dark ones are the most dissimilar.
Both figures are produced by different models, but the plots show that the light and dark
areas are not significantly different. The important matter in this case is whether the
labels containing equivalent elements are matched correctly. To assess the performance
of the semantic matching procedure, one can use the fidelity metrics defined by Zhao et
al. [6], which are introduced in Chapter 2. Not all of them are applicable to this work,
because their metrics are used for text reuse, not GUI element identification. Nevertheless,
the ratio of correctly matched elements is an important metric in this study. There is
also a need for a separate metric for those elements that exist only in one version of the

42

Figure 23: The cosine matrix produced with ’all-distilroberta-v1’

43

Figure 24: The cosine matrix produced with ’all-mpnet-base-v2’

application and cannot be matched correctly or are matched only partially (e.g., when
not all elements belonging to a certain class are grouped together). In Table 10, they are
marked as other.

Outcome ’all-distilroberta-v1’ ’all-mpnet-base-v2’
Number of correct matches 0.5 0.52
Number of incorrect matches 0.27 0.25
Other 0.23 0.23

Table 10: Semantic matching results

The results showed in Table 10 produced by both models are comparable and promis-
ing. Most of the elements have been identified correctly, and the correctly matched rate
is 50%. Figure 25 shows an example of correctly mapped features. However, there is a
great number of incorrectly matched labels (the rate is 25%). There are several reasons
for the high rate of incorrect matches:

1. Incorrectly labeled elements lead to irrelevant text appearing within the same group.

44

Figure 25: Correctly mapped forms between the two versions of the application [55], [56]

The classification outcomes for the target application have not been higher than
82%, which results in a lot of mixed text attributes.

2. Extracted text attributes might not be useful for semantic similarity.

3. Certain elements lack text attributes, and there is not enough text to determine their
similarity with other elements.

4. Information in iconic or image content has not been properly extracted, and thus
corresponding elements are not represented in the data sets.

The main challenge of this work has been the lack of available web applications with
ready test suites. Commercial applications are protected by copyright and license laws
that prevent their free use for research purposes. As a result, this work has had to rely
on developers sharing their work online under a license that allows further modification
and redistribution of their work. Unfortunately, such applications do not necessarily re-
flect continuous development procedures used by businesses, which is why it is hard to
estimate how well the proposed tool would actually work if it could have been tested on a
larger number of applications. This also constitutes a possible threat to the external valid-
ity, as it is not possible to determine whether the results obtained in this study generalize
to other web applications.

Another issue is connected with manual annotation of data. Although it is possible to
establish rules around such annotations, for example, only first child or parent is allowed
into the same class with an element, it does not mean that other elements are devoid of
cues. There could be a relevant image positioned in a close proximity that is neither

45

a parent or a child, or a set of children elements with relevant text down the line. There
could possibly be internal errors in label and semantic similarity annotations, which would
constitute a threat to the internal validity of the study.

Since the tools discussed in Chapter 2 are designed for test migration and reuse, it is
hard to compare the performance of this implementation to their results. Nevertheless,
with the 50% of matches being correct, the proposed solution that incorporates machine
learning for extracting relevant text cues and sentence embedding of text attributes appears
promising.

46

4 Conclusion

This work has served the purpose of implementing a semantic mapping method and ex-
ploring new application of machine learning in continuous development, specifically in
UI testing. Existing research shows that test automation faces significant challenges that
are related to test failure due to SUT changes. The latter appears when GUI elements that
are to be tested are relocated, or their locators are changed. What is more, it has been
noted that crawlers used to explore GUI of applications do not interact with a system the
way a human would. They systematically go through features to find a path that would
lead to a test suite execution. This makes testing slow and devoid of an actual represen-
tation of its use by application users. To mitigate such issues, semantic mapping for test
reuse and transfer has been introduced. The idea behind it is that applications of the same
domain share a lot of functionality, and once there is a test suite for one application, it
can be transferred to another one. Following this suggestion, this study argues that the
same can be done to mitigate issues of element identification in web application testing.
Applications are constantly updated and changed, and robust identification of elements
could resolve some issues faced by developers and testers.

Test reuse and transfer depends on efficient and accurate GUI element identification,
and there has been a lot novel research on semantic mapping. It leverages contextual cues
around web elements to aid in better identification of said elements. This study explores
the idea that contextual information could be gathered by grouping web elements and
extracting their textual information. Once elements are grouped, similarity between web
element groups in different releases of the same application can be established. By finding
the most similar groups, we can locate GUI elements that perform the same function in
different application versions. Unlike previous research on semantic matching, this study
emphasizes the use of machine learning methods for extracting textual cues.

47

This thesis answers several questions based on the results of the implementation of se-
mantic mapping. First, machine learning methods offer a significant potential for extract-
ing, representing, and gathering context around web application elements. There are three
semi-supervised classifiers that have been used in this study: SOMs, Label Spreading, and
Label Propagation. They have demonstrated various results based on their application in
web element classification. Label Spreading and Label Propagation have demonstrated
promising results with up to 88% and 83% accuracy respectively.

As earlier research has showed, using semantic meaning of textual cues can be used
for semantic mapping. This study has found that if a web application provides necessary
textual information within its elements’ attributes, semantic matching can be a viable
strategy for GUI element identification. Sentence embeddings produced with pre-trained
language models have demonstrated to be suitable for determining semantic similarity
for the purpose of semantic matching. According to the results of the semantic mapping
technique in this study, 50% of web elements were correctly matched between different
versions of the same application.

To conclude, the implementation of semantic mapping for GUI element identification
has demonstrated promising results in terms of accuracy; however, its performance could
be improved. This leads to the list of suggestions for further research in the area of
semantic mapping for element identification:

1. As discussed in Chapter 2, the best outcomes in terms of test reuse and robust ele-
ment identification have been observed in applications that share the same domain
and structure. This suggests that using a supervised model could improved tex-
tual cues’ extraction. It would require a data set with annotated HTML elements
extracted from applications that share the same domain or a similar structure.

2. Feature selection for such a classifier could to be revisited. Although the Selenium
Web Driver can provide location and text attributes of HTML elements, it some-
times fails. Additional features could be also considered.

48

5 Summary in Swedish – Svensk sam-
manfattning

Identifikation av användargränssnittselement med semantisk matchning

I denna magisteravhandling behandlas problemen med identifikation av grafiska an-
vändargränssnittselement i testning av webbapplikationer. Det primära målet är att un-
dersöka nya metoder för att minska mänsklig ansträngning och spara tid som behövs när
man testar webbapplikationer. Det har bevisats att manuella tester som är uppdaterade
när applikationer ändras är fortfarande populära, fastän de kräver stora kostnader [1]–[3].
Detta beror på att automatiserad testning kräver intensiv ansträngning och mycket tid för
att underhållas. Dessutom är den inte användningsbaserad, vilket är en orsak till att det
kan förekomma problem då olika funktioner på webbsidor testas [4], [6]. Dessa områden
utgör de största svårigheterna med automatiserad testning.

Nass et al. skriver att det finns många hinder för fullständig automatiserad testning
[2]. Till exempel misslyckas tester när nya versioner av webbapplikationer lanseras. Detta
beror på att grafiska användargränssnittselement byter sin plats och sitt namn. Forskare
hävdar att förbättring av dess indentifikation kan lösa problemen [2]. I denna magister-
avhandling framförs semantisk matchning som en metod att identifiera grafiska användar-
gränssnittselement mellan nya och gamla versioner av befintliga webbapplikationer. Den
använder semantiska betydelser av element på webbsidor för att finna motsvarigheter till
dem [4], [5]. Denna metod har visat sig vara framgångsrik när den används med webbap-
plikationer för samma domän [4]–[8]. Existerande tekniker kan bli bättre med maskinin-
lärning och kontextualiserad textinbäddning.

Maskininlärningen indelas traditionellt i tre typer: övervakat lärande, oövervakat lärande

49

och semi-övervakat lärande [28], [30]. Det behövs märkta data som har analyserats i
förväg vid övervakat lärande. Till exampel kan övervakade modeller tillämpas för att
förutsäga om ett mejl är skräppost eller inte. I oövervakat lärande är uppgiften att hitta
en slags struktur i data. Det finns ingen information om rätta klasser. Semi-övervakat
lärande kan användas när man har lite märkta data men man behöver en modell för att
göra förutsägelser ändå. Tre semi-övervakade modeller utvärderas för klassificering av el-
ement i denna avhandling: Label Spreading, Label Propagation och Self-Organized Maps
(SOM)[32], [34], [35]. Label Spreading och Label Propagation bygger en affinitetsma-
tris som beräknar likheter mellan element och upptäcker okända data [34], [35]. SOM är
ett artificiellt neuralt nät vars storlek man kan välja [32]. Algoritmen lär sig av data och
tilldelar dataprover olika klasser som ett resultat av den närliggande funktionen. Märkta
data har större vikt än omärkta i denna modell. Algoritmerna används med textinbäddning
som producerades av Sentence Bidirectional Encoder Representations from Transformers
(SBERT) [22], [44]. SBERT är den senaste tekniken för att representera text i verktor-
formen. SBERT kan bevara kontextuell information av text på grund av Transformers
arkitekturen och har visat enastående resultat i semantisk jämförelseuppgifter.

Semantisk matchning har använts för att testa webb och mobilapplikationer [4], [5],
[7]–[9], [12]. Den har visat sig minska den tid och den mänskliga ansträngning som be-
hövs för att utföra testning. Tidigare forskning har använt gamla tekniker, till exempel
Word2Vec och WordNet, för att generera vektorrepresentation av text och olika metoder
för att gruppera grafiska användargränssnittselement som inte baserar sig på maskininlärn-
ing. Detta arbete försöker använda maskininlärning för att klassificera och dra lärdom av
användargränssnittselement på webbsidor. Den lösningen som behandlas i avhandlingen
söker textinformation på webbsidor. Den anlägger ett Extensible Markup Language-träd
med lxml XML toolkit och sparar ett Xpath-innehåll för varje element som kan nås med
det [46]. Systemet laddar textinformation (’text’ , ’alt’ , ’title’ , ’name’ ,’value’ , ’id’, ’lo-
cation’) av elementen med Selenium Driver API [47]. Sedan grupperar en semi-övervakad
modell elementen. Label Propagation, Label Spreading och SOM accepterar interaktiva
element som märkta data. När data grupperas, sammanfogas text i varje grupp. Vid
denna tidpunkt är det möjligt att identifiera grafiska användargränssnittselementen mel-
lan nya och gamla versioner med den cosinuslikheten mellan ordvectorer av grupperna.
Paren med den största likheten är kandidater för semantisk matchning. När man vet deras
Xpath-innehåll kan tester överföras från den gamla versionen av webbapplikationen.

Det har funnits många hinder i arbetet. Det största problemet har varit att hitta en
webbapplikation som kan användas i forskning. Webbapplikationer är upphovsrättsskyd-
dade och kan inte användas för forskningsändamål. Därför har denna lösning applicerats

50

på en liten webbapplikation som kan generera en integritetspolicy för en annan webbap-
plikation. Systemet har fungerat med två versioner av webbapplikationen. Analysen av
arbetsresultatet påvisar att SBERT-textinbäddning representerar semantiska betydelser av
elementen. I allmänhet spelar datakvalitet en viktig roll vid maskininlärning och utfallet
beror på det. Label Propagation och Label Spreading har producerat goda resultat men
det är möjligt att de blir bättre med mer data av högre kvalitet.

Framtidsforskning inom semantisk matchning av grafiska användargränssnittselement
kan koncentreras på multimodal maskininlärning som innehåller olika typer av informa-
tion. Övervakat lärande lämpar sig förmodligen bättre för elements klassificeringsprob-
lem, men det kräver mycket märkta data. Dataanteckning av webbsidor är inte alls ett
trivialt problem och därför kräver den mänskliga ansträngningar och stora kostnader.

51

Bibliography

[1] J. Mahmud, A. Cypher, E. Haber, and T. Lau, “Design and industrial evaluation of
a tool supporting semi-automated website testing: A TOOL SUPPORTING SEMI-
AUTOMATED WEBSITE TESTING,” en, Software Testing, Verification and Re-

liability, vol. 24, no. 1, pp. 61–82, Jan. 2014, ISSN: 09600833. DOI: 10.1002/
stvr.1484. [Online]. Available: https://onlinelibrary.wiley.com/doi/
10.1002/stvr.1484 (visited on 11/14/2021).

[2] M. Nass, E. Alégroth, and R. Feldt, “Why many challenges with GUI test automa-
tion (will) remain,” en, Information and Software Technology, vol. 138, p. 106 625,
Oct. 2021, ISSN: 09505849. DOI: 10.1016/j.infsof.2021.106625. [Online].
Available: https://linkinghub.elsevier.com/retrieve/pii/S0950584921000963
(visited on 11/14/2021).

[3] M. Linares-Vasquez, C. Bernal-Cardenas, K. Moran, and D. Poshyvanyk, “How
do Developers Test Android Applications?” en, in 2017 IEEE International Con-

ference on Software Maintenance and Evolution (ICSME), Shanghai: IEEE, Sep.
2017, pp. 613–622, ISBN: 978-1-5386-0992-7. DOI: 10.1109/ICSME.2017.47.
[Online]. Available: http://ieeexplore.ieee.org/document/8094467/
(visited on 11/17/2021).

[4] A. Rau, J. Hotzkow, and A. Zeller, “Efficient GUI test generation by learning
from tests of other apps,” en, in Proceedings of the 40th International Conference

on Software Engineering: Companion Proceeedings, Gothenburg Sweden: ACM,
May 2018, pp. 370–371, ISBN: 978-1-4503-5663-3. DOI: 10.1145/3183440.
3195014. [Online]. Available: https://dl.acm.org/doi/10.1145/3183440.
3195014 (visited on 11/09/2021).

52

https://doi.org/10.1002/stvr.1484
https://doi.org/10.1002/stvr.1484
https://onlinelibrary.wiley.com/doi/10.1002/stvr.1484
https://onlinelibrary.wiley.com/doi/10.1002/stvr.1484
https://doi.org/10.1016/j.infsof.2021.106625
https://linkinghub.elsevier.com/retrieve/pii/S0950584921000963
https://doi.org/10.1109/ICSME.2017.47
http://ieeexplore.ieee.org/document/8094467/
https://doi.org/10.1145/3183440.3195014
https://doi.org/10.1145/3183440.3195014
https://dl.acm.org/doi/10.1145/3183440.3195014
https://dl.acm.org/doi/10.1145/3183440.3195014

[5] A. Rau, J. Hotzkow, and A. Zeller, “Transferring Tests Across Web Applications,”
en, in Web Engineering, T. Mikkonen, R. Klamma, and J. Hernández, Eds., vol. 10845,
Series Title: Lecture Notes in Computer Science, Cham: Springer International
Publishing, 2018, pp. 50–64, ISBN: 978-3-319-91661-3 978-3-319-91662-0. DOI:
10 . 1007 / 978 - 3 - 319 - 91662 - 0 _ 4. [Online]. Available: http : / / link .
springer.com/10.1007/978-3-319-91662-0_4 (visited on 11/09/2021).

[6] Y. Zhao, J. Chen, A. Sejfia, et al., “FrUITeR: A framework for evaluating UI test
reuse,” en, in Proceedings of the 28th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engi-

neering, Virtual Event USA: ACM, Nov. 2020, pp. 1190–1201, ISBN: 978-1-4503-
7043-1. DOI: 10.1145/3368089.3409708. [Online]. Available: https://dl.
acm.org/doi/10.1145/3368089.3409708 (visited on 11/05/2021).

[7] F. Behrang and A. Orso, “Test migration for efficient large-scale assessment of
mobile app coding assignments,” en, in Proceedings of the 27th ACM SIGSOFT

International Symposium on Software Testing and Analysis, Amsterdam Nether-
lands: ACM, Jul. 2018, pp. 164–175, ISBN: 978-1-4503-5699-2. DOI: 10.1145/
3213846.3213854. [Online]. Available: https://dl.acm.org/doi/10.1145/
3213846.3213854 (visited on 11/13/2021).

[8] F. Behrang and A. Orso, “Test Migration Between Mobile Apps with Similar Func-
tionality,” en, in 2019 34th IEEE/ACM International Conference on Automated

Software Engineering (ASE), San Diego, CA, USA: IEEE, Nov. 2019, pp. 54–65,
ISBN: 978-1-72812-508-4. DOI: 10.1109/ASE.2019.00016. [Online]. Available:
https://ieeexplore.ieee.org/document/8952387/ (visited on 11/13/2021).

[9] J.-W. Lin, R. Jabbarvand, and S. Malek, “Test Transfer Across Mobile Apps Through
Semantic Mapping,” en, in 2019 34th IEEE/ACM International Conference on Au-

tomated Software Engineering (ASE), San Diego, CA, USA: IEEE, Nov. 2019,
pp. 42–53, ISBN: 978-1-72812-508-4. DOI: 10.1109/ASE.2019.00015. [Online].
Available: https://ieeexplore.ieee.org/document/8952228/ (visited on
11/05/2021).

[10] G. Hu, L. Zhu, and J. Yang, “AppFlow: Using machine learning to synthesize ro-
bust, reusable UI tests,” en, in Proceedings of the 2018 26th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations of

Software Engineering, Lake Buena Vista FL USA: ACM, Oct. 2018, pp. 269–282,
ISBN: 978-1-4503-5573-5. DOI: 10.1145/3236024.3236055. [Online]. Avail-
able: https://dl.acm.org/doi/10.1145/3236024.3236055 (visited on
11/24/2021).

53

https://doi.org/10.1007/978-3-319-91662-0_4
http://link.springer.com/10.1007/978-3-319-91662-0_4
http://link.springer.com/10.1007/978-3-319-91662-0_4
https://doi.org/10.1145/3368089.3409708
https://dl.acm.org/doi/10.1145/3368089.3409708
https://dl.acm.org/doi/10.1145/3368089.3409708
https://doi.org/10.1145/3213846.3213854
https://doi.org/10.1145/3213846.3213854
https://dl.acm.org/doi/10.1145/3213846.3213854
https://dl.acm.org/doi/10.1145/3213846.3213854
https://doi.org/10.1109/ASE.2019.00016
https://ieeexplore.ieee.org/document/8952387/
https://doi.org/10.1109/ASE.2019.00015
https://ieeexplore.ieee.org/document/8952228/
https://doi.org/10.1145/3236024.3236055
https://dl.acm.org/doi/10.1145/3236024.3236055

[11] S. Rossel, Continuous Integration, Delivery, and Deployment, eng. Birmingham:
Packt Publishing, 2017, OCLC: 1011246395, ISBN: 978-1-78728-418-0.

[12] L. Mariani, A. Mohebbi, M. Pezzè, and V. Terragni, “Semantic matching of GUI
events for test reuse: Are we there yet?” en, in Proceedings of the 30th ACM SIG-

SOFT International Symposium on Software Testing and Analysis, Virtual Den-
mark: ACM, Jul. 2021, pp. 177–190, ISBN: 978-1-4503-8459-9. DOI: 10.1145/
3460319.3464827. [Online]. Available: https://dl.acm.org/doi/10.1145/
3460319.3464827 (visited on 11/14/2021).

[13] I. Banerjee, B. Nguyen, V. Garousi, and A. Memon, “Graphical user interface
(GUI) testing: Systematic mapping and repository,” en, Information and Software

Technology, vol. 55, no. 10, pp. 1679–1694, Oct. 2013, ISSN: 09505849. DOI: 10.
1016/j.infsof.2013.03.004. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S0950584913000669 (visited on 11/09/2021).

[14] V. Nguyen, T. To, and G.-H. Diep, “Generating and selecting resilient and main-
tainable locators for Web automated testing,” en, Software Testing, Verification and

Reliability, vol. 31, no. 3, May 2021, ISSN: 0960-0833, 1099-1689. DOI: 10.1002/
stvr.1760. [Online]. Available: https://onlinelibrary.wiley.com/doi/
10.1002/stvr.1760 (visited on 11/09/2021).

[15] R. Yandrapally, S. Thummalapenta, S. Sinha, and S. Chandra, “Robust test automa-
tion using contextual clues,” en, in Proceedings of the 2014 International Sympo-

sium on Software Testing and Analysis - ISSTA 2014, San Jose, CA, USA: ACM
Press, 2014, pp. 304–314, ISBN: 978-1-4503-2645-2. DOI: 10.1145/2610384.
2610390. [Online]. Available: http://dl.acm.org/citation.cfm?doid=
2610384.2610390 (visited on 11/14/2021).

[16] M. E. Akpınar and Y. Yesilada, “Vision Based Page Segmentation Algorithm: Ex-
tended and Perceived Success,” en, in Current Trends in Web Engineering, Q. Z.
Sheng and J. Kjeldskov, Eds., ser. Lecture Notes in Computer Science, Cham:
Springer International Publishing, 2013, pp. 238–252, ISBN: 978-3-319-04244-2.
DOI: 10.1007/978-3-319-04244-2_22.

[17] Activity, en. [Online]. Available: https://developer.android.com/reference/
android/app/Activity (visited on 04/24/2023).

[18] App resources overview, en. [Online]. Available: https://developer.android.
com/guide/topics/resources/providing-resources (visited on 04/24/2023).

[19] Fragment, en. [Online]. Available: https://developer.android.com/reference/
android/app/Fragment (visited on 04/24/2023).

54

https://doi.org/10.1145/3460319.3464827
https://doi.org/10.1145/3460319.3464827
https://dl.acm.org/doi/10.1145/3460319.3464827
https://dl.acm.org/doi/10.1145/3460319.3464827
https://doi.org/10.1016/j.infsof.2013.03.004
https://doi.org/10.1016/j.infsof.2013.03.004
https://linkinghub.elsevier.com/retrieve/pii/S0950584913000669
https://linkinghub.elsevier.com/retrieve/pii/S0950584913000669
https://doi.org/10.1002/stvr.1760
https://doi.org/10.1002/stvr.1760
https://onlinelibrary.wiley.com/doi/10.1002/stvr.1760
https://onlinelibrary.wiley.com/doi/10.1002/stvr.1760
https://doi.org/10.1145/2610384.2610390
https://doi.org/10.1145/2610384.2610390
http://dl.acm.org/citation.cfm?doid=2610384.2610390
http://dl.acm.org/citation.cfm?doid=2610384.2610390
https://doi.org/10.1007/978-3-319-04244-2_22
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/guide/topics/resources/providing-resources
https://developer.android.com/guide/topics/resources/providing-resources
https://developer.android.com/reference/android/app/Fragment
https://developer.android.com/reference/android/app/Fragment

[20] E. Ristad and P. Yianilos, “Learning string-edit distance,” en, IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 20, no. 5, pp. 522–532, May
1998, ISSN: 01628828. DOI: 10.1109/34.682181. [Online]. Available: http:
//ieeexplore.ieee.org/document/682181/ (visited on 11/29/2021).

[21] K. W. Church, “Word2Vec,” en, Natural Language Engineering, vol. 23, no. 1,
pp. 155–162, Jan. 2017, ISSN: 1351-3249, 1469-8110. DOI: 10.1017/S1351324916000334.
[Online]. Available: https://www.cambridge.org/core/product/identifier/
S1351324916000334/type/journal_article (visited on 11/17/2021).

[22] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence Embeddings using Siamese
BERT-Networks,” arXiv:1908.10084 [cs], Aug. 2019, arXiv: 1908.10084. [On-
line]. Available: http://arxiv.org/abs/1908.10084 (visited on 10/19/2021).

[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding,” arXiv:1810.04805 [cs],
May 2019, arXiv: 1810.04805. [Online]. Available: http://arxiv.org/abs/
1810.04805 (visited on 10/19/2021).

[24] C. Wang, P. Nulty, and D. Lillis, “A Comparative Study on Word Embeddings in
Deep Learning for Text Classification,” en, in Proceedings of the 4th International

Conference on Natural Language Processing and Information Retrieval, Seoul Re-
public of Korea: ACM, Dec. 2020, pp. 37–46, ISBN: 978-1-4503-7760-7. DOI:
10.1145/3443279.3443304. [Online]. Available: https://dl.acm.org/
doi/10.1145/3443279.3443304 (visited on 11/26/2021).

[25] Z. Liu, Y. Lin, and M. Sun, Representation Learning for Natural Language Pro-

cessing, en. Singapore: Springer Singapore, 2020, ISBN: 9789811555725 9789811555732.
DOI: 10.1007/978- 981- 15- 5573- 2. [Online]. Available: http://link.
springer.com/10.1007/978-981-15-5573-2 (visited on 11/19/2021).

[26] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical

Learning, en, 2nd ed., ser. Springer Texts in Statistics. New York, NY: Springer
New York, 2021, ISBN: 978-1-07-161418-1. [Online]. Available: https://www.
statlearning.com/ (visited on 11/30/2021).

[27] V. I. Levenshtein, “Binary Codes Capable of Correcting Deletions, Insertions and
Reversals,” Soviet Physics Doklady, vol. 10, p. 707, Feb. 1966, ADS Bibcode:
1966SPhD...10..707L. [Online]. Available: https://ui.adsabs.harvard.edu/
abs/1966SPhD...10..707L (visited on 11/26/2022).

[28] K. P. Murphy, Machine learning: a probabilistic perspective, en, ser. Adaptive
computation and machine learning series. Cambridge, MA: MIT Press, 2012, ISBN:
978-0-262-01802-9.

55

https://doi.org/10.1109/34.682181
http://ieeexplore.ieee.org/document/682181/
http://ieeexplore.ieee.org/document/682181/
https://doi.org/10.1017/S1351324916000334
https://www.cambridge.org/core/product/identifier/S1351324916000334/type/journal_article
https://www.cambridge.org/core/product/identifier/S1351324916000334/type/journal_article
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1145/3443279.3443304
https://dl.acm.org/doi/10.1145/3443279.3443304
https://dl.acm.org/doi/10.1145/3443279.3443304
https://doi.org/10.1007/978-981-15-5573-2
http://link.springer.com/10.1007/978-981-15-5573-2
http://link.springer.com/10.1007/978-981-15-5573-2
https://www.statlearning.com/
https://www.statlearning.com/
https://ui.adsabs.harvard.edu/abs/1966SPhD...10..707L
https://ui.adsabs.harvard.edu/abs/1966SPhD...10..707L

[29] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. [On-
line]. Available: http://www.deeplearningbook.org.

[30] T. Jo, Machine Learning Foundations: Supervised, Unsupervised, and Advanced

Learning, en. Cham: Springer International Publishing, 2021, ISBN: 978-3-030-
65899-1 978-3-030-65900-4. DOI: 10.1007/978-3-030-65900-4. [Online].
Available: http://link.springer.com/10.1007/978- 3- 030- 65900- 4
(visited on 12/02/2021).

[31] L. Han, G. Yang, H. Dai, et al., “Combining self-organizing maps and biplot anal-
ysis to preselect maize phenotypic components based on UAV high-throughput
phenotyping platform,” Plant Methods, vol. 15, no. 1, p. 57, May 2019, ISSN:
1746-4811. DOI: 10.1186/s13007-019-0444-6. [Online]. Available: https:
//doi.org/10.1186/s13007-019-0444-6 (visited on 12/15/2021).

[32] F. M. Riese and S. Keller, SuSi: Supervised Self-Organizing Maps for Regression

and Classification in Python, arXiv: 1903.11114, Jan. 2020. [Online]. Available:
https://doi.org/10.5281/zenodo.2609130 (visited on 12/07/2021).

[33] T. Kohonen, “Essentials of the self-organizing map,” en, Neural Networks, vol. 37,
pp. 52–65, Jan. 2013, ISSN: 08936080. DOI: 10.1016/j.neunet.2012.09.018.
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S0893608012002596 (visited on 12/15/2021).

[34] X. Zhu and Z. Ghahramani, “Learning from Labeled and Unlabeled Data with
Label Propagation,” en, p. 8, 2002.

[35] B. Yoshua, D. Olivier, and R. Nicolas Le, “Label Propagation and Quadratic Cri-
terion,” en, in Semi-Supervised Learning, O. Chapelle, B. Scholkopf, and A. Zien,
Eds., The MIT Press, Sep. 2006, pp. 192–216, ISBN: 978-0-262-03358-9. DOI:
10.7551/mitpress/9780262033589.003.0011. [Online]. Available: http://
mitpress.universitypressscholarship.com/view/10.7551/mitpress/

9780262033589.001.0001/upso-9780262033589-chapter-11 (visited on
01/25/2022).

[36] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning with
Local and Global Consistency,” en, p. 8, 2004.

[37] Z. S. Harris, “Distributional Structure,” en, WORD, vol. 10, no. 2-3, pp. 146–
162, Aug. 1954, ISSN: 0043-7956, 2373-5112. DOI: 10.1080/00437956.1954.
11659520. [Online]. Available: http://www.tandfonline.com/doi/full/10.
1080/00437956.1954.11659520 (visited on 11/25/2021).

56

http://www.deeplearningbook.org
https://doi.org/10.1007/978-3-030-65900-4
http://link.springer.com/10.1007/978-3-030-65900-4
https://doi.org/10.1186/s13007-019-0444-6
https://doi.org/10.1186/s13007-019-0444-6
https://doi.org/10.1186/s13007-019-0444-6
https://doi.org/10.5281/zenodo.2609130
https://doi.org/10.1016/j.neunet.2012.09.018
https://linkinghub.elsevier.com/retrieve/pii/S0893608012002596
https://linkinghub.elsevier.com/retrieve/pii/S0893608012002596
https://doi.org/10.7551/mitpress/9780262033589.003.0011
http://mitpress.universitypressscholarship.com/view/10.7551/mitpress/9780262033589.001.0001/upso-9780262033589-chapter-11
http://mitpress.universitypressscholarship.com/view/10.7551/mitpress/9780262033589.001.0001/upso-9780262033589-chapter-11
http://mitpress.universitypressscholarship.com/view/10.7551/mitpress/9780262033589.001.0001/upso-9780262033589-chapter-11
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1080/00437956.1954.11659520
http://www.tandfonline.com/doi/full/10.1080/00437956.1954.11659520
http://www.tandfonline.com/doi/full/10.1080/00437956.1954.11659520

[38] J. Firth, “A Synopsis of Linguistic Theory 1930-1955,” in Studies in Linguistic

Analysis, Philological Society, Oxford, 1957.

[39] D. Rozado, “Wide range screening of algorithmic bias in word embedding models
using large sentiment lexicons reveals underreported bias types,” en, PLOS ONE,
vol. 15, no. 4, C. Schwieren, Ed., e0231189, Apr. 2020, ISSN: 1932-6203. DOI:
10.1371/journal.pone.0231189. [Online]. Available: https://dx.plos.
org/10.1371/journal.pone.0231189 (visited on 11/25/2021).

[40] O. Levy, “Word Representation,” en, in The Oxford Handbook of Computational

Linguistics 2nd edition, R. Mitkov, Ed., Oxford University Press, Sep. 2018, ISBN:
978-0-19-957369-1. DOI: 10.1093/oxfordhb/9780199573691.013.57. [On-
line]. Available: https://oxfordhandbooks.com/view/10.1093/oxfordhb/
9780199573691 . 001 . 0001 / oxfordhb - 9780199573691 - e - 57 (visited on
11/19/2021).

[41] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word
Representations in Vector Space,” en, arXiv:1301.3781 [cs], Sep. 2013, arXiv:
1301.3781. [Online]. Available: http://arxiv.org/abs/1301.3781 (visited on
11/16/2021).

[42] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed Rep-
resentations of Words and Phrases and their Compositionality,” en, Advances in

Neural Information Processing Systems, vol. 26, p. 9, Oct. 2013.

[43] T. Mikolov, W.-t. Yih, and G. Zweig, “Linguistic Regularities in Continuous Space
Word Representations,” en, N13-1090, vol. Proceedings of the 2013 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, p. 6, 2013.

[44] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention Is All You Need,” en, arXiv:1706.03762

[cs], Dec. 2017, arXiv: 1706.03762. [Online]. Available: http://arxiv.org/
abs/1706.03762 (visited on 11/19/2021).

[45] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A Unified Embedding for
Face Recognition and Clustering,” en, in 2015 IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), arXiv:1503.03832 [cs], Jun. 2015, pp. 815–
823. DOI: 10.1109/CVPR.2015.7298682. [Online]. Available: http://arxiv.
org/abs/1503.03832 (visited on 11/25/2022).

[46] Lxml - Processing XML and HTML with Python. [Online]. Available: https://
lxml.de/index.html#introduction (visited on 11/13/2022).

57

https://doi.org/10.1371/journal.pone.0231189
https://dx.plos.org/10.1371/journal.pone.0231189
https://dx.plos.org/10.1371/journal.pone.0231189
https://doi.org/10.1093/oxfordhb/9780199573691.013.57
https://oxfordhandbooks.com/view/10.1093/oxfordhb/9780199573691.001.0001/oxfordhb-9780199573691-e-57
https://oxfordhandbooks.com/view/10.1093/oxfordhb/9780199573691.001.0001/oxfordhb-9780199573691-e-57
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.1109/CVPR.2015.7298682
http://arxiv.org/abs/1503.03832
http://arxiv.org/abs/1503.03832
https://lxml.de/index.html#introduction
https://lxml.de/index.html#introduction

[47] Selenium Overview, en. [Online]. Available: https : / / www . selenium . dev /
documentation/overview/ (visited on 11/19/2022).

[48] CSS: Cascading Style Sheets | MDN, en-US, Apr. 2023. [Online]. Available: https:
//developer.mozilla.org/en-US/docs/Web/CSS (visited on 04/25/2023).

[49] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine learning
in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[50] D. Jurafsky and J. Martin, Speech and Language Processing: An Introduction to

Natural Language Processing, Computational Linguistics, and Speech Recogni-

tion. Feb. 2008, vol. 2.

[51] 6.2. Feature extraction, en. [Online]. Available: https://scikit-learn/stable/
modules/feature_extraction.html (visited on 04/24/2023).

[52] 1.14. Semi-supervised learning, en. [Online]. Available: https://scikit-learn.
org/stable/modules/semi_supervised.html#label-propagation (visited
on 11/28/2022).

[53] Semantic Textual Similarity — Sentence-Transformers documentation. [Online].
Available: https : / / www . sbert . net / docs / usage / semantic _ textual _
similarity.html (visited on 04/25/2023).

[54] T. pandas development team, Pandas-dev/pandas: Pandas, version latest, Feb. 2020.
DOI: 10.5281/zenodo.3509134. [Online]. Available: https://doi.org/10.
5281/zenodo.3509134.

[55] N. Srivastava, App Privacy Policy Generator. [Online]. Available: https://app-
privacy-policy-generator.nisrulz.com/ (visited on 11/28/2022).

[56] N. Srivastava, Nisrulz/app-privacy-policy-generator, original-date: 2017-02-21T17:38:38Z,
Apr. 2023. [Online]. Available: https://github.com/nisrulz/app-privacy-
policy-generator (visited on 04/25/2023).

[57] Sklearn.manifold.TSNE, en. [Online]. Available: https://scikit-learn/stable/
modules/generated/sklearn.manifold.TSNE.html (visited on 11/28/2022).

[58] Sentence-transformers/all-mpnet-base-v2 · Hugging Face. [Online]. Available: https:
//huggingface.co/sentence-transformers/all-mpnet-base-v2 (visited
on 11/28/2022).

[59] Sentence-transformers/all-distilroberta-v1 · Hugging Face. [Online]. Available: https:
//huggingface.co/sentence-transformers/all-distilroberta-v1 (vis-
ited on 11/28/2022).

58

https://www.selenium.dev/documentation/overview/
https://www.selenium.dev/documentation/overview/
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
https://scikit-learn/stable/modules/feature_extraction.html
https://scikit-learn/stable/modules/feature_extraction.html
https://scikit-learn.org/stable/modules/semi_supervised.html#label-propagation
https://scikit-learn.org/stable/modules/semi_supervised.html#label-propagation
https://www.sbert.net/docs/usage/semantic_textual_similarity.html
https://www.sbert.net/docs/usage/semantic_textual_similarity.html
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://app-privacy-policy-generator.nisrulz.com/
https://app-privacy-policy-generator.nisrulz.com/
https://github.com/nisrulz/app-privacy-policy-generator
https://github.com/nisrulz/app-privacy-policy-generator
https://scikit-learn/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn/stable/modules/generated/sklearn.manifold.TSNE.html
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-distilroberta-v1
https://huggingface.co/sentence-transformers/all-distilroberta-v1

[60] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled version of
bert: Smaller, faster, cheaper and lighter,” ArXiv, vol. abs/1910.01108, 2019.

59

Appendix A – Parameter Tuning

Figure A.1: TF-IDF vectorizer parameters for the source application (Logistic Regres-
sion)

Figure A.2: TF-IDF vectorizer parameters for the target application (Logistic Regression)

60

Figure A.3: Count vectorizer parameters for the source application (Logistic Regression)

Figure A.4: Count vectorizer parameters for the target application (Logistic Regression)

61

Appendix B – Code

1 import numpy as np
2 import pandas as pd
3 from sklearn.semi_supervised import LabelSpreading ,

LabelPropagation
4 from sklearn.metrics import accuracy_score
5

6 token_pattern = r’(?u)\b\w+(?:\[.?\])?’
7

8 #Parameters to be tested
9 ngram = [(1 ,3) ,(2,2) ,(3,3) ,(2,3) ,(1,2)]

10 max_df = np.arange (.1 ,.5 ,.1)
11 bool_p = [True , False]
12 true_l = data[’true_label ’]
13 labels = data[’class ’]
14 gamma = np.arange (5,41,5)
15 alpha = np.arange (.01, .17, .05)
16

17 #Label Spreading with TF -IDF
18 def tune_labelspreadingTFIDF(data):
19 results_tfidf = {’ngram’:[], ’max_df ’:[],’sublinear_tf ’:[],’gamma

’:[], ’alpha’:[], ’accuracy ’:[]}
20 for n in ngram:
21 for m in max_df:
22 for s in bool_p:
23 preprocessorTFIDF = make_column_transformer(
24 (TfidfVectorizer(token_pattern = token_pattern ,

ngram_range=n, sublinear_tf=s,max_df=m), ’xpath’),
25 (MinMaxScaler (), [’x’, ’y’]),
26 sparse_threshold =0)
27 X1tfidf = preprocessorTFIDF.fit_transform(data)
28 for i in gamma:

62

29 for j in alpha:
30 label_sp_model = LabelSpreading(gamma=i, alpha=j)
31 label_sp_model.fit(X1tfidf , labels)
32 y_pred = label_sp_model.transduction_
33 results_tfidf[’gamma ’]. append(i)
34 results_tfidf[’alpha ’]. append(j)
35 results_tfidf[’ngram ’]. append(n)
36 results_tfidf[’max_df ’]. append(m)
37 results_tfidf[’sublinear_tf ’]. append(s)

results_tfidf[’accuracy ’]. append(accuracy_score(true_l , y_pred))
38 results_tfidf = pd.DataFrame(results_tfidf)
39 return results_tfidf
40

41 #Label Spreading with CountVectorizer
42 def tune_labelspreadingCV(data):
43 results_cv = {’ngram’:[], ’max_df ’:[],’binary ’:[],’gamma ’:[], ’

alpha’:[], ’accuracy ’:[]}
44 for n in ngram:
45 for m in max_df:
46 for s in bool_p:
47 preprocessorCV = make_column_transformer(
48 (CountVectorizer(token_pattern = token_pattern ,

ngram_range=n, binary=s,max_df=m), ’xpath ’),
49 (MinMaxScaler (), [’x’, ’y’]),
50 sparse_threshold =0)
51 X1cv = preprocessorCV.fit_transform(data)
52 for i in gamma:
53 for j in alpha:
54 label_sp_model = LabelSpreading(gamma=i, alpha=j)
55 label_sp_model.fit(X1cv , labels)
56 y_pred = label_sp_model.transduction_
57 results_cv[’gamma ’]. append(i)
58 results_cv[’alpha ’]. append(j)
59 results_cv[’ngram ’]. append(n)
60 results_cv[’max_df ’]. append(m)
61 results_cv[’binary ’]. append(s) results_cv[’

accuracy ’]. append(accuracy_score(true_l , y_pred))
62 results_cv = pd.DataFrame(results_cv)
63 return results_cv
64

65 #Label Propagation with TF -IDF
66 def tune_labelpropagationTFIDF(data):
67 results_tfidf = {’ngram’:[], ’max_df ’:[],’sublinear_tf ’:[],’gamma

’:[], ’alpha’:[], ’accuracy ’:[]}
68 for n in ngram:

63

69 for m in max_df:
70 for s in bool_p:
71 preprocessorTFIDF = make_column_transformer(
72 (TfidfVectorizer(token_pattern = token_pattern ,

ngram_range=n, sublinear_tf=s,max_df=m), ’xpath’),
73 (MinMaxScaler (), [’x’, ’y’]),
74 sparse_threshold =0)
75 X1tfidf = preprocessorTFIDF.fit_transform(data)
76 for i in gamma:
77 label_sp_model = LabelPropagation(gamma=i, max_iter

=10000)
78 label_sp_model.fit(X1tfidf , labels)
79 y_pred = label_sp_model.transduction_
80 results_tfidf[’gamma ’]. append(i)
81 results_tfidf[’ngram ’]. append(n)
82 results_tfidf[’max_df ’]. append(m)
83 results_tfidf[’sublinear_tf ’]. append(s)

results_tfidf[’accuracy ’]. append(accuracy_score(true_l , y_pred))
84 results_tfidf = pd.DataFrame(results_tfidf)
85 return results_tfidf
86

87 #Label Propagation with CountVectorizer
88 def tune_labelpropagationCV(data):
89 results_cv = {’ngram’:[], ’max_df ’:[],’binary ’:[],’gamma ’:[], ’

alpha’:[], ’accuracy ’:[]}
90 for n in ngram:
91 for m in max_df:
92 for s in bool_p:
93 preprocessorCV = make_column_transformer(
94 (CountVectorizer(token_pattern = token_pattern ,

ngram_range=n, binary=s,max_df=m), ’xpath ’),
95 (MinMaxScaler (), [’x’, ’y’]),
96 sparse_threshold =0)
97 X1cv = preprocessorCV.fit_transform(data)
98 for i in gamma:
99 label_sp_model = LabelPropagation(gamma=i, max_iter

=10000)
100 label_sp_model.fit(X1cv , labels)
101 y_pred = label_sp_model.transduction_
102 results_cv[’gamma ’]. append(i)
103 results_cv[’ngram ’]. append(n)
104 results_cv[’max_df ’]. append(m)
105 results_cv[’binary ’]. append(s) results_cv[’

accuracy ’]. append(accuracy_score(true_l , y_pred))
106 results_cv = pd.DataFrame(results_cv)

64

107 return results_cv

1 import susi
2

3 #Testing SOM
4 #Splitting data into training and test data sets
5 def split_data(data):
6 unlabeled = data.index[data[’class ’] == -1]. values
7 #Every second unlabeled data point is placed in the training data
8 unlabeled_train = unlabeled [0: -1:2]
9 test_idx = np.setdiff1d(unlabeled , unlabeled_train)

10 train_idx = np.concatenate ((unlabeled_train , data.index[data[’
class’] != -1]. values), axis =0)

11 return train_idx , test_idx
12

13 train , test = split_data(data)
14

15 #Extracting input features
16 preprocessor = make_column_transformer(
17 #(CountVectorizer(token_pattern = token_pattern , ngram_range

=(3 ,3), binary=True , max_df =0.3) , ’xpath ’),
18 (TfidfVectorizer(token_pattern = token_pattern , ngram_range

=(3 ,3), sublinear_tf=True , max_df =0.3), ’xpath ’),
19 (MinMaxScaler (), [’x’, ’y’]),
20 sparse_threshold =0
21)
22 train_data = preprocessor.fit_transform(data.iloc[train])
23 test_data = preprocessor.transform(data.iloc[test])
24

25 #Fitting and predicting labels with SOM
26 def predict_SOM(train_data , test_data , train_labels , true_labels ,

columns , rows , rate_start , rate_end):
27 som = susi.SOMClassifier(random_state =0,

missing_label_placeholder =-1,
28 n_columns=columns ,
29 n_rows=rows ,
30 learning_rate_start = rate_start ,
31 learning_rate_end = rate_end)
32 som.fit(train_data , train_labels)
33 y_pred = som.predict(test_data)
34 accuracy = metrics.accuracy_score(true_labels , y_pred)
35 print(accuracy)

65

	Introduction
	Motivation
	Structure of the Thesis

	Background
	Automated GUI Testing
	Semantic Mapping for GUI Testing
	Evaluating Similarity Based Tools

	Machine Learning
	Self-Organizing Maps
	Label Propagation and Label Spreading

	Text Representation and Semantic Similarity
	Word2Vec
	Context-dependent Embeddings
	Sentence BERT Models

	Implementation of Semantic Mapping
	Parsing the Web Document
	Grouping the Web Elements
	Semantic Mapping
	Results
	Parameter Tuning
	Semantic Similarity Estimation

	Conclusion
	Summary in Swedish – Svensk sammanfattning
	Bibliography
	Appendix A – Parameter Tuning
	Appendix B – Code

