

Implementation of FPGA-based star tracker

pre-processing pipeline

Oscar Björkgren 38655

Supervisor, Å b o Akademi University: Annamari Soini

Advisors, Aboa Space Research Oy: Tero S äntti, Tuomo Komulainen

Master’s thesis in Computer Engineering

Å b o Akademi University

2022

Abstract

The processing pipeline for a star tracker requires computation within various

problem domains. The first stage of star detection and tracking is to extract star

features from image data. The image processing, described as the pre-processing

pipeline, is implemented and documented in this thesis. The goal is to provide a

theoretical basis of hardware aspects, image processing, and star tracker systems

to support the design choices made for the pre-processing pipeline.

The hardware design is built for a Xilinx 7-series FPGA, functioning as a

testbed for the pre-processing pipeline. The Opal Kelly XEM7305 module pro-

vides the components, such as power, clock, SDRAM, and a communication chan-

nel to the FPGA.

The system requirements form the high level goals of the pre-processing

pipeline. The requirements create a framework for the FPGA design to be

developed with robust and user-friendly engineering principles. The requirements

are implemented in a design consisting of a computation unit, communication

unit, memory control unit, and client-PC software.

Extracted stars are rendered on top of images provided to the pre-processing

pipeline. The successful extraction of stars can be verified through the client soft-

ware. The processing time of an image is satisfactory, with a very low variation.

This is a precondition for integration with other star tracker components, when

following the principle of predictability. The performance of the most complex

part of the computation unit, the CCL process, is compared to high performance

software implementations. A satisfactory result is concluded when the software

execution is put to scale with the lower clock speed of the hardware implementa-

tion.

The resource use of the FPGA, provided by the Xilinx Vivado design suite, is

reviewed with the conclusion being that the FPGA part fits the design well with

a high utilization rate of LUTs and BRAM. Parallelization could be increased to

utilize more DSP blocks for faster results.

Keywords

Star tracker, image processing, CCL, box filter, FPGA design

Abbreviations

CPU Central Processing Unit

PC Personal Computer

GPU Graphics Processing Unit

FPGA Field-Programmable Gate Array

SRAM Static Random-Access Memory

CLB Configurable Logic Block

LUT Look-Up Table

SIMD Single Input Multiple Data

DSP Digital Signal Processor

SDRAM Synchronous Dynamic Random-Access Memory

I/O Input/Output

HDL Hardware Description Language

IP Intellectual Property

SoC System On a Chip

RISC Reduced Instruction Set Computer

ARM Advanced RISC Machines

IC Integrated Circuit

USB Universal Serial Bus

DDR Double Data Rate

BRAM Block Random-Access Memory

FOV Field Of View

CCD Charged-Coupled Device

CMOS Complementary Metal-Oxide-Semiconductor

FIFO First In First Out

CCL Connected Component Labeling

API Application Programming Interface

GUI Graphical User Interface

FPS Frames Per Second

Contents

1 Introduction 1

2 Custom hardware design in general 2

2.1 Single and general purpose processors 2

2.2 FPGA Overview . 3

2.3 System design with HDL . 7

2.4 System design with IP cores . 8

3 System requirements 10

3.1 System specification .. 11

3.1.1 System components .. 11

4 FPGA-based computer hardware 13

4.1 Communication .. 13

4.2 Memory ... 15

4.2.1 SDRAM ... 15

4.2.2 Block RAM .. 17

4.2.3 Distributed RAM .. 18

4.3 Clock... 19

5 Star tracker systems 20

5.1 Argumentation .. 22

5.2 Image acquisition .. 22

5.3 Image processing .. 23

5.4 Star detection .. 23

5.5 Attitude and position ... 24

6 Pre-processing pipeline documentation 25

6.1 Functional overview.. 25

6.2 FPGA design .. 26

6.2.1 Support systems ... 26

6.2.2 Image processing and analysis ... 33

6.3 Client endpoint .. 40

6.3.1 Connecting and initializing FPGA .. 41

6.3.2 Bitsream programming ... 41

6.3.3 Pre-processing pipeline configuration and control 41

6.3.4 Results and analysis ... 42

7 Results and comparison 43

7.1 Pre-processing pipeline results ... 43

7.1.1 Conclusion .. 51

7.2 Pre-processing pipeline performance .. 52

7.2.1 Software based approach ... 53

8 Review and reflection 56

8.1 System requirements ... 56

8.2 FPGA design .. 57

9 Summary in Swedish - Svensk sammanfattning 60

Bibliography 65

List of Figures

2.1 Graph showing increasing popularity of specialized hardware in

high performance computing [1]. 3

2.2 Figure showing two execution paths for the expression y = (a×x)+

b + c. The operations on the first path depend on the output from

previous operations, whereas the operations on the second path

depend on separate input register. The second path is a pipeline

transformation of the first path. [2] 4

2.3 FPGA architecture. An FPGA consists of configurable logic blocks,

input/output pads, and an interconnect [2]. 5

2.4 Diagram of a configurable logic block. A CLB consists of logic

element containers, called slices, inputs, and outputs. Both slices

are attached to the switch matrix, connecting the CLB to other

CLBs. [3] . 6

2.5 Example of a look-up table with four memory cells and two mul-

tiplexers. The FPGA design initializes memory cells a-d and uses

inputs x1 and x0 to select value y. [2] 6

2.6 DSP system design on FPGA [2]. 7

2.7 Common SoC found in smartphones includes ARM based CPU and

DSP. [4] . 9

3.1 Flowchart of StreakDet software [5]. .. 10

4.1 Overview of the FPGA module showing the FPGA itself in the cen-

ter, SDRAM off-chip memory on the top right, and USB interface

on the left. [6] ... 14

4.2 SDRAM memory cell. The capacitor traps the charge which is

controlled by the transistor at the top. [7] ... 16

4.3 SDRAM geometry .. 17

5.1 Diagram of star tracker equipped satellite in orbit. Attitude and

position elements are described by following symbols; α being the

right ascension, δ declination and R the attitude matrix. The star

tracker camera system is visualized with four stars in the field of

view (FOV) .. 21

6.1 Diagram of star tracker pre-processing pipeline. The FPGA, per-

forming the image processing and analysis, on the right and the

PC, being the user interface, on the left... 25

6.2 Diagram showing FPGA design as functional blocks where top sec-

tion is furthest from off-chip modules while bottom section is closest

to off-chip modules. Boxes in the diagram are not in scale to the

actual footprint of the components on the FPGA 27

6.3 Diagram of different levels of memory used for storing image pixels

of the star tracker pre-processing pipeline. .. 32

6.4 Illustration of box filter. The original feature is on the left, while

the processed feature is on the right. Box filter averages every pixel

within a 3 x 3 image processing kernel. ... 34

6.5 Illustration of thresholding process. The feature on the left is the

product of box filter, and the feature on the right is the feature

after passing the threshold. ... 35

6.6 Example of CCL feature tables. Left table is where the mapping of

pixel values to feature labels is stored. Labels are also renderable,

as they are stored as 8-bit integers. Center table stores minimum

and maximum coordinates of each feature in 35-bit integers. Right

table stores feature brightness as 32-bit integers. 37

6.7 Illustration of the two centroid variants. Non-weighted centroid is

rendered on the feature on the left. Weighted centroid is rendered

on the feature on the right. ... 40

7.1 Synthesized star image used as test input. ..44

7.2 Run T1 output image. ...44

7.3 Run T2 output image. ... 45

7.4 Sample 1 input image. ..46

7.5 Run S1.1 output image. ... 47

7.6 Run S1.2 output image. ... 47

7.7 Sample 2 input image. ... 48

7.8 Run S2.1 output image. ...49

7.9 Run S2.2 output image. ...49

7.10 Sample 3 input image. ... 50

7.11 Run S3.1 output image. ... 51

7.12 Run S3.2 output image. ... 51

8.1 Utilization % of available FPGA resources. Total LUT utilization

and LUTs used as storage mechanism, LUTRAM, are shown. To-

gether with flip flop utilization, the internal utilization of CLBs is

described. The more specialized resources, BRAM and DSPs, are

also reported. .. 57

8.2 Summary of power consumption showing estimated usage by each

section of the FPGA. A total power consumption of 1,053 W is

consumed when the pre-processing pipeline is operational and 0,082

W in idle mode. .. 59

List of Tables

3.1 System requirements specification ... 11

6.1 Description of Wire In state control bits .. 29

6.2 Description of Wire Out state bits. ... 29

6.3 Description of writable values used by the FPGA 30

6.4 Description of readable registers on the FPGA .. 30

7.1 1Input parameter to the pre-processing pipeline, specified as pixel

value. 2Performance metric of the pre-processing pipeline, mea-

sured in milliseconds. Data shows result of increasing the fore-

ground threshold, as less time spent centroiding while other pro-

cesses are unaffected ... 44

7.2 1Input parameter to the pre-processing pipeline, specified as pixel

value. 2Performance metric of the pre-processing pipeline, mea-

sured in milliseconds. Data shows increase in centroid time when

decreasing feature threshold. ... 46

7.3 1Input parameter to the pre-processing pipeline, specified as

pixel value. 2Performance metric of the pre-processing pipeline,

measured in milliseconds. Data shows that decreasing foreground

threshold increases the processing time. ... 48

7.4 1Input parameter to the pre-processing pipeline, specified as pixel

value. 2Performance metric of the pre-processing pipeline, mea-

sured in milliseconds. Data shows that increasing feature threshold

decreases processing time. ... 50

7.5 1Input parameter to the pre-processing pipeline, specified as pixel

value. 2Performance metric of the pre-processing pipeline, mea-

sured in milliseconds. 3Performance metric of the pre-processing

pipeline, measured in microseconds.

Results of the software based approach, produced by averaging the

outputs of 10 runs. An Intel i5 CPU, running at 2GHz is used as

the underlying hardware and Clang 11 as the compiler. 54

7.6 1Input parameter to the pre-processing pipeline, specified as pixel

value. 2Performance metric of the pre-processing pipeline, mea-

sured in milliseconds.

Results of the software based approach, produced by averaging the

outputs of 10 runs and normalizing the clock speed 55

8.1 FPGA resource utilization. The number of LUTs, slices, DSP

blocks and BRAM arrays are listed. .. 57

1

1. Introduction

A hardware-based solution for a software algorithm is sometimes needed within

application areas where performance matters the most. One example of this is

the aerospace industry where the most optimized solution is sometimes the only

choice. In this thesis, I work together with Aboa Space Research Oy to create

a hardware implementation of a pre-processor module for a star tracker system

using a software component as a basis. A star tracker is commonly used as part

of a larger system where the role of the tracker is to provide orientational data to

other components. This information might be used for navigation and control or

in combination with scientific instruments to help with further analysis. Hardware

design can be inspired by software algorithms when designed for a specific purpose,

as in this case. The software defines the functional part of the system, which

leaves a big part of the supporting architecture to be designed. In this thesis,

I will explain the process of implementing functionality to a digital circuit, by

example.

To complete a set of tasks in any environment, a scientific project needs well-

defined tools to reach its goals. In technologically restricted environments such

as space, tools often need to be multipurpose for optimal use. An image sensor is

in this case used to provide reference data for a star tracker. This image sensor

can provide data to multiple systems by reusing data or capturing new images

with other settings. The purpose of the system in this project is to refine data

from predefined sensors to provide additional and reinforcing information about

the environment for the use of other scientific instruments. The goal of this thesis

is to create a roadmap of the system design process and include theory of relevant

areas.

2

2. Custom hardware design in

general

2.1 Single and general purpose processors

A general purpose processor refers to a hardware computing platform which is

designed for universal use with broad benefits across different problem-solving

domains. Computing platforms such as microprocessors and CPUs are examples

of this type of processor, their hardware logic is implemented in such a way that it

enables a large variety of computations to be performed. The characteristics of a

processor for general problem solving are well suited to common tasks where there

might be many hard- and software abstractions between the application interface

and hardware logic. This is a necessity in, for example, PCs.

When hardware is required for a single purpose with a finite set of tasks to be

performed, there will be drawbacks with using hardware designed with flexibility

in mind. This could be compared to the use of a multitool for driving a screw into

a piece of wood when, in fact, only a screwdriver is needed. It is not the wrong

way to do it, but there is a more optimized way of achieving the result. Any CPU

could be used for computer graphics calculations but since GPUs are designed for

the single purpose of this type of processing, they are a better tool for the job.

Single purpose processors have a rich history with roots in the early ages of

computers. Vector processors were, for example, used in supercomputers. This

was before computers were seen as general purpose technology and high perfor-

mance computing was about as common as ordinary PCs. In recent years, the

utilization of specialized hardware has been rising, with new application areas

evolving. Single purpose processors such as GPUs and field-programmable gate

arrays (FPGAs) have found themselves into areas such as machine learning, cryp-

tocurrency mining, and other high performance computing applications. As the

3

Figure 2.1: Graph showing increasing popularity of specialized hardware in high

performance computing [1].

hardware used in aerospace applications generally is specialized according to strict

requirements, single purpose computing platforms are heavily used. For example,

the Nasa Perseverance Mars rover relies heavily on Xilinx manufactured FPGAs

for different tasks, such as image processing pipelines [8].

2.2 FPGA Overview

A field-programmable gate array, or FPGA, is a digital integrated circuit that

consists of millions of logic blocks that can be configured to perform different

operations. The process of configuring the logic blocks is called FPGA design

and can be compared to the design of integrated circuits. Reconfigurability and

ease of design are the main advantages when using an FPGA as a computing

platform. When comparing an FPGA design with a solution that is developed

using software, the FPGA stands out with process pipelining and a high level

of parallel processing. The difference between executing a software program on a

processor and executing the equivalent operation on an FPGA is that the compiled

software instructs the processor to do operations in a generic way, as in loading a

register and shifting a bit. An FPGA does not need to explicitly load a register,

because the registers are by default connected to the input of the operation, which

is defined by the FPGA design. A bit shift operation is typically an inexpensive

4

Figure 2.2: Figure showing two execution paths for the expression y = (a × x) +

b + c. The operations on the first path depend on the output from previous

operations, whereas the operations on the second path depend on separate input

register. The second path is a pipeline transformation of the first path. [2]

operation regardless of the computing platform, but the FPGA can pipeline the

result directly into another register or operation, which saves clock cycles. The

pipeline principle is demonstrated in Figure 2.2 by comparing it with a non-

pipelined solution. The pipeline transformation enables the inactive parts of the

calculation to be utilized when they would normally be idle, waiting for all parts

to finish. [2]

Xilinx is one of the key companies involved in FPGA production, both cur-

rently and historically. They introduced the world to FPGAs in 1985 and have

since then led the programmable logic technology industry, with a 51% market

share of programmable logic device suppliers in 2017. Major end market categories

for Xilinx are aerospace, defense, and communications. The main competitor of

Xilinx is Intel with a market share of 37%. [9][10]

Due to the significance of Xilinx, and relevancy in this project, FPGA tech-

nology discussed in this work is Xilinx based. Differences between manufacturers

include technological and architectural nuances. For example, Xilinx exclusively

5

manufactures static random-access memory (SRAM)-based FGPAs. This refers

to the technology of the programmable parts of the FPGA. Other available tech-

nologies are flash and anti-fuse, which are less common than SRAM. [11]

The basic internal elements of an FPGA consist of circuits such as look-up

tables, flip-flops, wires, and input/output pads. Using these elements the FPGA

design is implemented in the hardware. The architecture is illustrated in Figure

2.3 which shows a matrix arrangement of configurable logic blocks which are con-

nected to each other with an interconnect, consisting of wires and switch matrices.

The wires also run to the input/output pads, which enables interfacing with off-

chip components such as synchronous dynamic random-access memory (SDRAM)

or sensors. Configurable logic blocks (CLBs) contain the look-up tables and flip

flops. An overview of a CLB is shown in Figure 2.4. [2]

Figure 2.3: FPGA architecture. An FPGA consists of configurable logic blocks,

input/output pads, and an interconnect [2].

The slices in Figure 2.4 represent core elements of an FPGA. Slices consist of

look-up tables, storage elements, multiplexers, and carry logic. Depending on the

FPGA, there are different numbers of slices per CLB. The slices are collectively

responsible for implementing a significant portion of the FPGA design. [3]

Look-up tables (LUT) are mainly used as logic elements in FPGAs. They can

implement any boolean logic operation by combining memory cells with multi-

plexers. A look-up table is essentially a truth table that can be used for reading

the result of boolean operations. Memory cells and multiplexer routings are ini-

tialized by the FPGA design, which is what makes the look-up table element

configurable. An example of a four memory cell wide LUT is shown in Figure 2.5.

[2]

6

Figure 2.4: Diagram of a configurable logic block. A CLB consists of logic element

containers, called slices, inputs, and outputs. Both slices are attached to the

switch matrix, connecting the CLB to other CLBs. [3]

Figure 2.5: Example of a look-up table with four memory cells and two multi-

plexers. The FPGA design initializes memory cells a-d and uses inputs x1 and

x0 to select value y. [2]

The circuit elements discussed in this chapter form the basic blocks of FPGA

technology. A larger set of elements are often included in an FPGA to enable

some optimizations and further functionality in the design. For example, there

are different types of slices a CLB can contain, which make it more suitable for

storage purposes rather than logic. Signal processing pipelines are a popular use

case for FPGAs and they often contain slices specialized for operations in this

problem domain. Digital signal processing can be accelerated by parallelizing

operations in a single instruction multiple data (SIMD) fashion, thus to maximize

signal processing performance a large number of this type of slices is found in

FPGAs. Figure 2.6 shows an example of an FPGA configuration with some of

these specialized blocks mapped out. The green CLBs are designated to memory

usage and are closely coupled to the red digital signal processor (DSP) blocks to

7

enable fast processing of the stored data. The purple external memory controllers

use the input/output pads to interface with external memory such as SDRAM.

[2] [3]

Figure 2.6: DSP system design on FPGA [2].

When comparing FPGAs with each other the main performance metrics are

power consumption and number of logic cells. The number of logic cells determines

the size and complexity of the design that the FPGA can fit. Additionally, the

FPGAs can often be compared by specifications such as specialized CLB slices,

I/O interfaces, and communication rates. Clock speed is seldom compared because

although there is an upper limit, it is often design specific. [3] [2]

2.3 System design with HDL

The main tool for creating an FPGA design is a hardware description language

(HDL). VHDL and Verilog are examples of commonly used HDLs. Compared

with conventional computer programming languages, HDLs are used in a data

flow fashion to describe the timing and logic of an integrated circuit. The data

flow description of a circuit in an HDL is such that all code blocks are executed

simultaneously by default. This is one of the main advantages of FPGAs as the

system is inherently parallelized. It creates also one of the biggest challenges in

HDL based design as it complicates the timing of events and resource concurrency.

The output of an HDL design is produced by a build process that computes

the high level data flow description into low level circuit elements and routing.

8

This can be compared to the compilation phase of code written in a statically

typed software programming language.

The synthesis process is where the HDL design known as register transfer

level code is transformed to a gate level description called netlist. The netlist is a

mapping of circuit components that are found inside the FPGA. The convenience

of HDL based design is being able to describe the circuit at a higher level. In

practice this means that registers and buses are created and connected to be

inferred into low level circuitry at the synthesis phase. When developing a design

against a specific FPGA, a bitstream file is created to configure the device with.

The end product of an HDL based design is the bitstream file or, alternatively,

the synthesis result as it can be used for simulation purposes by a test bench. [12]

2.4 System design with IP cores

Designing a hardware system often involves components of a reusable nature,

such as dividers, communication protocols, and memory controllers. Intellectual

property (IP) cores are distributions of components such as these. An IP core

can be of varying complexity as it can consist of a solution for a specific task

or describe a complete system on a chip (SoC). IP cores are licensed through a

patented design which is what the name refers to. They can often be configured

to suit different properties of the implementation such as data width and clock

rate. The core is then connected to the system using an HDL. The core itself may

consist of software or hardware macros. The software macro, or soft IP core, is an

HDL implementation of the IP core logic that is built to the specific FPGA with

the rest of the system design. A hardware macro, or hard IP core is prebuilt and

FPGA specific. [13] [12]

The hardware sector and consumer electronics industry rely heavily on reusable

IP cores. For example, the SoC or motherboard found in mobile phones often in-

cludes advanced RISC machine (ARM) based processor cores licensed from ARM

holdings. The producer of the mobile phone benefits from avoiding the develop-

ment of the processing unit but still has the ability to customize the SoC to a

high degree by combining different processing units, memories, and other IP cores.

Figure 2.7 shows the architecture of an SoC which has an ARM based CPU, and

other modules commonly found in mobile phones. In addition to the CPU, any

of the remaining modules might also be licensed IP cores. [4] [14]

In aerospace applications, the advantages of IP cores are utilized in the same

9

Figure 2.7: Common SoC found in smartphones includes ARM based CPU and

DSP. [4]

manner as within the mobile phone industry. Additional requirements such as

fault tolerance limits, redundancy, and formal verification of the IP cores increase

the advantages of their usage when comparing with in-house developed solutions.

This, however, comes with pricier licenses compared with non-aerospace grade IP

core designs. Also, due to the specialized requirements, lower competition in the

market sector can be expected, increasing the prices even more. [15]

In addition to FPGA products, Xilinx also provides design tools and IP cores

to help with development on their FPGA platforms. A selection ranging from

small subsystem designs to complex embedded processors is available through the

Xilinx IP core library. Some of the cores are available free to use through the

Vivado design suite, and a majority of them are soft cores to allow compatibility

across their FPGAs. Integration of the IP cores and other development are also

done through Vivado. [12]

10

3. System requirements

A hardware implementation of an image analysis software component is to be

developed to be used on an FPGA. The software in question is a product of a

research project regarding detection and analysis of space debris in low earth

orbit. Using computer vision among other analysis, space debris is identified from

image data. With the help of a star catalog, the image is mapped to a position in

space to provide positional data of the detected debris. A diagram of the system

is shown in Figure 3.1. The software component relevant to this project is the

pre-processing and segmentation part of the diagram, which is in the input phase

of the complete system. [5] [16]

Figure 3.1: Flowchart of StreakDet software [5].

The star extraction process in StreakDet passes the input image through a

series of algorithms to identify stars. The algorithms are well-known image filters

and analysis methods that in combination with each other produce a way to

extract objects from an image. The main task in this project is to implement the

algorithms to a hardware design using a hardware description language.

Star extraction is a key stage of a star tracker system which uses a star catalog

to match the extracted stars against. Using the star matches and catalog infor-

mation the position and orientation of the captured image can be determined.

11

The goal of this project is to create a pre-processing pipeline to be used in a star

tracker.

3.1 System specification

The specification consists of development and system requirements as well as a

description of tools and components. System requirements are created based on

meetings and discussions with Aboa Space Research Oy. Some requirements are

derived from higher level requirements to suit the development process. Table 3.1

presents an overview of the system.

Req. Id Description

1 Client endpoint for FPGA module

1.1 Bitstream can be written to FPGA

1.2 Image processing pipeline parameters can be written to

 FPGA

1.3 Allows for debugging of system

1.4 Provides visual results with metadata

2 Validation and verification of star extraction

2.1 First stage validation and verification with software pro-

 totype

2.2 Second stage validation and verification on FPGA plat-

 form

3 Star extraction result and operation

3.1 Image coordinates of extracted stars are stored

3.2 Centroid of detected stars is calculated

3.3 Error handling to avoid false detection

Table 3.1: System requirements specification

3.1.1 System components

Processing nodes

The system consists of two nodes, the host machine and the target FPGA. Because

the application of this system will be different in a production environment, the

FPGA part should not be too dependent on the host machine. When integrated

12

into a larger system with shared memories and communication, the FPGA will

have to be able to read an input image directly from memory. The same applies

to the output, the register where the output is written needs to be configurable

and not sent to a host machine by default.

FPGA module

The FPGA module Opal Kelly XEM7305 chip with a Xilinx Spartan-7 FPGA

will function as a testbed for development. The module contains a part from the

FPGA external SDRAM memory and communication interfaces such as USB 3.

These features allow for host machine communication and data storage of features

such as images, star catalog, and output. These data could be stored on the FPGA

itself but using the SDRAM is a sustainable solution because it allows for shared

memory usage in production and more flexible image and star catalog sizes.

13

4. FPGA-based computer hardware

Common computer hardware is the cornerstone of any digital circuit that needs to

perform common tasks, such as storing and transmitting data. With the help of

the basic elements of an FPGA discussed in Chapter 2, circuits of this nature can

be created. Although an 8-bit adder circuit can be regarded as common computer

hardware, the focus of this chapter is on larger circuits used as hardware modules,

such as memory and communication interfaces. The components discussed are

essential building blocks for the image processing pipeline. Figure 4.1 shows an

overview of these components on the XEM7305 FPGA module.

4.1 Communication

The system requirements state a communication channel to be available for shared

memory usage and controlling the FPGA. Machine-to-machine communication is

enabled through the interfaces available on the Opal Kelly FPGA module. The

default interface on XEM7305 is USB C. [6]

The advantage of the USB is flexibility and ease of use. Transfer speed is not

a high priority in this case because of the relatively small size of data, which is

less than a megabyte. The USB module on the XEM7305 contains a USB C port

and a Cypress FX3 peripheral controller, shown in Figure 4.1. The peripheral

controller operates the data bus by implementing a communication protocol stack

consisting of a physical, link and protocol layer. It allows the usage of the USB

communication link on the FPGA module by exposing a programmable inter-

face. The programmable interface can be used by various systems on the FPGA

module, such as an image sensor or the FPGA itself. To allow the usage of the

programmable interface of the peripheral controller in the FPGA design, a hard

IP core is provided. [6] [17]

Both the USB 3 standard and the FX3 peripheral controller support serial

and parallel communication, but the hard IP core connecting to the FX3 inter-

14

Figure 4.1: Overview of the FPGA module showing the FPGA itself in the center,

SDRAM off-chip memory on the top right, and USB interface on the left. [6]

face supports only serial communication. This simplifies the use of the IP core,

requiring less FPGA fabric, but also reduces the throughput. [6] [17]

The internal communication mechanism of an FPGA consists of the FPGA

interconnect. The interconnect is the physical layer of the communication protocol

stack, leaving the rest of the stack to be implemented in the FPGA design with

HDL or IP cores.

The limiting factor and bottleneck of the system is often some off-chip hard-

ware module that places certain requirements on the communication, for example,

the USB or memory controller. When working outside these types of requirements,

the throughput of the FPGA-based system can be optimized by increasing the

bit width between modules. When applying this to the image processing pipeline

context, this might be practical within communication of image data. The imple-

mentation of this requires more memory cells and wires which, in turn, increases

the footprint of the FPGA design.

When compared with a software program, the same optimization method of

maximizing bit width might be considered. This, however, does not inherently

result in a gain in throughput because conventional CPUs have a fixed bit width

for their operations. When this limit is exceeded, the operation needs to be

performed across multiple clock cycles which counteracts the wanted result. The

bit width of an operation on an FPGA during a clock cycle, is consistent with the

HDL design.

15

4.2 Memory

To enable processing of image data, a set of storage mechanisms is necessary. The

use of a certain memory type is mostly dependent on the size of the data and how

it will be used. As in conventional CPU architectures, different levels of memory

are used to satisfy these dependencies.

FPGAs are generally not well suited for storing a large quantity of data, as

it is considered inefficient use of available CLBs. Since customization is a key

feature, the most standardized parts, such as memory, are often placed outside

the FPGA. Off-chip memory allows storage of large data, such as images, freeing

up CLBs to other usage such as computation and logic. The drawback with off-

chip components is that they are often a bottleneck in the system. This is due

to a number of factors such as restrictions in clock speed, concurrency, and bus

width. A larger FPGA with an increased number of CLBs could offset the need for

off-chip memory avoiding the bottleneck, with consequences being greater power

consumption and physical size, potentially invalidating the solution.

An overview of the XEM7305 module and the memory types can be seen in

Figure 4.1 where the off-chip SDRAM memory is on the top right and the lower

level memories inside the Xilinx Spartan 7 FPGA in the center.

4.2.1 SDRAM

One of the most common storage mechanisms is SDRAM which is useful for

storing data that is frequently used and ranges from kilobytes to megabytes in

size. Key features include random access, i.e. same access time for any part of

the memory, and high bandwidth. It is often paired with FPGAs, because it is

next in the memory hierarchy after on-chip storage mechanisms.

At the core of SDRAM lie capacitors trapping the charge representing a bit.

An overview of a typical SDRAM circuit is shown in Figure 4.2. The capacitors are

refreshed periodically to retain the stored data. This makes SDRAM a volatile

memory, requiring power to keep its state. The advantage over closely related

memory types, such as flash memory, is that it does not degrade at the same

rate of read/write cycles and it is truly random access, giving the advantage to

SDRAM as a volatile working memory in most FPGA applications. [7] [18]

The memory cells in SDRAM are ordered in rows and columns, forming an

array. A collection of these arrays is referred to as memory banks. The number

16

Figure 4.2: SDRAM memory cell. The capacitor traps the charge which is con-

trolled by the transistor at the top. [7]

of rows, columns, arrays, and banks varies depending on the type of SDRAM but

is usually a power of two. Figure 4.3 shows the geometry of an SDRAM with four

banks with four arrays each. The data width of a memory is the number of arrays

that are stacked inside each memory bank. When accessing a specific row and

column, the number of affected bits is the same as the data width of the memory.

To increase SDRAM performance, double data rate (DDR) is used to access

data at double the clock rate. DDR enables accessing a memory bank on both

the rising and falling edge of the clock cycle. A prefetch mechanism enables the

transfer of multiple bits concurrently per bank access, increasing the throughput

even more. This mechanism enables efficient use of the internal SDRAM bus

width by also transferring data from neighboring addresses. The gain comes

from the fact that the time to access a single address is the same as accessing

the neighboring ones as well. The prefetch mechanism gives an advantage to data

which is structured in a way where each access is in adjacent addresses. The width

of the prefetch data depends on the DDR version. Other variations between DDR

versions are the supported clock frequency and burst length, which are features

related to the prefetch mechanism. The burst length specifies the number of

SDRAM words contained in each read or write operation. [19]

The XEM7305 features a Micron DDR3 SDRAM chip with a 32-bit wide

interface. The memory part has 8 banks, 32 768 row addresses, 1024 column

addresses, and 16 bits to each address, giving the a capacity of 4Gb. As previously

discussed, the DDR version dictates the prefetch data width, which in DDR3 is

8 words, as is the burst length. The word length of the memory is 16 bit, which

results in 128-bit burst transfers. The SDRAM is rated with a clock frequency

17

Figure 4.3: SDRAM geometry.

of 1600 MHz, giving a theoretical peak bandwidth of 3.2 GB/s. In practice, the

bandwidth is lower and depending on system state and access location. [6]

The oscillator on the FPGA board provides a 200 MHz signal, which is also

the limit of the Spartan 7 FPGA. This allows a maximum clock frequency of 325

MHz to be generated through the SDRAM controller interface and then scaled

up to 650 MHz with DDR at the SDRAM. [6] [20]

The memory controller interface connects the FPGA to the SDRAM controller,

which in turn sends commands to the SDRAM core. The interface is unique to

each memory controller and depends on all parameters discussed in this chapter

such as memory geometry, DDR version, and clock frequency. [6]

4.2.2 Block RAM

When data size is within a few megabytes or less, lower level storage mechanisms

become suitable to use as memory. The block random-access memory (BRAM)

is a type of on-chip memory, which uses memory cells available on the FPGA.

The specification of an FPGA chip often includes the available BRAM capacity.

Although BRAM is a type of on-chip memory, it is separate from the CLBs on

the FPGA. In the case of SRAM based FPGAs, the memory cells of the BRAM

are essentially SRAM cells, arranged in arrays. The BRAM is made available to

the other CLBs by being attached to the FPGA interconnect.

18

BRAM can be configured in size and functionality depending on the needs.

Common BRAM arrays are 36Kb that can either be divided into smaller arrays,

or combined with other arrays to form a larger memory resource. A useful feature

often found regarding BRAM is multiport support. This enables concurrent usage

of the memory resource. In case of concurrency issues, the configurable operation

mode of the BRAM dictates how to resolve them. For example, in a dual port

configuration, the read first operation mode will prioritize a read operation when

the other port requests a write operation on the same address. [21]

Similarly as SDRAM, BRAM also is synchronous and requires a clock signal.

The latency depends on the configuration and state of the memory, but is usually

within a few clock cycles. The low latency, together with the high configurability,

makes BRAM a useful resource in most FPGA designs. [21]

4.2.3 Distributed RAM

The lowest level of memory found in FPGAs is distributed RAM (DRAM). It is

a type of on-chip memory which utilizes the same CLBs that are common with

other logic of the FPGA design. This makes the use of DRAM a trade-off between

fast memory and CLB resources. If the other parts of the FPGA design are large,

there might not be room for DRAM, leading to slightly less performant BRAM

to be used instead.

The slices in Xilinx CLBs are either of type SLICEL or SLICEM. DRAM

is available only on SLICEM type of slices. The SLICEM contains a superset

of SLICEL elements, allowing SLICEM to be used for non-storage purposes as

well. The slices in a Xilinx 7 series FPGA CLB consist either of two SLICELs

or one SLICEL and one SLICEM. The geometry of DRAM memory is defined

by the configuration of SLICEM slices. The configuration and decision to use

DRAM is inferred from the FPGA design. A single SLICEM CLB in the Xilinx 7

series FPGA allows the LUT to be used for 64 bits of RAM storage. The DRAM

capacity is increased beyond this by connecting DRAM enabled CLBs together.

The DRAM capacity and number of SLICEM enabled CLBs are often mentioned

in the FPGA product specification. [3]

Since DRAM resides in the FPGA fabric, it communicates through the FPGA

interconnect making read and write operations fast. Read and write operations

require a single clock cycle to complete, making DRAM also very simple to use

from an HDL design perspective. [21]

19

4.3 Clock

As most digital hardware systems, FPGAs use clocks to synchronize operations.

The clock is an off-chip component, providing the signal through input/output

pads to the FPGA. Figure 4.1 shows the off-chip clock circuit on the left side of

the FPGA on the XEM7305 module. The clock signal is generated by an oscillator

circuit that produces a specific frequency. This frequency may then be used as

such or transformed into additional clock signals within an HDL design or IP core.

For example, the DDR SDRAM utilizes the clock signal on both the rising and

falling edge to increase the throughput of data. The clock signal on the XEM7305

is passed from the external clock module to the SDRAM module within the HDL

design. This ensures that the SDRAM and FPGA design are synchronized. [6]

The clock module on the XEM7305 provides a 200 MHz frequency signal.

An additional 100.8 MHz clock signal is provided by the USB interface, which is

required when interacting with the USB peripheral controller. A third clock is

used by the SDRAM, which is derived from the 200 MHz clock module. [6]

In addition to using the clock signal to drive tasks, a common practice within

system modeling with an HDL is to drive tasks using signals that occur more spon-

taneously. This could, for example, be a signal originating from a sensor on the

FPGA module that has an interface to the FPGA design without a dependence to

a clock. This enhances the suitability of using FPGAs for real-time requirements

since the reaction to an input can be within clock cycles instead of milliseconds.

Another reason to use FPGAs for real-time applications is predictability. For ex-

ample, when using a clock divider to run a task at every 5 ms, the task will run

precisely at 5 ms intervals as long as the clock oscillator itself is accurate. Soft-

ware based real-time applications cannot guarantee the same level of confidence

for the timing requirements due to possible scheduling and concurrency related

overhead.

20

5. Star tracker systems

Determining the position of an object in space is a task where multiple obser-

vations and instruments are used to produce an understanding of the orbit or

trajectory. The position can be described by different means. Astronomical co-

ordinate systems and reference frames are used depending on the type of object

and orbit. Objects in earth orbit are commonly described using the equatorial

coordinate system. The equatorial coordinate system is geocentric and uses right

ascension and declination as spherical coordinates, comparable to the geographical

coordinates longitude and latitude. Figure 5.1 illustrates the spherical coordinates

in the context of a satellite orbit. [22]

To determine the position of a spacecraft in earth orbit, estimations can be

done remotely by the use of orbital mechanics. The position of a satellite with a

known orbit can be determined by its six Keplerian orbital elements. Five of the

elements contribute to size, shape, and orientation of the orbit. The sixth element

allows for calculation of the satellite position at a given moment in time. As time

passes, the elements used for position estimation need to be adjusted to maintain

an accurate model of the orbit. Remote observations and onboard measurements

are used for making this possible. [22]

Satellites are monitored and tracked remotely by ground stations across the

globe using radar and radio communication systems. The onboard systems of a

satellite often include a number of instruments for determining the position and

attitude. This information is often needed for managing the mission of the satel-

lite. If the mission involves remote sensing tasks, such as multispectral imaging

for example, maintaining the attitude of the spacecraft at a specific position in

orbit might be mission critical.

The attitude of a satellite is the orientation of the spacecraft relative to a frame

of reference. The attitude matrix is a common way to express the attitude. The

3 x 3 matrix contains angles of each axis, allowing accurate interpretation and

calculation to be made. Figure 5.1 shows the vectors of a satellite attitude. These

21

vectors are used for calculating the reference frame angles, giving the attitude

matrix of the satellite. [23]

Figure 5.1: Diagram of star tracker equipped satellite in orbit. Attitude and

position elements are described by following symbols; α being the right ascension,

δ declination and R the attitude matrix. The star tracker camera system is

visualized with four stars in the field of view (FOV).

A star tracker is an instrument that provides navigational data, such as posi-

tion and attitude, by recognizing stars from optical images. The system consists

of a camera and a computer. The system operates by capturing an image, pro-

cessing it, and then comparing the extracted data to a star catalog. The star

catalog contains columns of information about known stars. [22]

Star tracker systems depend on image processing and analysis that run on

varying computing platforms. The platform and purpose of the star tracker in

focus is an FPGA-based star tracker for spacecraft attitude determination. The

general idea of star tracker based attitude determination is explored in this chapter

to explain the context of a pre-processing pipeline for such a system.

22

5.1 Argumentation

There are multiple ways to determine the position and attitude of a spacecraft.

When the accuracy of the attitude needs to be better than 0.1◦, a star tracker

is to be used. When the high accuracy of a star tracker is not needed, other

methods, such as navigation satellite systems or momentum wheels, can be used

for determining the attitude and position. Often, however, a star tracker is used in

combination with other attitude and position determination systems to reinforce

the estimates.

Other than accuracy advantages, the star tracker is also more independent than

navigation satellite systems and mechanically simpler than momentum wheels. On

the other hand, star trackers require more complexity in a computational sense.

[22]

A unique feature of star trackers is the ability to find the attitude and position

of a spacecraft without any previous knowledge, also known as Lost-In-Space

attitude determination. Momentum wheel-based navigation, for example, requires

a reference to a previous position to determine its current position. The Lost-In-

Space feature is also available using navigation satellite systems, although with

limited range. [22]

5.2 Image acquisition

Images are usually captured by a charged-coupled device, or CCD, sensor. In

contrast to another common image sensor type, the complementary metal-oxide-

semiconductor (CMOS) sensor, CCD is more resistant to noise, resulting in higher

quality images. [22]

Star tracker cameras use a fixed focal length lens and a large field of view

(FOV) to capture as many stars in the image as possible. A large FOV camera

system consists of a large image sensor and a lens with small focal length. To

maximize the brightness of the stars, the lens is equipped with a wide aperture

for allowing more light to enter the image sensor. The camera system FOV is

visualized in Figure 5.1. [22]

Star tracker camera sensors generally use the visible light spectrum to capture

images. The images are stored in single channel, or black and white, format. Any

color information is useless in star trackers, which benefit from high contrast and

brightness of image features. This makes the image features more likely to be

23

extracted and used for star detection. [22]

Star trackers in low-earth orbit satellites are faced with challenges due to the

moon, earth, and sun. Images containing these objects are often overexposed,

and unusable for the star tracker. To overcome these problems, a satellite can

be fitted with two cameras, oriented 90° apart. Another option is to mount the

camera on a side facing away from bright objects, and maneuvering the spacecraft

to maintain the orientation. Other objects such as nearby satellites can also cause

overexposure. The effect of these type of objects is less predictable, making it more

difficult to mitigate the problems caused by them. [22]

5.3 Image processing

The image processor of a star tracker extracts data from the captured image to use

for star detection. The extracted data and processing algorithms vary between

implementations, but the general idea is that the extraction process enhances

the image features, scans the image for targets, and stores information about the

targets for star detection.

At the image processing stage, issues such as overexposed images and false

star extractions are encountered. In the worst case, this leads to halting the

star tracker, losing the currently prepared attitude and position update. In the

best case, the issue can be corrected and the currently prepared update can be

resumed.

The ideal output of the image processing is to have at least four bright stars

extracted from the background. Using the relative position of each extracted star,

the star tracker system is able to proceed to star detection. The image data is

only used up to this stage, making it unnecessary from this point forward.

5.4 Star detection

The identification of stars is generally carried out by comparing identifiers, con-

sisting of multiple stars. The identifiers are created by calculating the angular

separation between bright stars found in the image. The angular separation can

be determined relatively easily with a fixed FOV camera. [22]

The angular separation between any two stars is generally a unique identifier.

This makes the process of star detection essentially a look-up operation, where

24

known angular separations are compared against the identifiers created from the

captured image. [22]

Four stars are used for creating the identifiers. The first two can be used as

unit vector, while the third is required to resolve ambiguity. A fourth star is

required for positive identification. [22] [5]

Given a set of recognized stars, or identifiers, the attitude and position can be

calculated. The error detection and correction in this step is crucial, but some-

what easier than up to this point. False positives, as in stars that are mistakenly

recognized, can be voted out when multiple stars have been matched. False pos-

itives are recognized by verifying their position in relation to other recognized

stars. False negatives are more difficult to detect, and not a problem as long as

there are enough recognized stars.

5.5 Attitude and position

The attitude and position are determined based on the recognized stars. With

the known coordinates of the stars, the position and attitude of the satellite are

calculated with the help of linear algebra. Finding the attitude can be generalized

to solving the Wahba problem, where a rotation matrix between two coordinate

systems is sought. By solving this problem, for example with singular value de-

composition, the attitude matrix of the satellite can be obtained. To maximize

the accuracy of the attitude estimation, the stars in the largest identifiers in the

image are used for the matrix calculations. [23] [5]

The position of the satellite can be estimated using trigonometric calculations

using the recognized stars. The known positions and separation angles of the stars,

together with the camera system FOV parameters, enable the satellite position to

be calculated in relation to the stars. The position estimation is also reinforced

with the help of multiple results. [24]

25

6. Pre-processing pipeline docu-

mentation

The goal of the documentation of the pre-processing pipeline is to explain the

features and technical details of the implemented system. Each feature contributes

to filling the requirements stated in the system specification. Figure 6.1 shows an

overview of the final product which includes the required components.

Figure 6.1: Diagram of star tracker pre-processing pipeline. The FPGA, perform-

ing the image processing and analysis, on the right and the PC, being the user

interface, on the left.

6.1 Functional overview

The star tracker pre-processing pipeline is a system that uses an input image to

extract features from. The features, in this case stars, can be used for further

26

implementation of a star tracker.

The system can be integrated to a completely embedded environment, where

it does not depend on a user interfacing client. An integration to a star tracker

can be independent and highly isolated, with minor adjustments made to the off-

chip module interfaces. Only a few essential parameters, triggers, and data are

required.

From a user experience point of view, the pre-processing pipeline works by

powering on the FPGA, then connecting it to the pre-processing pipeline client.

The client then programs the FPGA with the pre-processing pipeline FPGA de-

sign. After successfully programming the FPGA, the pre-processing pipeline is

configured with a valid image and parameters. The FPGA executes the image

processing and analysis after which the client reads the result, consisting of an

image and metadata, for the user to evaluate.

From an integrated system point of view, the pre-processing pipeline is pow-

ered on and configured by an external system, for example, a program on a mi-

croprocessor. The external system has the same control and responsibility as the

client software. To make the integrated system autonomous, a more sophisticated

parameter tuning is needed for the pre-processing pipeline to be effective. This is

desirable when integrating a system to a spacecraft, since it often requires a high

degree of autonomy.

6.2 FPGA design

The FPGA design is modeled with Verilog HDL. Xilinx Vivado design suite is used

for generating bitstream files that are programmed to the Opal Kelly XEM7305

FPGA module.

The star tracker pre-processing pipeline FPGA design contributes to all system

requirements in Table 3.1. The requirements are satisfied by combining a set of

components. Some components contribute to several requirements, while others

are less multipurpose. Figure 6.2 shows an overview of the components in the

design.

6.2.1 Support systems

The supporting systems included in the FPGA design consist of components that

do not contribute to image processing and analysis directly, but provide other

27

Figure 6.2: Diagram showing FPGA design as functional blocks where top sec-

tion is furthest from off-chip modules while bottom section is closest to off-chip

modules. Boxes in the diagram are not in scale to the actual footprint of the

components on the FPGA.

necessary features, such as storage and communication.

The core supporting systems of the FPGA design consist of modules provided

by Opal Kelly. These include communication, buffering, and storage solutions

that are specific to the FPGA and off-chip components. [25]

The bottom section of Figure 6.2 shows the main functional components of

the support systems in the FPGA design. The isolation of this section can be

made in a functional, and in some cases, technical sense.

Communication and host interface

The Opal Kelly host interface, called okHost, is a gateway for controlling and

monitoring the FPGA. It contains the logic for communication with the FX3 USB

microcontroller, exposing signal endpoints for controlling USB communication.

The host interface also contains a clock signal derived from the external clock

module on the XEM7305 board. The 100.8 MHz clock signal synchronizes the

logic in the FPGA design with the USB microcontroller operations. [6] [26] [25]

Opal Kelly provides a set of IP core modules supporting data transfer from

single bits to megabytes. Different synchronization and control methods are used

28

for each module, resulting in small scale data transfers being simpler than large

scale transfers. Three Opal Kelly communication modules are used within the

FPGA design, each with its own purpose.

The Opal Kelly register bridge connects the host interface directly to a ded-

icated address space on the FPGA. The register bridge is connected to a 32-bit

wide address bus, with 32 bits of storage for each address to use synchronously.

The register bridge interface contains separate 32-bit data buses for input and

output, and a register address bus. This adds complexity to the FPGA design,

because a mapping mechanism, for example a multiplexer, is needed to make all 32

addresses usable. The register bridge is used through the Opal Kelly API, in the

client software. Figure 6.2 shows the register bridge connected to the input/output

pads, which act as interface between the register bridge and the off-chip modules.

The required off-chip modules for the register bridge are clock and USB. [26] [25]

Wire In and Wire Out modules are directional 32-bit buses that transfer data

asynchronously. The Wire In/Out modules are by their asynchronous nature,

and limited capacity, good for state management and triggering events. The

asynchronous data are nevertheless, in many cases, synchronized to a clock in the

design. Figure 6.2 shows the Wire In/Out connected to the input/output pads,

giving them access to the USB off-chip module. [26] [25]

Pipe In and Pipe Out modules are used for multibyte synchronous data trans-

fer. The data buses on both modules are 32 bit wide. The block throttled variant

of the modules adds negotiation signals to the communication system, which al-

lows the FPGA to control the flow of data. The PC can initiate the data transfer,

but unless the EP_READY control signal is high, data are not sent. This is useful

in cases where incoming data needs to be stored using buffers. Figure 6.2 shows

the Pipe In/Out connected to the input/output pads, allowing it to interface with

clock and USB off-chip modules. [26] [25]

FPGA state management and event triggers

The Wire In module is used on the FPGA to enter states that need to be externally

managed. Table 6.1 shows a description and wire values of them. The Wire In

uses only the first four bits of the 32-bit data and the values are set so that only

one state can occur at a given moment, which ensures the predictability of the

system. Each state in Table 6.1 is mapped to an index, which is used to read the

value corresponding to the state on the 32-bit Wire In data bus. [25]

The Wire Out module has the single purpose of providing verification of the

29

setup of the FPGA. The signal is expected to be high after a small delay after

the FPGA is powered on and the bitstream is programmed. Table 6.2 shows the

description and wire value of the Wire Out state. [25]

Wire value Description

0x0001 Read storage to Pipe Out. Used when reading image

back from the FPGA to the client.

0x0002 Write to storage from Pipe In. Used when writing an

image from the client to the FPGA.

0x0004 Resets FIFO buffers. Used between image reads and

writes.

0x0008 Triggers image processing and analysis. Used when the

FPGA is configured and ready to perform star extrac-

tion.

Table 6.1: Description of Wire In state control bits.

Wire value Description

0x0001 Memory calibration signal. Used to verify successful ini-

tialization of the SDRAM memory.

Table 6.2: Description of Wire Out state bits.

The Wire In/Out modules are a good suit for the state triggers because of

the reactive and simple user experience. The state management and event trigger

system contributes to satisfying the system requirements. The features provided

by the Wire In module are fundamental to the requirements 1.3, 1.4, 2.2, and 3.3.

Parameter configuration and metrics

To allow data transfer for accessing register values on the FPGA, the Opal Kelly

register bridge is used. The registers are addressed so that the first 15 contain

writable data, and the second 15 contain readable data. This prevents any con-

currency issues with register access. Pre-assigned values to the writable addresses

ensure that the pre-processing pipeline parameters have default values to use in

case none are assigned through the register bridge. Tables 6.3 and 6.4 explain the

use of the register bridge. [25]

The features enabled by the register bridge for parameter configuration and

metrics contribute to system requirements 1.2, 1.3, 1.4, 2.2, and 3.3.

30

Address Data Description

0x0000 32-bit int Minimum brightness of an image feature. Used to

filter out faint objects in the image.

0x0001 8-bit int Binary transformation threshold. Used for filter-

ing faint pixels out when preparing image for fea-

ture detection.

Table 6.3: Description of writable values used by the FPGA.

Address Data Description

0x000F 32-bit int Image processing and analysis timer. Used for

evaluating performance. Stored in register as clock

cycle count.

0x0010 32-bit int Box filter timer. Used for evaluating box filter al-

gorithm performance.

0x0011 32-bit int CCL timer. Used for evaluating CCL algorithm

performance.

0x0012 32-bit int Feature rendering timer. Used for evaluating per-

formance of feature rendering.

Table 6.4: Description of readable registers on the FPGA.

Image transfer and SDRAM storage

The size and format of the pre-processing pipeline input image require some mech-

anisms to be implemented to allow transfer and storage of the image data. The

image is fixed as to size and format, namely 270 x 480 pixels, single channel, and

eight bits per pixel. The image is not compressed to decrease image processing

complexity, making the total image size 129.6 kb.

The Pipe In module is used to receive the image data on the FPGA. The

module is connected to, and partly managed, by a FIFO buffer. The buffer is also

connected to the SDRAM interface, which pulls data from the buffer to storage.

The entire data flow is thus controlled by the SDRAM, which is the bottleneck of

the image transfer system. [25]

The 32-bit wide data bus of the Pipe In module is connected to the input of

the FIFO buffer. The buffer capacity is 128 bits to suit the input data bus width

of the SDRAM interface. Both Pipe In and FIFO modules are synchronized to

the host interface clock. The SDRAM interface is synchronized to its own 87 MHz

31

clock, also derived from the 200 MHz system clock. The modules are synchronized

together with control signals to manage the data flow and to mitigate any issue

with clock speed differences. [25]

Beyond the input image, the SDRAM is used to store intermediate image

processing results. The sequential process writes an image to storage after each

step. Since each output is only needed as the input to the next step, the stored

images can be overwritten. The process requires a storage capacity of three times

the image size, one of the images being the original. The original image is kept in

case the process is to be re-executed. In an integrated environment, the storage

capacity could be scaled down to two times the image size, since the original image

would be useless. [25]

After image processing and analysis the output image is stored to SDRAM.

The output image is transferred from SDRAM to an external endpoint using the

Pipe Out module through another FIFO buffer. The image output transfer uses a

similar FIFO buffer as the input image transfer, except with reversed port widths

and other control signals. [25]

The image transfer and storage systems contribute to system requirements 1.4

and 2.2.

Line buffer and BRAM storage

The image data are accessed by the image processing and analysis components

through line buffers implemented as BRAM. Each line consists of 270 8-bit pixels,

and three lines are stored in the buffer. This geometry enables image processing

on both the horizontal and vertical axis of the image. Figure 6.3 shows the line

buffer in the middle, as the intermediate storage mechanism. [25]

The dual port BRAM has two data buses and two address ports to allow

simultaneous read and write operations. The interface also includes a 270-bit

data mask to select which pixels to write to BRAM. This adds complexity to the

line buffer system but reduces the number of registers needed. [25]

The line buffer system is the intermediate storage between the image storage

and image processing. The read and write operations are triggered by counters

that are updated during the image processing. The line buffer is filled by initiating

a read operation to the SDRAM. After each burst read, 128 bits of data are

pushed to the buffer and the SDRAM read address is updated. The read address

is incremented by 8 between reads, since the burst mode of the SDRAM covers 8

addresses. The SDRAM read continues until the buffer is full. [25]

32

The line buffer can be seen as a sliding window on horizontal axis of the image.

The buffer, and image processing, is initialized by filling all three buffers. While

processing the image, one line after another is read into the buffer. The image

columns are mapped to BRAM using addresses and indices. The indices track

which address points to which column, while the addresses are fixed variables

to point to the start of an image column in BRAM. The addresses are rotated

between the indices to predictably and efficiently use the BRAM address space.

[25]

A big portion of the logic in the pre-processing pipeline is for moving around

image data, making the line buffers a core part of the support systems, and

storage mechanisms in the FPGA design. The line buffers contribute to system

requirements 2.2, 3.1, and 3.2.

Figure 6.3: Diagram of different levels of memory used for storing image pixels of

the star tracker pre-processing pipeline.

3x3 Kernel

The lowest level storage mechanism where image pixels are kept are three small

line buffers, forming a 3 x 3 pixel sliding window, or image processing kernel.

It is implemented in distributed memory, within the FPGA fabric. The kernel

consists of three pixels from each column in the line buffer, creating the 3 x 3 pixel

geometry shown in Figure 6.3. Data from the line buffer is fed into the kernel

data structure which is then used for image processing and analysis. The results

of these operations are written directly to a higher level storage. Thus the data

flow is directional within this storage mechanism. [25]

Between each processed pixel, the kernel moves one step. This movement

consists of three read operations from BRAM to the kernel, each line buffer con-

33

tributing with three pixels. The entire kernel is overwritten each time, since the

data transfer is relatively low. [25]

The image processing kernel contributes to system requirements 2.2, 3.1, and

3.2.

Rendering

The rendering process creates an image output from the data generated within

image processing and analysis. The data generated from star extraction in the

pre-processing pipeline is stored in tables and buffers for convenience. Rendering

an image with this data provides visual feedback of the process.

Rendering relies on the kernel and line buffers to write the image data to

SDRAM. The image is rendered in the original 270 x 480 single channel 8-bit

format to SDRAM between the image processing steps, and for final output. The

rendering process contributes to system requirement 2.2. [25]

6.2.2 Image processing and analysis

To extract stars from an image, a number of image processing algorithms are

implemented. The general idea is that an image containing bright stars in the

foreground and faint objects or empty space in the background is used as input.

The first algorithm smoothens the image to create larger and more detectable

foreground features. The second process separates the foreground from the back-

ground with a threshold. This is to enable connected component labeling (CCL)

in the next step, which requires a fully separate foreground and background. The

connected component labeling algorithm traverses through the image pixels and

assigns them to features. Metrics of the features are stored for calculating the

centroid in the final step. [25]

As a core part of the pre-processing pipeline, the image processing and analysis

contribute to all system requirements in Table 3.1.

Box Filter

A box filter is applied on the image to prepare the image for CCL. The principle

of the box filter is to expand and blur features in the image by replacing a pixel

with the average of the surrounding pixels. The 3 x 3 kernel is used for this filter,

where the center pixel is the target. This filter is commonly described by the

expression

34

9

1 1 1

xij = 1 1 1 1 , where x is the currently updated, center pixel in the kernel.

1 1 1

The matrix represents the kernel with pixel values. This gives a uniformly applied

average of the image where high value pixel areas are expanded without too much

loss of detail. Figure 6.4 shows an example of a feature passing through the box

filter. The blurring and expansion of the feature are apparent. [25]

A problem with the box filter is the need for integer division. A division

operation is problematic when implemented in hardware and is often dedicated

a separate IP core module. This increased complexity can, however, be avoided

in the case of the box filter because it lacks the need for high accuracy output of

the operation, as the pixel values are 8-bit integers. The alternative operation to

replace the division takes advantage of the constants in the box filter, which are

the output bit width and the denominator. The lack of accuracy is compensated

by the performance which is reduced from a multi clock cycle operation to a

single clock cycle operation. The division is approximated with the expression

(
L

xij · 28) � 8, where x is the 3 x 3 kernel. The theoretical accuracy of the

approximation is 98 %. In practice this depends on the value of
L

xij. [25]
Image edges are handled by ignoring the pixel value and setting them to 0.

This assigns the edges of the image as part of the background feature. The possible

loss of edge features is also acceptable because of the difficulty to approximate

the complete geometry and center of an edge feature. [25]

Figure 6.4: Illustration of box filter. The original feature is on the left, while the

processed feature is on the right. Box filter averages every pixel within a 3 x 3

image processing kernel.

35

Thresholding

Thresholding is done to separate the background from the foreground in the image.

The foreground needs to contain enough pixels to enable successful star extraction.

The box filter allows foreground feature edges to be brighter, which otherwise

might be categorized as background in this step. If the threshold is too low,

background and noise blend together with foreground features, making the choice

of optimal threshold a complex problem. This is out of scope of this project and

the threshold is manually set.

An example solution for setting the threshold could be to use a feedback loop

to adjust the parameter. The loop would use previous output of the pipeline to

use as input, providing the number of stars, brightness, and distance to determine

a threshold setting and acceptable result.

The thresholding process transforms each pixel value to either 0, being back-

ground, or 255 as foreground. Figure 6.5 shows an example of the thresholding

process. The example shows most of the original pixels passing the threshold.

These are assigned to foreground, with the value 255. Some pixels around the

edges are too faint to pass the threshold. These pixels are assigned to background

with the value 0. [25]

As this is a process with no dependency on neighboring pixels, it can be

conveniently placed in the output phase of the box filter. The output phase is

where the result of the box filter operation is written to SDRAM memory. The

register containing the output of the box filter is piped to the SDRAM write bus

through the threshold. This makes the thresholding highly efficient because of no

additional clock cycles required. [25]

Figure 6.5: Illustration of thresholding process. The feature on the left is the

product of box filter, and the feature on the right is the feature after passing the

threshold.

36

Connected component labeling and analysis

The goal with CCL is to assign foreground pixels to features. The algorithm

traverses the image using a kernel, updating the feature tables and pixels in the

line buffer. Three feature tables keep information about pixel values and the

feature geometry. Figure 6.6 shows the three tables, populated with example

data.

Every encountered foreground pixel is updated depending on its neighbors.

The focus is on the center pixel in the kernel. It is updated depending on the

neighboring pixels. If any neighboring pixel has a value with an entry in the

feature table, the current pixel is updated and mapped to the same feature. The

geometry of each feature is stored as minimum and maximum coordinates within

the image. Also the brightness of each feature is stored. This is used together

with the geometry for feature analysis. [25]

The requirement for a component to be connected to a feature is that at

least one side of the pixel touches the feature, making it a 4-connected feature.

In contrast, an 8-connected feature accepts diagonally connected components.

Diagonally connected components are not detected in this CCL implementation

because the previously performed box filtering already exaggerates the component

connections, filling the gaps between pixels. [25]

The 4-connect comparison is done by comparing the top center and left center

to the center pixel in the kernel. The movement of the kernel mitigates the need

for comparing all four connections surrounding the center pixel in the kernel.

This simplifies the design while keeping the line buffer mechanism uniform with

the other parts of image processing. [25]

Conflicts in the feature table are encountered when connected components

refer to multiple features. This happens when the shape of the feature is unfa-

vorable in regard to kernel movement and the component comparison process. A

conflict is resolved by merging the connected features. This is done by merging

the brightness of the features involved, updating the feature coordinates, and re-

assigning the feature label. Depending on the number of mergers, a single feature

might be mapped to a number of pixel values. Figure 6.6 shows an example of

a resolved conflict, where pixel values 0x04 and 0x05 are mapped to the same

feature, 0x03. [25]

While traversing the image, CCL will enter one of three states for each fore-

ground pixel, while background pixels are ignored. When encountering a fore-

37

ground pixel in the left center, it can be assumed to belong to a feature. The

state where left center is foreground is prioritized, because the feature it refers

to has the earliest entry in the feature table. The feature with the earliest entry

needs to be selected in order for the center pixel to avoid conflicts. The next

priority is to compare the top center pixel. This state updates the center pixel

with the value of the top pixel. A new feature is created when neither the left

center or top center pixel is in the foreground. This state adds an entry to the

feature tables. [25]

The implemented CCL algorithm is streamlined and simple, but not without

drawbacks. The most significant limitation is the number of features that can

be stored. In case all foreground features in the image are square, the maximum

number of features is 253. This is more than enough for what a star tracker

needs, but depending on the number of conflicts the number of available features

is significantly lower. This limitation originates from the 8-bit pixel values stored

in the feature tables and the lack of re-renders of the CCL image. With re-

rendering implemented, the maximum would be guaranteed to be 253 features,

instead of 253 as best case. The trade-off for choosing re-render to allow for more

features would be a performance loss and a larger memory and FPGA design

footprint. [25]

Figure 6.6: Example of CCL feature tables. Left table is where the mapping of

pixel values to feature labels is stored. Labels are also renderable, as they are

stored as 8-bit integers. Center table stores minimum and maximum coordinates

of each feature in 35-bit integers. Right table stores feature brightness as 32-bit

integers.

38

Feature detection and centroiding

Feature detection is the process of using the feature tables, shown in Figure 6.6, to

create image data to indicate detected features. Centroiding gives a more accurate

indicator of the detected features by further analyzing them. Feature detection

and centroiding are the final step of the pre-processing pipeline, resulting in an

output image and data points for the extracted stars.

The feature detection process filters out features that are too faint or small.

The threshold is specified by the parameter configuration system. Table 6.3 shows

the register and format of the threshold. The threshold is compared with the

brightness of each feature, which is calculated in the CCL process. An example

of the feature brightness table is shown in Figure 6.6 on the right. When the

brightness of a feature is below the threshold, it is discarded. The process then

moves on to validate the next feature in the feature table. [25]

Unlike other parts of the image processing and analysis, feature detection

traverses the image one feature at a time. The sliding window favors processing

that needs to scan the entire image, possibly applying calculations to every pixel.

Feature detection is only interested in processing known coordinates of the image,

making the sliding window unfavorable. [25]

A rectangle can be imagined around a feature, given the maximum and min-

imum coordinates of it. The pixels within this rectangle are read directly from

SDRAM to the feature detection process. This bypasses the commonly used se-

quential SDRAM read procedure. A more complex addressing scheme is required

to obtain the correct pixels. Due to the SDRAM burst mode, the correct address

needs to take into account both pixel location and burst read suitability. Then an

offset value is calculated to access the correct value in the SDRAM read buffer.

[25]

The commonly used SDRAM write procedure is also bypassed by the feature

detection process. The addressing scheme used for reading the feature pixels is

also used for writing them back. The data mask in the SDRAM interface is used

by this process to simplify the data flow. It ensures that only a selected part of the

write buffer is written into SDRAM. Since the number of pixels updated by this

process is relatively low, the absence of a data mask would result in the need of

copying the read buffer, only for most of it to be copied back to the write buffer.

The configuration of the data mask is relatively simple since the pixel offset is

already calculated by the addressing scheme. [25]

39

Depending on the size of a feature, the pixel values are stored in registers.

Centroid calculation is performed on features of suitable size. Suitability comes

from the number of registers required for storing all pixel data of the feature.

The pixel values for centroid calculation could be stored in BRAM to allow larger

features to obtain a weighted centroid. [25]

A position estimate for every feature is calculated to achieve system require-

ments 3.1 and 3.2. The centroid is calculated in one of two ways, a weighted and

non-weighted version.

The weighted centroid of a feature estimates the true center of it. The process

takes into account pixel brightness values and distance from the average coordi-

nate. An average coordinate is the value between the minimum and maximum

coordinates, stored in the feature table. The process creates an integer value

for every row and column of the feature using these calculations. Each pixel in

the feature contributes with its brightness, while the column or row number con-

tributes with the weight. The calculation can be described with the following

expression Ci = Ci + 0xffff − Fjk|i − c|, where Ci is the feature column register,

0xffff is a constant for the weight, Fjk is a pixel value, and |i − c| is the distance

from the average coordinate. [25]

A detail to notice in the weighted centroid calculation is the requirement of

pixel brightness values. The image processing and analysis have until this point

used the output of the previous step as input to the next step. The brightness

data used for weighted centroid calculation comes from the output of the box

filter. This image is used because the pixels have the same geometry as they have

in the feature table, and contain pixel brightness information. [25]

The weighted centroid calculation results in column and row registers which are

used to determine and render the estimated center of the feature. The coordinate

of the center, relative to the feature, is the indices of the column and row registers

with the highest values. [25]

The non-weighted centroid calculation uses the minimum and maximum co-

ordinates of each feature to calculate the average coordinate as the center. This

estimation of a feature center is not as accurate as the weighted, but acts as

fallback in case the weighted option is not suitable. [25]

Figure 6.7 shows an example of the result of feature detection and centroiding.

The detected features are rendered with a rectangular frame around the edges,

with a small offset from the coordinates of the feature table, for better visibility.

Both centroid variants are rendered as a cross on the corresponding feature. The

40

Figure 6.7: Illustration of the two centroid variants. Non-weighted centroid is

rendered on the feature on the left. Weighted centroid is rendered on the feature

on the right.

non-weighted variant has a cross extending from the feature frame, while the cross

of the weighted variant is significantly smaller. This helps with distinguishing the

variants, and the visual analysis of the weighted centroid.

6.3 Client endpoint

The client endpoint is the external operator of the pre-processing pipeline and

responsible for controlling the FPGA module. The features provided by the client

endpoint contribute to system requirements 1.1, 1.2, 1.3, 1.4, and 2.2. The pur-

pose of the client endpoint is to allow operation and development of the system.

This is made easy by the use of Opal Kelly API, which makes controlling the

FPGA module dynamic and simple. Optionally, the system could be more self-

sustaining by handing over some client responsibilities to the FPGA module. A

self-sustaining system might be ideal in an integrated system in production, but

inconvenient for development and demonstration. [25]

The client endpoint is a Java-based PC application with a graphical user inter-

face (GUI) that enables debugging, analysis, and parameter configuration. The

application uses the JavaFx platform, making it lightweight and portable. [25]

41

6.3.1 Connecting and initializing FPGA

The base class, called okCFrontPanel, is the entry point for operating the FPGA

module. It provides methods for device interaction, device configuration, and

FPGA communication. The FPGA module is initialized by calling the API to

open a connection. This enables the communication layers required for interacting

with the FPGA module. [26] [25]

Before programming the FPGA, the device is configured with a default con-

figuration from on-chip flash memory, and checked for errors. When encountering

errors, they are reported to the user, but no further action is taken. [25]

6.3.2 Bitsream programming

The bitstream file, containing the FPGA design, is programmed to the FGPA

using the okCFrontPanel class. To program a bitsream file to the FPGA, an open

and initialized device is required. When encountering errors in the programming

stage, these are reported to the user, and a reset signal is sent to the FPGA. The

memory calibration is initiated on the FPGA as it is programmed. The test result

is verified by reading the Wire Out value from the FPGA, shown in Table 6.2.

Errors encountered in this stage are simply reported to the user. [25]

6.3.3 Pre-processing pipeline configuration and control

The configurable parameters and triggers are listed in Tables 6.1 and 6.3. To

enable these features, a programmed device is required. [25]

The binary transformation threshold and feature brightness threshold are read

from user input. The values are validated and written to the register bridge on

the FPGA using the okCFrontPanel class. Any errors are reported to the user.

[25]

To select an image for the pre-processing pipeline, it is first loaded to the client

application. The 270 x 480 resolution, 8-bit single channel bitmap file format is

used. The selected image can be viewed in the GUI, but this feature is most useful

for analysis after executing the pre-processing pipeline. The image is prepared by

converting it to a byte array of integers. This is the format required by the Pipe

In module. The FPGA is prepared for image transfer by configuring its state with

the Wire In values listed in Table 6.1, which resets the FIFO buffers and sets the

SDRAM to read mode. The write is then performed using the Block Pipe Out

42

module, by calling the okCFrontPanel class. [25]

The pre-processing pipeline can be executed when the parameters and image

are configured. The process is started by setting the Wire In value, as seen in

Table 6.1. This triggers the pre-processing pipeline on the FPGA. Error detection

in this stage is difficult, and only detectable when the output image is viewed.

[25]

6.3.4 Results and analysis

The output image can be read from the FPGA when the pre-processing pipeline

is completed. This is initiated in a similar manner as writing an image to the

FPGA, except for the Wire In value. After the FIFO buffers and SDRAM are

reset, the image is read to the client by the Block Pipe In module, provided by

the okCFrontPanel class. The image is saved to disk, in the same format as the

input image. [25]

The output image can be viewed after it is transferred from the FPGA-module

to the client endpoint. Analysis of feature detection is made simple by having the

input and output images side by side. The zoom and movement features enhance

the user experience further. The detected stars are distinguished by the frame

outline and centroid, as seen in Figure 6.7. [25]

43

7. Results and comparison

7.1 Pre-processing pipeline results

The results of the pre-processing pipeline are presented as four use cases. The

standard procedure of the pre-processing pipeline is to use an input file together

with input parameters to produce an output. Each use case contains two runs,

each consisting of input parameters, output image, and metrics.

The data set consists of generated test data and image data from the StreakDet

input dataset. The images from the Streakdet dataset are selected to highlight

features of the pre-processing pipeline, such as thresholds and weighted centroid-

ing.

Test input

A test input, shown in Figure 7.1, is used to visualize the standard procedure of

the pre-processing pipeline. The data is synthesized by gathering an overview of

the StreakDet dataset and creating a layout of pixels that resembles commonly

seen stars.

To showcase weighted centroiding, the dimensions and pixel value gradient of

the stars are taken into account. The gradient helps with visually verifying the

process, since the centroid location becomes more obvious.

Figure 7.2 shows the result when a foreground threshold of 50 and feature

threshold of 300 are applied. All features are detected, and one gets a weighted

centroid, seen in the top right corner. Feature 7.3 shows the result when increasing

the foreground threshold to 100 and keeping the feature threshold at 300. Less

pixels are assigned to foreground, making the features smaller. This enables more

features to receive a weighted centroid.

The processing time for the test input runs are 0,1 ms apart, as seen in Table

7.1. The time difference originates from centroiding while other parts of the

44

Run

ID

Foreground

threshold1

Feature

threshold1

CCL2 Box

filter2

Centroid2 Tot.2

T1 50 300 39,39 18,84 0,83 59,06

T2 100 300 39,39 18,84 0,73 58,96

Table 7.1: 1Input parameter to the pre-processing pipeline, specified as pixel

value. 2Performance metric of the pre-processing pipeline, measured in millisec-

onds. Data shows result of increasing the foreground threshold, as less time spent

centroiding while other processes are unaffected.

Figure 7.1: Synthesized star image used as test input.

Figure 7.2: Run T1 output image.

45

Figure 7.3: Run T2 output image.

pre-processing pipeline remain unaffected by the foreground threshold increase.

Since less pixels are processed in run T2, faster processing is expected. The

increased number of weighted centroid calculations did also not contribute to any

performance loss. The system is capable of a frame rate of 16,93 frames per second

(FPS) in T1, and 16,96 FPS in T2.

Sample 1

Figure 7.4 shows the input image containing a moderate number of stars with

mixed brightness levels. In contrast to the previously reviewed test input, this

image consists of a realistic scenario of what an onboard image sensor captures.

Also notable is that this is a good sample for star extraction and detection since

there are numerous stars that are easily separated from the background and sur-

rounding stars.

The results show that all the extracted stars are within limits for weighted

centroiding. After run S1.1 the feature threshold is decreased from 800 to 400

to extract more stars. This parameter change to increase star extraction is un-

successful since Figure 7.6 shows the same number of extracted stars as Figure

7.5.

A 0,12 ms difference in processing time between run S1.1 and S1.2, caused by

the change in feature threshold, is observed in Table 7.2. Compared to the test

runs, shown in Table 7.1, no change can be seen in box filter processing time. The

time difference in CCL is likely explained by the lower number of stars extracted,

46

requiring less computation and rendering. A frame rate of 17,12 FPS is achieved

in S1.1, and 17,09 FPS in S1.2.

Run

ID

Foreground

threshold1

Feature

threshold1

CCL2 Box

filter2

Centroid2 Tot.2

S1.1 50 800 39,38 18,84 0,19 58,41

S1.2 50 400 39,38 18,84 0,31 58,53

Table 7.2: 1Input parameter to the pre-processing pipeline, specified as pixel

value. 2Performance metric of the pre-processing pipeline, measured in millisec-

onds. Data shows increase in centroid time when decreasing feature threshold.

Figure 7.4: Sample 1 input image.

47

Figure 7.5: Run S1.1 output image.

Figure 7.6: Run S1.2 output image.

Sample 2

Sample 2 input image has a few stars that are expected to be extracted, standing

out with their brightness and dimensions. An anomaly, caused by the camera

system or an optical artifact, is seen on the left side of the image, shown in

Figure 7.7. The pre-processing pipeline extracts the entire feature, including the

anomaly, as seen in Figure 7.8 and 7.9. In a star tracker this extraction is not

valid since it gives a false representation of the celestial body in question.

Run S2.1, shown in Figure 7.8, contains four extracted stars using a foreground

threshold of 40 and feature threshold of 800. This would otherwise be sufficient

48

for star detection but since one of the stars is an anomaly the result is not reliable.

The frame rate of S2.1 is 17,14 FPS.

Run S2.2, shown in Figure 7.9, contains in addition to the four in S2.1, three

additional stars. With a decrease of foreground threshold of 25%, from 40 to 30,

the number of extracted stars increased by 75%. The frame rate of S2.2 is 17,11

FPS.

In the case of run S2.2 the 0,8 ms longer processing time, shown in Table

7.3, compared to S2.1 is necessary to increase the quality of star extraction to an

acceptable level.

Run

ID

Foreground

threshold1

Feature

threshold1

CCL2 Box

filter2

Centroid2 Tot.2

S2.1 40 800 39,39 18,84 0,12 58,35

S2.2 30 800 39,39 18,84 0,2 58,43

Table 7.3: 1Input parameter to the pre-processing pipeline, specified as pixel

value. 2Performance metric of the pre-processing pipeline, measured in millisec-

onds. Data shows that decreasing foreground threshold increases the processing

time.

Figure 7.7: Sample 2 input image.

49

Figure 7.8: Run S2.1 output image.

Figure 7.9: Run S2.2 output image.

Sample 3

The Sample 3 input image, shown in Figure 7.10, contains a cloud of faint and

small stars. By tuning the input parameters correctly, this proves not to be any

obstacle for star extraction as the S3.1 output image shows in Figure 7.11.

To extract the best selection of stars as detection candidates, the parameters

can be tuned further. Since the dimensions of the extracted stars are relatively

small, an increase in the foreground threshold is ruled out due to the effect seen

in previous results, for example test input run T1. The feature threshold is thus

increased to extract the brightest stars, keeping the dimensions and centroid pre-

50

cision. The result of this parameter tuning for S3.2 is shown in Figure 7.12. The

increase in the feature threshold in run S3.2 decreases the processing time by 0.2

ms, as shown in Table 7.4. The frame rate of S3.1 is 17,09 FPS, and 17,14 FPS

in S3.2.

A notable aspect of the results is that the rendering of the centroid of a few

stars is not visible. This is likely due to the small dimensions of the features, or

a rounding error of the weighted centroid calculation.

Run

ID

Foreground

threshold1

Feature

threshold1

CCL2 Box

filter2

Centroid2 Tot.2

S3.1 15 50 39,39 18,84 0,3 58,53

S3.2 15 100 39,39 18,84 0,1 58,33

Table 7.4: 1Input parameter to the pre-processing pipeline, specified as pixel

value. 2Performance metric of the pre-processing pipeline, measured in millisec-

onds. Data shows that increasing feature threshold decreases processing time.

Figure 7.10: Sample 3 input image.

51

Figure 7.11: Run S3.1 output image.

Figure 7.12: Run S3.2 output image.

7.1.1 Conclusion

To summarize the results, the star tracker pre-processing pipeline works as in-

tended, extracting stars from the input images. The procedure of the image

processing system is clearly seen, when comparing input images to the output.

The box filter, for example, is visualized in the output of the test run seen

in Figure 7.2. The feature edges fade into the background more smoothly when

compared to the input image, shown in Figure 7.1. The sample images, such as

sample 3 shown in Figure 7.10, benefit more clearly from this step of the pre-

processing pipeline by expanding faint and small stars captured by the camera

52

system as they are noticeably larger, and clearly extracted in the output, as seen

in Figure 7.11.

The more complex CCL procedure is visualized by the frame around the stars,

which is enabled by the algorithm successfully identifying the connected pixels.

As the most critical part of the pre-processing pipeline, the lack of issues within

the procedure is a priority. In addition to confirming the CCL results visually,

the output metrics also indicate reliable results, with a consistent performance.

Weighted centroiding is also proven to work according to specification, shown

by the results, such as Figure 7.3. The dimension limitation of the stars enabling

weighted centroiding is a drawback of the procedure. All input images, how-

ever, contain stars with dimensions fitting to the limits, making the procedure

acceptable for star detection.

The effect of the input parameter tuning is observable by the output images

and metrics. An increase in the foreground threshold decreases the number of

pixels included in a feature. This helped with features gaining a weighted centroid.

This effect is shown in Figures 7.2 and 7.3.

A decrease in the foreground threshold is observed to increase the number of

extracted stars, as shown in Figures 7.8 and 7.9.

The feature threshold shows a similar effect without any change in the number

of pixels in each extracted feature. This effect is shown in Figures 7.11 and 7.12.

Based on these results, improvements could be made towards anomaly detec-

tion and centroid rendering. The results reinforce the justification for autonomous

parameter tuning, by observing that small adjustments lead to significant changes,

as seen in Table 7.3 and Figures 7.8 and 7.9.

Regardless of minor drawbacks and improvement points, the pre-processing

pipeline is proven by the results to perform the intended task with a stable per-

formance.

7.2 Pre-processing pipeline performance

The performance of the pre-processing pipeline can be measured in the same

way as any algorithm. The implemented performance measurement metric is

execution time. Compared to a software based approach, it can be expected that

the variation in execution time is smaller in a hardware based approach since

there is no abstraction such as an operating system between the task and the

computation element. Otherwise, a software based approach executed on an up-

53

to-date CPU with multi-gigahertz clock speed is expected to perform a task in less

time than an FPGA with a clock speed counted in megahertz. A software based

equivalent of this FPGA-based approach would be an aerospace-grade embedded

processor. An embedded processor would also be less performant than modern

PC CPUs, in terms of execution time.

The execution time comparison between the FPGA and a software based ap-

proach is executed on a 10th generation intel i5 CPU.

7.2.1 Software based approach

To enable a comparison between the FPGA-design and a software based coun-

terpart, a test bench in C++ was developed. The software test bench contains

the same features, regarding image and parameter input and output metrics, as

the FPGA-design [27]. Table 7.5 shows a summary of runs performed with the

software based test bench using the same input images and parameters as used

with the FPGA-based pre-processing pipeline. The results show noticeable dif-

ferences in all output metrics. The complex hardware implementation of CCL

is proven to be approximately 3 times slower than its software counterpart. On

the other hand, the box filter is approximately 3 times faster when performed on

the FPGA. The variation of difference in centroiding is larger since the test input

runs T1 and T2 show an approximately 5 times faster centroiding performance

by the software. The sample runs show a difference between 1 to 3 times faster

performance by the software.

The general conclusion when comparing the results of the software based ap-

proach in Table 7.5 to the results given by the FPGA is that the software is

faster. When comparing the systems, the difference in CPU clock speed is sig-

nificant. Thus another comparison can be made where the clock frequencies are

normalized. Since most of the image processing related computation is performed

using the 87 MHz clock on the FPGA, it is used for scaling the results. For each

clock cycle on the FPGA, the Intel CPU performs approximately 23. Table 7.6

shows the result using this ratio for normalizing the output metrics of the software

based pre-processing pipeline. The performance of the Intel CPU with normalized

clock speed shows CCL being approximately 7 times slower, while the box filter

is over 60 times slower than the FPGA. Centroiding is calculated to be approx-

imately 5 times slower. This proves the FPGA to be more efficient, regarding

the number of operations on each clock cycle. It is notable that the two systems

54

are not directly comparable despite normalizing the clock frequency due to dif-

ferences in the arithmetics of the processing elements and the implementation of

the pre-processing pipeline.

Run

ID

Foreground

threshold1

Feature

threshold1

CCL2 Box

filter2

Centroid3

T1 50 300 12,1 55,3 149,1

T2 100 300 12,6 55,4 129,6

S1.1 50 800 12,6 53,4 76,1

S1.2 50 400 13,2 52,4 71,8

S2.1 40 800 12,5 55,7 78,7

S2.2 30 800 11,7 55,2 69,2

S3.1 15 50 12,2 53,6 83,1

S3.2 15 100 12,5 53,5 73,6

Table 7.5: 1Input parameter to the pre-processing pipeline, specified as pixel

value. 2Performance metric of the pre-processing pipeline, measured in millisec-

onds. 3Performance metric of the pre-processing pipeline, measured in microsec-

onds.

Results of the software based approach, produced by averaging the outputs of 10

runs. An Intel i5 CPU, running at 2GHz is used as the underlying hardware and

Clang 11 as the compiler.

55

Run

ID

Foreground

threshold1

Feature

threshold1

CCL2 Box

filter2

Centroid2

T1 50 300 278,3 1271,9 3,4

T2 100 300 289,8 1274,2 3

S1.1 50 800 289,8 1228,2 1,8

S1.2 50 400 303,6 1205,2 1,7

S2.1 40 800 287,5 1281,1 1,8

S2.2 30 800 269,1 1269,6 1,6

S3.1 15 50 280,6 1232,8 1,9

S3.2 15 100 287,5 1230,5 1,7

Table 7.6: 1Input parameter to the pre-processing pipeline, specified as pixel value.
2Performance metric of the pre-processing pipeline, measured in milliseconds.

Results of the software based approach, produced by averaging the outputs of 10

runs and normalizing the clock speed.

56

8. Review and reflection

In this thesis a star tracker pre-processing pipeline has been developed with a

technology used on the forefront of image processing and computer vision in gen-

eral. As the pre-processing pipeline is essentially a sequence of image processing

algorithms, the implementation on an FPGA platform is an option worth con-

sideration when designing a star tracker system. This thesis gives an overview

of the required components and technologies to develop such a system. Beyond

implementing the star tracker pre-processing pipeline in a star tracker system,

this study gives a complete reference from digital circuitry to system level design,

to help with comparing other platform options.

8.1 System requirements

The gap between a functioning algorithm and its implementation in an FPGA de-

sign regarding technology is vast. The challenge in implementing a pre-processing

pipeline to an FPGA design is divided between solving problems within the devel-

opment of the image processing algorithm and computer hardware design prac-

tices. This resulted in some compromises and recommendations with respect to

the system requirements in Table 3.1.

The implementation of requirement 3.2, centroiding of stars, could be revised

to increase the flexibility regarding feature size. The development was focused on

the computation of the weighted centroid, leaving the operational functionality as

a lower priority.

Requirement 3.3, involving error handling, could be implemented more thor-

oughly in the FPGA design. Even though error handling is enabled by exposing

parameters in the pre-processing pipeline, some error correction could also be

implemented.

57

8.2 FPGA design

The FPGA design is reviewed based on reports generated by Vivado. Timing

and power constraints are commonly placed on FPGA designs to meet certain re-

quirements. The focus in this thesis is to implement the pre-processing pipeline,

giving less attention on meeting constraints. Optimizations to meet power con-

sumption and timing requirements can be developed based on the current state

of the design.

The reports generated by Vivado for this review focus on the resource utiliza-

tion shown in Table 8.1 and Figure 8.1.

LUT SLICEM SLICEL DSP blocks BRAM Arrays

24131 2046 4690 5 142

Table 8.1: FPGA resource utilization. The number of LUTs, slices, DSP blocks

and BRAM arrays are listed.

Figure 8.1: Utilization % of available FPGA resources. Total LUT utilization and

LUTs used as storage mechanism, LUTRAM, are shown. Together with flip flop

utilization, the internal utilization of CLBs is described. The more specialized

resources, BRAM and DSPs, are also reported.

As seen in Table 8.1, the size of the FPGA design is reported to be 24131

58

LUTs, and 9242 flip flops, contributing to the 83 % slice utilization on the FPGA.

The ratio between flip flops and LUTs is large due to the nature of the CLBs in

Xilinx 7 series FPGAs, where each CLB contains more flip flops than LUTs.

In addition to LUTs, Figure 8.1 shows that also BRAM utilization is high, at

almost 100 %. A part of the BRAM is utilized by the FIFO buffer used for image

transfer, while the remaining parts are used by the line buffers. The FIFO buffer

uses 38 Kb BRAM arrays and the line buffer uses 18 Kb arrays. The line buffer

uses the 18 Kb arrays to enable the multiport feature of the storage mechanism.

The high utilization means that the FPGA part used for this design is at the

limit, making it a good fit for the current state of the design. It also means that

adding features would be difficult without additional resources. An integration of

the pre-processing pipeline thus requires a larger FPGA with more resources.

The low level storage mechanisms have a low utilization compared with the

BRAM and overall LUT utilization. This can be seen in Table 8.1, where the

count of SLICEM-type slices is relatively low compared to SLICEL. This correlates

highly with the LUTRAM utilization in Figure 8.1.

The low utilization of DSP blocks is not unexpected because the parts of the

design that most likely use these blocks are not parallelized. The pre-processing

pipeline performance could be increased with higher utilization of the DSP blocks,

the penalty being a higher power consumption.

The conclusion of the FPGA design, based on the reports generated by Vi-

vado, is that the high degree of utilization of resources prohibits adding features

requiring a large amount of LUTs or BRAM on the same FPGA. Optimizing the

design to use more DSP blocks could release more LUTs to use.

The estimated power consumption can be seen in Figure 8.2, showing a total

power consumption of 1,053 watt (W). This reinforces the confidence of using an

FPGA as computing platform for the star tracker pre-processing pipeline, as a low

power consumption is preferred. For comparison, the 2 GHz Intel i5 CPU used

for the software based pre-processing pipeline in the previous chapter consumes

28 W. Although this means that the Intel CPU has a smaller power consumption

per clock cycle, the total power consumption is considerably lower.

59

Figure 8.2: Summary of power consumption showing estimated usage by each

section of the FPGA. A total power consumption of 1,053 W is consumed when

the pre-processing pipeline is operational and 0,082 W in idle mode.

60

9. Summary in Swedish - Svensk

sammanfattning

Implementering av FPGA-baserad förbearbet-

ningssekvens for stjärnsp̊arare

Algoritmer som kr äver b ästa möjliga prestanda använder sig ofta av en

h̊ardvarubaserad l ösning istället f ö r en tillämpning i mjukvara. Inom flyg- och

rymdindustrin ä r det ofta den mest optimerade lösningen som ä r det enda

alternativet. I denna avhandling utvecklas en h̊ardvarubaserad implementering

av en förbearbetningsmodul f ör ett stjärnsp̊ararsystem tillsammans med Aboa

Space Research Oy. Som grund f ö r arbetet fungerar StreakDet-mjukvaran som

behandlar bilder f r å n omloppsbanan f ör analys.

Ett stj ärnsp årarsystem anv änds vanligen p̊a rymdfarkoster som

ett navigationsmedel. Stj ärnspårarens uppgift ä r att f örse diverse

system i rymdfarkosten med positionsdata. F ö r att implementera

detta vanligen mjukvarubaserade system i h årdvara kr ävs det, ut över

bildbehandlingsalgoritmerna f r å n StreakDet, en m ängd st ödande arkitektur s̊a

som kommunikations- och minnessystem.

Specialiserad processeringsh̊ardvara ä r , till skillnad f r å n allmännyttiga

processorenheter som t.ex. en CPU, avsedd f ö r att l ösa problem inom en

viss dom än. En GPU ä r ett exempel p̊a specialiserad processeringsh̊ardvara,

vars uppgift ä r att l ösa problem inom datorgrafik, som ofta inneb är

matrisberäkningar. F ö r att tillfredsställa behovet av skräddarsydd och

omprogrammerbar h årdvara kan en FPGA anv ändas. I och med att en FPGA

kan programmeras f ö r att utf öra matrisberäkningar har teknologin tillsammans

med GPUn blivit vanlig inom accelerering av AI och kryptografi.

En FPGA b e st år huvudsakligen av logikblock, det vill s äga CLB, och ett

61

s̊a kallat interconnect, som anv änds f ö r att koppla ihop logikblocken. Figur 2.3

visar ett antal CLB sammankopplade i ett nätverk och FPGAns kanter best̊aende

av portar f ö r externa signaler. En FPGA-design beskriver hur logikblocken ska

konfigureras och kopplas ihop. Detta ä r j ämf örbart med ett schema som beskriver

hur en integrerad krets ser ut och fungerar. Ett CLB b e st å r av varierande element

beroende hurdan uppgift de har. Vissa CLB ä r ä mnade f ö r lagring av data, medan

andra ä r ämnade f ör att utf öra logiska operationer. [12]

Det huvudsakliga verktyget f ö r att skapa en FPGA-design ̈ a r ett HDL. Ver-

ilog och VHDL ä r exempel p̊a ett s̊adant. Till skillnad fr å n programmeringsspr̊ak

beskriver man med hj älp av HDL hur en digital krets fungerar f r å n ett dataflödes-

perspektiv. En kretsbeskrivning i ett HDL programmeras p̊a en FPGA genom

ett antal processer, som tar i beaktande den ifr̊agavarande FPGAns egenskaper.

Denna process kan ä ven användas f ör att til l̊ata simulering av designen, d̊a ä r

processen i regel avsevärt mycket kortare.

Genom användning av IP-block kan h̊ardvarumoduler distribueras och

återanv ändas. Vanligen implementeras moduler s̊a som minneskontroller och

kommunikationsmoduler som IP-block i en FPGA-design. IP-block har i

allmänhet en varierande grad av transparens g ällande dess interna design. Det

m öjl igg ör distribution av designen, som ofta sker via patentlicenser. [12] [13]

Systemspecifikationen f ö r förbearbetningssekvensen beskriver hur det FPGA-

baserade systemet fungerar som helhet. Specifikationen ä r konstruerad p̊a basis

av StreakDet och diskussioner med Aboa Space Research Oy, och redog örs f ör i

Tabell 3.1.

Det centrala i systemet ä r FPGAn vars uppgift ä r att utvinna stj ärnor f r å n

bilder. Bilden f örv äntas härstamma f r å n rymdfarkostens bildsensor, som ä r riktad

mot en k änd riktning. Denna implementering sker f r å n ett integrerat perspektiv,

d ä r bildens ursprung inte har en inverkan. Specifikationen delar in helheten i en

klient och en FPGA-modul, d ä r klientens uppgift ä r att f örse FPGA-modulen med

bild och konfiguration. Den ifr̊agavarande FPGA-modulen ä r best ämd att vara

av modell Opal Kelly XEM7305, som har en Xilinx 7-Series FPGA, en klockkrets,

USB C-gränssnitt med kontroller, samt SDRAM. Resultatskraven f ö r bildanalysen

l ägger vikt p̊a vidare processering av den utvunna informationen, s̊a som lagring

av koordinaterna och centroiden av stj ärnorna inom bildramen. Andra väsentliga

funktioner som kr ävs ä r möjlighet f ö r validering och verifiering av systemet. B å d e

klienten och FPGA-modulen har en bidragande roll i detta.

FGPA-modulen Opal Kelly XEM7305 med sitt subsystem presenteras f ö r att

62

ge bakgrund f ö r den implementerade designen. Figur 4.1 visar ett blockdiagram

ö ver denna modul. Systemspecifikationen anger en kommunikationskanal f ö r delat

minne och en konfiguration av förbearbetningssekvensen, vilket USB C-gr änss-

nittet uppfyller. Gränssnittet ä r kopplat till Cypress FX3-kontrollern, som im-

plementerar protokollen f ö r kommunikationssystemet. FPGA-designen n å r kon-

trollern genom ett IP-block. [6]

Tre olika minnessystem används f ö r lagring av data p̊a FPGA-modulen. Det

st örsta minnet b est år av en SDRAM-modul med 4Gb kapacitet. Minnet n å s

genom ett kontrollergränssnitt, som ä r implementerat i ett IP-block. Det n äst

st örsta minnet ä r BRAM, vars storlek beror p̊a den valda konfigurationen. Det

f örekommer i 36Kb minnesblock som kan kombineras eller sp j älkas beroende p̊a

behovet. Denna minnesresurs finns inom sj älva FPGAn, men skilt f r å n logik-

blocken. Distribuerat RAM ä r den minsta minnesresursen och även den snab-

baste. Det ä r inbakat i logikblocken, vilket inneb är en avvägning mellan resur-

sanvändningen inom FPGAn. [6]

Systemet h å l l s synkroniserat med hj älp klocksignalen f r å n en 200 MHz oscil-

latorkrets. Utöver sj älva FPGAn använder sig o cks å SDRAM-minnet av samma

klocksignal. Minneskontrollern f ördelar klocksignalen till en 87 MHz signal som

driver minnet och synkroniserar operationerna. Cypress FX3 USB C-kontrollern

använder sig av en skild oscillatorkrets, som genererar en 100,8 MHz signal. [6]

Stj ärnspårare och astronomisk navigering möjligg örs av uppfinningar inom

till ämpad vetenskap, med betoning p̊a astrofysik. Olika processeringsenheter har

ofta en avgörande uppgift inom dess moderna tillämpningar. Ett objekts position

i rymden kan beskrivas p̊a olika s ätt. Det valda s ättet beror p̊a objektet och om-

loppsbanan. Positionen f ö r objekt i l å g bana runt jorden beskrivs ofta med hj älp

av det ekvatoriella koordinatsystemet. Deklination och rektascension anv änds f ö r

att uttrycka positionen, vilket kan j ämf öras med longitud och latitud p̊a jorden.

[22]

Attityden f ör ett objekt i rymden beskriver dess lutning i j ämf örelse med en

referensram. En attitydmatris ä r ett s ätt att uttrycka objektets attityd och best år

av 3 × 3 flyttal som representerar vinklarna mot varje plan. Figur 5.1 visar ett

diagram med en satellit, dess koordinater, attitydmatris och bildsensorns synfält.

[23]

En stj ärnspårare ä r ett instrument vars uppgift ä r att bidra med positionsdata,

som koordinater och attityd genom att utvinna och k änna igen stjärnor f r å n en

bild. Systemet b e st år i regel av en kamera och en dator. Kameran tar bild av

63

stjärnorna, ö verf ör datan till datorn som utvinner stjärnorna och j ämf ör dem mot

en stjärnkatalog. Stjärnkatalogen inneh̊aller position f ör k ända stjärnor, vilket

används f ör beräkning av position och attityd. [22]

Den implementerade förbearbetningssekvensen ä r dokumenterad utg ående

f r å n kraven i systemspecifikationen och hur de satisfierats. Helheten illustreras i

Figur 6.1, som visar de väsentliga komponenterna hos klienten och FPGAn. Det

centrala i projektet ̈ a r att genomf öra bildanalysen f ö r att bidra med data f ö r

igenkänning av stjärnor. D ärf ör ä r systemet utvecklat med syfte att integreras i

en st örre helhet, vilket oundvikligt medf ör kompromisser som t.ex. p åverkar

användbarheten.

Hårdvarudesignen ä r utvecklad i Verilog, med hj älp av Xilinx

Vivado-utvecklingsmiljön. Vivado bygger designen tillsammans med IP-blocken

och konfigurationsfilerna f ö r Opal Kelly XEM7305-FPGAn, som producerar

en bitstream fil. Denna fil anv änds sedan f ö r att programmera FPGAn.

Programmeringen genomf örs av klienten, eftersom FPGAn m å s t e alltid

omprogrammeras d̊a den kopplas till str öm.

Händelseförloppet f r å n användarens synvinkel f ö r systemet ä r kortfattat

f öljande: Str öm och datalänk kopplas till FPGA-modulen. Klienten ö ppnar

förbindelsen till modulen och programmerar FPGA-designen. Bilden överf örs

till FPGA-modulens SDRAM. Parametrarna f ö r förbearbetningssekvensen

programmeras och processen kan k öras i g å n g. Resultat i form av bild och logg

kan sedan l äsas f r å n FPGAn.

En översikt av FPGA-designen visas i Figur 6.2, d ä r FPGAns interna och

externa block ä r kartlagda. Det programmerbara gränssnittet som används f ör

styrning och kommunikation med FPGAn kallas okHost. Den inneh̊aller logik och

gränssnitt f ö r Cypress FX3 USB C-kontrollern och oscillatorkretsen. Fr å n okHost

kopplas databussar till IP-block med kommunikations- och dataöverföringssyften.

IP-blocket Opal Kelly register bridge til l å ter en gemensam synkroniserad 32 × 32-

bit registerbank mellan FPGAn och klienten. Registerbanken anv änds fr ämst

f ö r lagring av parametrar och resultatdata. Wire In- och Wire Out-blocken in-

neh åller ett 32-bit register var, som används f ör asynkron kommunikation mel-

lan klienten och FPGAn. Dessa block anv änds som kommunikationskanal f ör

styrning av systemet. Ö verföringen av bilddata hanteras av Pipe In- och Pipe

Out-blocken. Dessa block kopplas ihop med buffertar och SDRAM-minnet f ö r

att överkomma skillnader i klockfrekvens och busstorlek. Bilddatan använder t v å

ytterligare buffertmekanismer som m öjligg ör behandlingsalgoritmernas funktion.

64

En linjebuffert lagrar tre kolumner av bilden, medan kernelbufferten lagrar en

3 × 3 matris med bilddata. Figur 6.3 beskriver lagringssystemet f ö r bilden inom

förbearbetningssekvensen. [25]

Förbearbetningssekvensen g å r enligt följande: Bilden filtreras med ett s̊a kallat

boxfilter, vars uppgift ä r att förbereda f ör CCL-processen. Figur 6.4 visar resul-

tatet d̊a boxfiltret tillämpats p̊a en del av bilden. Eftersom CCL kr äver en bin är

bild, dvs. varje pixel representeras av antingen 0 eller 1, till ämpar man en tr öskel

p̊a varje pixel. Denna tr öskel ä r parametriserad och styrs f r å n klienten. Sedan

till ämpas CCL-processen p̊a bilden som sammankopplar närliggande pixlar till

objekt. Objektens m å t t och ljusstyrka lagras under processen. Sedan ber äknas

centroiden f ö r objekten. En viktad centroid beräknas f ö r objekt vars geometri ä r

inom vissa mått. Ö vriga objekt ber äknas en oviktad centroid. Centroidberaknin-

gen efterf öljs av renderingen av resultaten med de utvunna objekten och desras

centroider, till SDRAM-minnet. Klienten kan sedan l äsa bilden f r å n SDRAM

minnet. Figur 6.7 visar exempel p̊a utvunna stj ärnor och centroider. [25]

Klienten best år av en Java-applikation med ett grafiskt användargränssnitt.

Genom det kan användaren konfigurera och styra förbearbetningssekvensen. En-

kla verktyg f ö r j ämf örelse och analys ä r implementerade, vilket bidrar till att

uppfylla specifikationskraven. [25]

Resultat av förbearbetningssekvensen presenteras genom exempelanvändning

av systemet. Figur 7.1 visar testdata som ä r genererade p̊a basis av bilder

f r å n StreakDet. Figur 7.2 visar resultatet f r å n förbearbetningssekvensen d är det

framkommer att alla stj ärnor har plockats ur den inmatade bilden. Figur 7.3

visar resultatet f r å n samma inmatade bild, med en annan parameterkonfigura-

tion. Konfigurationerna och resultatdata redogörs f ör i Tabell 7.1.

Analys av resultatdatan och bilderna leder till slutsatsen att

förbearbetningssekvensen beter sig som f örv äntat och väldigt f öruts ägbart i

fr ågan om temporal prestation. Nä r systemet j ämf örs med en mjukvaruvariant

ä r den FPGA-baserade varianten snabbare d̊a klockfrekvenserna normaliseras.

F ö r att undersöka och reflektera ö ver systemet ytterligare kan Vivado

användas f ö r att ge en uppfattning ang ående FPGA-designen. Det framkommer

att m ängden programmerbara resurser p̊a FPGAn utnyttjas till en h ög grad,

vilket l ämnar relativt lite överloppsutrymme i kretsen. En estimering av

FPGAns strömförbrukning ges av Vivado, som p å s t å r den totala förbrukningen

vara 1.053 W. En j ämforelse med processorn som anv ändes f ö r att exekvera

mjukvaruvarianten visar att FPGAn har betydligt l ägre strömförbrukning.

65

Med tanke p̊a str ömf örbrukning per klockcykel har den mjukvaruexekverande

processorn b ättre prestanda.

66

Bibliography

[1] Neil C. Thompson and Svenja Spanuth. The Decline of Computers as a

General Purpose Technology. 2018 (Visited 20.1.2021).

[2] Xilinx Inc. SDSoC Environment Profiling and Optimization Guide, 2018.

[3] Xilinx Inc. 7 Series FPGAs Configurable Logic Block, 2016.

[4] Mahendra Pratap Singh and Manoj Kumar Jain. Evolution of Processor

Architecture in Mobile Phones. International Journal of Computer Applica-

tions, 90:35, 2014.

[5] Jenni Virtanen, Jonne Poikonen, Tero Säntti, Tuomo Komulainen, Johanna

Torppa, Mikael Granvik, Karri Muinonen, Hanna Pentik äinen, Julia Mar-

tikainen, Jyri N är änen, Jussi Lehti, and Tim Flohrer. Streak detection and

analysis pipeline for space-debris optical images. Advances in Space Research,

57:1607–1623, 2016.

[6] Opal Kelly Inc. XEM7305, 2021.

[7] Robin Mitchell. DRAM, SRAM, FLASH, and a New Form of NVRAM:

What’s the Difference? 2020 (Visited 5.10.2021).

[8] Xilinx Employee. Touchdown! NASA’s Perseverance Rover Lands on Mars

with Xilinx FPGAs On Board. 2021 (Visited 19.4.2021).

[9] Wim Roelandts. 15 Years of Innovation. XCell, 32:2, 1999.

[10] Xilinx Inc. Investor Overview. https://investor.xilinx.com/static-files/

2958145c-e3a2-456f-a461-bc9cba375af3. Visited 19.4.2021.

[11] Clive Maxfield. FPGAs from A to Z part 1. 2006 (Visited 19.10.2021).

[12] Xilinx Inc. Vivado Design Suite User Guide, 2021.

https://investor.xilinx.com/static-files/2958145c-e3a2-456f-a461-bc9cba375af3
https://investor.xilinx.com/static-files/2958145c-e3a2-456f-a461-bc9cba375af3

67

[13] DJ Holding. Electrical Engineer’s Reference Book (Sixteenth Edition). Aston

University, 2003.

[14] Eli Greenbaum. Open source seminconductor core licensing. Harvard Journal

of Law & Technology, 25:132, 2011.

[15] Do-254 explained. Technical report, Cadence, 2019.

[16] Aboa Space Research Oy. Starmatch, 2020.

[17] Cypress Semiconductor. EZ-USB FX3 Technical Reference Manual, 2019.

[18] Avinash Aravindan. Flash 101: NAND Flash vs NOR Flash. 2018 (Visited

5.10.2021).

[19] Micron Technology, Inc. General DDR SDRAM Functionality, 2001.

[20] Micron Technology, Inc. DDR3L SDRAM, 2011.

[21] Xilinx Inc. 7 Series FPGAs Memory Resources, 2019.

[22] George Sebestyen, Steve Fujikawa, Nicholas Galassi, Alex Chuchra. Low

Earth Orbit Satellite Design. Springer, 2018.

[23] Sam Pedrotty, Ronney Lovelace, John Christian, Devin Renshaw, and Grace

Quintero. Design and performance of an open-source star tracker algorithm

on commercial off-the-shelf cameras and computers. In AAS 20-028, page 7,

February 2020.

[24] Serkan Dikmen. Development of star tracker attitude and position deter-

mination system for spacecraft maneuvering and docking facility. Master’s

thesis, L ul e å University of Technology, Sweden, 2016.

[25] Oscar Björkgren. Star tracker pre-processing pipeline FPGA design. https:

//github.com/OscarBj/st-pp.

[26] Opal Kelly Inc. FrontPanel SDK, 2016.

[27] Oscar Björkgren. C++ Image processing test bench software. https://github.

com/OscarBj/cpp-image-processing-testbench.

https://github.com/OscarBj/st-pp
https://github.com/OscarBj/st-pp
https://github.com/OscarBj/cpp-image-processing-testbench
https://github.com/OscarBj/cpp-image-processing-testbench

