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Department of Applied

Physics

Aalto University

Torbjörn Björkman
Faculty of Natural Sciences

and Technology
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Abstract

Knowledge of the microscopic atomic structure of a material gives insight

into its macroscopic properties, which facilitates tailoring of the material for

specific functionalities. Potential obstacles encountered during direct experi-

mentation can be avoided using computational simulations to model atomic

structures. The space of possible atomic configurations can be mapped onto a

potential energy surface, with lower energies indicating more stable configura-

tions. This surface can be explored to determine stable states of the material.

However, the exploration typically demands a high number of configuration

samples. The Bayesian optimization structure search (BOSS) method allevi-

ates the exploration by keeping the number of samples required to a minimum.

Atomic simulations often calculate gradients in addition to energies of

atomic systems, which means data points that are richer in information con-

tent. Therefore, including gradient observations should theoretically further

reduce the number of configuration samples required by the BOSS method to

find stable states. The goal of my research was to implement the functionality

of including gradient observations into the BOSS method, and to investigate

the effect the functionality has on the exploration. The implementation in-

volved the writing of relevant mathematical concepts into software, specifically

two Python packages. The effect the functionality has on the exploration was

examined by applying the augmented BOSS method on two computational

experiments that both modeled different atomic systems.

The results from the computational experiments suggest that including

gradient observations reduces the amount of data required by the BOSS

method, by as much as approximately 66 % in some cases. However, the

inclusion of gradient observations make certain matrix operations scale as

O(N3D3), for N data points and D dimensions. This resulted in a slower

process in some cases, even though the amount of data required was reduced.

Therefore, there is a compromise between amount of data required and time

taken by the BOSS method. The inclusion of gradient observations will likely

be most beneficial for slower simulations—such as those of higher fidelity.
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1 Introduction

1.1 Materials Science Simulations

Many fields of research, such as modern medicine or renewable energy, depend on

increasingly complex devices. The functionalities of a device stem from the macro-

scopic properties—e.g., elasticity, electrical conductivity or heat capacity—of the

material that composes the device. The macroscopic properties of a material are

conditioned by its microscopic atomic configurations. Knowledge of the atomic

structure of a material is therefore required when tailoring it for a specific function-

ality in a complex device.

How the material is expected to behave in its natural (relaxed) state is key in un-

derstanding how to engineer the material in a rational manner. The natural state of

a material is represented by a particular atomic configuration. Finding this atomic

configuration is one of the main purposes of structure search. Structure search can

be performed with experimentation, but it does pose challenges in certain scenar-

ios. While examining material surfaces experimentally is relatively straightforward,

probing buried interfaces in bulk material can be problematic. The experimental

resolution can also be insufficient for an accurate description of the atomic structure.

An alternative approach to structure search is provided by computational mate-

rials simulations. In a simulation, models of the atomic structure can be adjusted

and then investigated without the concern for experimental cost. In many cases,

a simulation will save time compared to an experiment. Different types of simu-

lations will, however, incur varying amounts of computational costs, depending on

the accuracy of the model. The quantum mechanical modeling method density

functional theory (DFT) accurately describes the microscopic interactions that

determine atomic structures for many systems [1]. DFT derives its accuracy from

its quantum mechanical basis, yet carries moderate computational cost compared

to other higher-level wave function-based methods [2].

A DFT simulation takes a model of the atomic structure as input and returns

a variety of outputs describing the atomic system. One of these outputs is the

energy of the system, with lower energies indicating more stability. The phase

space of possible atomic configurations can be mapped onto a potential energy

surface (PES) (an example surface is illustrated in fig. 1). Structure search, in the

context of materials simulations, focuses on exploring this surface in order to find

the atomic configuration with the lowest energy, i.e., the global minimum. The

global minimum indicates the natural state of the material, and is found through

the process of global optimization.
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Fig. 1: A potential energy surface over two-dimensional phase space. The energy of the
system is represented as the height of the surface. The surface contains several minima
and maxima, with the global minimum indicating the most stable state of the system.
The surface depicted is the PES of a conformer search of an alanine molecule, described
in section 2.3.

1.2 Global Optimization for Structure Search

Finding the extrema of a function can be formulated as an optimization problem.

Both maxima and minima can be found by minimizing the objective function (the

function that is being optimized), as maximizing the function f(x) is equivalent to

minimizing the function g(x) = −f(x). Because of this equivalency, I will from

this point forward refer to optimization as a process solely concerned with finding

minima.

Local optimization is the process of finding the local minima that is closest

to some starting point. The location of the minimum is approached by descending

the objective function in the direction of the negative gradient (the gradient points

in the direction of steepest ascent). The magnitude of the gradient will decrease

during the descent, and will tend to zero at the minimum.

Global optimization finds the local minimum with the lowest function value.

With structure search, the optimization takes place in the phase space of possible

configurations. Global optimization for structure search finds the lowest function

value within this phase space, indicating the most stable structure configuration.

There exists no general solution for finding the global minimum directly [3], so all

local minima within the phase space need to be determined and compared. A key

criterion for global optimization is then that the phase space needs to be explored

thoroughly, so that no local minimum is left out of the comparison. This entails

many function evaluations required for both exploration and gradient descent.
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The high number of function evaluations required presents a problem when structure

search is done with DFT simulations. With DFT, a function evaluation entails a

simulation and the resulting data point is the energy of the given atomic configura-

tion. While the computational cost of an individual DFT simulation is modest, the

global optimization process becomes computationally prohibitive when many simu-

lations are run in aggregate. Conventional phase space exploration methods, such

as minima hopping [4], Monte Carlo methods [5], or metadynamics [6], typically

require thousands of data points [7].

An approach to global optimization for structure search that minimizes the

number of data points required is therefore of interest. One such approach is the

Bayesian optimization structure search (BOSS) method [1]. BOSS employs

Bayesian optimization (BO), which is an active learning machine learning method

that facilitates global optimization by building a surrogate model of the objective

function that is iteratively updated with data through smart sampling (see fig. 2

for an example process). The surrogate model is fit to (potentially noisy) data with

Gaussian process regression (GPR), and allows for inference of the objective

function across the entire phase space. The model will return an estimate of the

function value f(x) at point x, along with an uncertainty in its prediction. The

uncertainty will vanish at the data points, and rise in unexplored areas of phase

space. The data points with which the model is updated are chosen at locations

in phase space that are determined by an acquisition function. The acquisition

function specifies the location that would give the surrogate model the most addi-

tional information about the objective function, therefore leading to a better fit. For

example, the acquisition function can prioritize areas of high uncertainty, as areas

close to already known function values yield less new information.

Fig. 2: A BO example process of a simple 1D function. The surrogate model is updated
as new evaluations are added to the data set. The global minimum can be estimated by
minimizing the model, and the estimation will approach the true global minimum as the
model becomes refined with more data.
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When structure search using DFT simulations is combined with BO, the PES is

emulated by the surrogate model. Inferring energy values with the model is consid-

erably less expensive than DFT simulations. Therefore, the model can be optimized

for an estimate of the global minimum using conventional phase space exploration

methods, without the concern for computational cost. The more data that the

model is fit to, the better an emulator of the PES it will be, which means a better

estimate of the minimum. The BO process can be initialized with a small data

set, which is then iteratively expanded with data points chosen by the acquisition

function. As the data set expands, the estimate will approach the true value. When

the estimate is deemed an acceptable approximation of the true value, the process

is said to have converged and can be discontinued. Thus, the BOSS method finds

the global minimum of a PES with a minimal number of data points.

The number of data points required for convergence typically increases with

dimensionality. As GPR is reliant on matrix calculations, BOSS does not necessarily

scale well for complex systems with many degrees of freedom. This can be alleviated

with a ”building-block” approach, by treating particular groupings of atoms as rigid

objects (such as aromatic rings or functional groups). The degrees of freedom can

then be constrained by searching the translational or rotational phase space of the

single object, or ”block”. When an approximate location of the global minimum has

been established, the constraint can be relaxed and the minimum can be determined

through simple gradient descent.

In this work, I employed the BOSS method with the Python package aalto-boss

[1], available for download on the PyPI repository and authored by Milica Todorović

(University of Turku) and Patrick Rinke (Aalto University) in collaboration with

Jukka Corander (University of Helsinki/University of Oslo) and Michael Gutmann

(University of Edinburgh). The BOSS package is under continuous development at

Aalto University by the Computational Electronic Structure Theory (CEST) group

and at University of Turku.

1.3 Research Objectives

In addition to the total energy of an atomic configuration, the forces acting on each

atom can be calculated using DFT simulations, without any meaningful increase in

computational cost. The combination of forces describes the gradient of the energy

landscape, i.e., how the landscape changes. Incorporating this information into the

surrogate model of BO should theoretically make the model a better emulator of

the objective function, which consequently should reduce the number of data points

required for convergence by BOSS, ultimately resulting in a more efficient process.
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My research for this thesis focused on investigating the extent to which including

gradient observations in BOSS improves efficiency. For this purpose, the gradient

information was incorporated into the BOSS method through computational im-

plementation of relevant mathematical concepts into Python code packages. The

majority of the implementation took place in a dependency that aalto-boss utilizes

for GPR: GPy [8], developed by the Sheffield machine learning group. With the

implementation finalized, I tested the augmented code on structure search problems

in order to measure the effect gradient observations has on efficiency. These aspects

of the research were defined as three main objectives:

1. Implementation of gradient observations in GPR

This implementation involved expanding the GPy code by writing functions

that allows for the incorporation of gradient observations into the surrogate

model. This was built on the code framework for gradient observations al-

ready established for GPy by Eero Siivola [9]. The main part of this objective

involved generalizing the dimensionality of the framework.

2. Implementation of augmented surrogate model in BOSS

With the GPR framework of GPy augmented, a new surrogate model class

that could include gradient observations was implemented for aalto-boss.

3. Study of structure search experiments

In order to investigate the effect of including gradient observations in BOSS,

two computational structure search experiments were conducted. BOSS was

performed both with and without gradient observations, so that the results

could be compared.

In this thesis, I will first present the theoretical framework behind the BOSS method

and its constituent parts in chapter 2. This is followed by a description of the

computational implementation of gradient information into BOSS, along with more

detailed descriptions of relevant code packages, in chapter 3. The results from the

structure search experiments will be presented and discussed in chapter 4. Finally,

I will present my conclusion for this research in chapter 5.
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2 Bayesian Optimization Structure Search

In this chapter, I will present the theoretical framework behind the BOSS method.

BO is the algorithmic foundation on which the BOSS method is based and involves

two main components: a surrogate model of the objective function that is fit with

GPR, and an acquisition function that determines the sampling locations in phase

space. GPR will be described in detail in section 2.1, followed by the acquisition

function in section 2.2. The combination of BO with structure search is described

in section 2.3, along with introductions to the structure search problems that I have

studied for the sake of this research.

2.1 Gaussian Process Regression

The surrogate model of the objective function is fit with GPR, which is a Bayesian

statistical modeling method. Bayesian statistical methods combine prior information

or beliefs about the distribution of a random variable with observed instances of that

variable. BO receives its name from this Bayesian statistical approach.

We can encode our presuppositions about the problem—such as smoothness or

symmetry—onto a prior probability distribution (from now on, I will simply

refer to this distribution as the prior). The prior is a distribution over functions,

which means a sample drawn from the distribution (see fig. 3) is a random function

represented as a vector of function values. The random functions are our candidates

for the objective function f , with some random functions being more likely than

others depending on our prior beliefs. The prior is considered to be a multivariate

normal distribution, defined by mean vector µ and covariance matrix Σ:

f ∼ N (µ,Σ). (1)

Given some observed data at training locations X with function values f = f(X),

the prior can be conditioned on the data set (X, f) (described by the likelihood) in

order to produce the posterior probability distribution (henceforth referred to

as the posterior). Specifically, the posterior is proportional to the product of the

prior and the likelihood, and is described by Bayes’ theorem:

posterior ∝ likelihood× prior, P (M |D) ∝ P (D|M)P (M), (2)

where P (M |D) is the posterior probability of a model M given data D. An example

of a prior being conditioned on data in order to produce a posterior is illustrated in

fig. 3.
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Fig. 3: An example of a prior being conditioned on data in order to produce a posterior.
The prior is uninformative, which means the mean vector is flat with values of zero ev-
erywhere. Three random function samples are drawn from the prior distribution and are
shown as dashed lines. The prior is then conditioned on three data points (shown in red)
in order to produce the posterior on the right. Three samples are also drawn from the
posterior distribution, and they all pass through the data points. In both plots, the mean
vector of each distribution is drawn as the solid blue line with one standard deviation
above and below the mean as the blue area.

If we have no prior knowledge to encode, and we do not wish to bias the posterior

result, then we assume a flat mean function of zeroes everywhere: µ = 0. The prior

is then defined simply by the covariance matrix Σ:

f ∼ N (0,Σ). (3)

The covariance matrix is constructed by a covariance function K, or kernel. The

kernel can encode the assumption that two points in the input space should have

a larger positive correlation the closer they are to each other. This assumption

elevates the probability of random function samples drawn from both the prior and

the posterior being smooth, as can be seen in fig. 3 (the ”smoothness” in this case is

a result of the kernel being infinitely differentiable). Just how smooth the samples

will be will depend on a hyperparameter of a kernel. Kernels and hyperparameters

will be described in more detail in section 2.1.1.

With a data set of observed values (X, f), function value predictions f∗ can

be inferred at new locations X∗. The joint distribution of known values f and

predictions f∗ is itself a normal multivariate distribution:[︄
f

f∗

]︄
∼ N

(︄
0,

[︄
K K∗

K⊤
∗ K∗∗

]︄)︄
, (4)
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where K∗ = K(X,X∗) denotes the n × n∗ covariance matrix of n training points

and n∗ test points, and similarly for K = K(X,X) and K∗∗ = K(X∗,X∗). The

joint posterior is described by [10]:

f∗|X∗,X, f ∼ N (µ∗,Σ∗) , (5)

with mean vector µ∗ and covariance matrix Σ∗:

µ∗ = K∗
⊤K−1f (6)

Σ∗ = K∗∗ −K∗
⊤K−1K∗. (7)

Thus far, only noise-free observations of f have been considered. It is useful to in-

clude the possibility of noisy observations y = f(x) + ε with independent Gaussian

noise ε with variance σ2
f . Noisy observations can be expected in some simulation

circumstances (and in real-world measurements in particular), and can increase nu-

merical stability in matrix calculations. With the inclusion of noisy observations,

the joint distribution of observations y and predictions f∗ becomes:[︄
y

f∗

]︄
∼ N

(︄
0,

[︄
Ky K∗

K⊤
∗ K∗∗

]︄)︄
, (8)

where Ky = K(X,X) + σ2
fI, with the noise added to the diagonal of the noise-free

covariance matrix. The posterior mean and covariance is then described as:

µ∗ = K∗
⊤K−1

y y (9)

Σ∗ = K∗∗ −K∗
⊤K−1

y K∗. (10)

These are the key predictive equations for GPR, and they are used in building the

surrogate model for the BO process. For our purposes the covariance between predic-

tions is not useful information. The variance in predictions ν∗ = V[f∗] is sufficient.

Therefore, we compute the diagonal of the covariance matrix ν∗ = diag(Σ∗).

To compute Ky, it is typically faster to compute equations (9) and (10) by solv-

ing a linear system of equations using a Cholesky decomposition [11]. If a matrix

Ky of size n× n is symmetric and positive semi-definite, it can be decomposed into

a product of a lower triangular matrix L and its transpose as Ky = LL⊤. The cal-

culation of the Cholesky factor L takes time n3/6, and enables computing equations

(9) and (10) by solving triangular systems by forward and backward substitutions

which require only n2/2 operations [10]. The positive-definiteness of the covariance

matrix is ensured by the covariance functions, and is discussed in the next section.
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2.1.1 Covariance Functions and Hyperparameters

Each element of the covariance matrix is determined by a covariance function K,

or kernel. Kernels typically encode the belief that two points x and x′ in phase

space should have a stronger correlation the smaller the distance ||x−x′|| is between
them. Kernels must be positive semi-definite functions in order to be valid covariance

functions [10].

Different kernels are suitable for different problems. In materials experiments,

we expect physical quantities to be smooth and continuous. For this research, I have

used two types of kernels that are applicable to materials problems. The first one,

used in fig. 3, is the radial basis function (RBF) kernel:

K(x,x′) = σ2 exp

(︃
−||x− x′||2

2l2

)︃
, (11)

where the kernel variance σ2 and lengthscale l are hyperparameters. The kernel

variance σ2 determines the range of the model output. Prior knowledge of or belief

about the domain of the objective function can be incorporated into the kernel vari-

ance hyperparameter. The lengthscale l determines how quickly the model output

can vary in its output. Examples of varying lengthscales are shown in fig. 4.

Fig. 4: Three examples of a 1D prior distribution with samples drawn. The priors are
all defined by covariance matrices constructed with an RBF kernel of variance σ2 = 1 but
varying lengthscales. A lower lengthscale will reduce the correlation between two points
a specific distance apart, allowing for random function samples to take sharper turns.

The kernel in equation (11) describes the correlation between data points in phase

space with only one lengthscale. For non-isotropic systems with varying lengthscales

per dimension, it can be useful to define a kernel for dimension d:

kd(x,x
′) = σ2

d exp

(︃
−|xd − x′d|2

2l2d

)︃
. (12)
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One-dimensional kernels can then be multiplied together into a product kernel:

K(x,x′) =
D∏︂

d=1

kd(x,x
′). (13)

The product kernel meets the criteria needed for constructing the covariance matrix.

Note that the individual kernel variances σ2
d will always be multiplied together into

one product. This means that the kernel variance will remain a single hyperparam-

eter when using a product kernel, in contrast to the varying lengthscales.

Another kernel that is useful when the input range is periodic is the standard

periodic (StdP) kernel:

kd(x,x
′) = σ2

d exp

⎛⎝−
sin2

(︂
π
Td
|xd − x’d|

)︂
2l2d

⎞⎠ , (14)

where Td is the period of the input dimension d. If a problem is only periodic in one

particular dimension, a product kernel can combine both RBF and StdP kernels.

For a set of data, there are a multitude of possible models with different hyper-

parameters. Certain hyperparameters—such as the period of an input dimension—

could be known and then be defined as fixed, while others can be optimized. The

optimization of hyperparameters θ ensures the best fit for the surrogate model to

N data points. This is done by maximizing the log marginal likelihood:

log p(y|X,θ) = −1

2
y⊤K−1

y y − 1

2
log |Ky| −

N

2
log 2π. (15)

2.1.2 Gradient Observations in GPR

So far, only observations of function values y have been considered for GPR. The

topic of this research is the inclusion of gradient observations in BOSS, and conse-

quently, in GPR. Fitting the surrogate model with gradient observations provides it

with more information, which means less data is required for the model to emulate

the objective function (see fig. 5).
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Fig. 5: A 1D comparison between two different GPR model fits. In the left panel, a
model has been fit to four data points that contain just the function values. In the right
panel, a model has been fit to four data points that contain both the function value and
gradients. The right model is a better fit with the same number of data points, as the
posterior mean of the model must fit to the function values and gradients.

Each component of the gradient, i.e., each partial derivative of the function, can be

considered a separate output channel for GPR. The joint distribution in equation

(8) can be expanded to include gradient observations ∇y and gradient predictions

∇f∗: ⎡⎢⎢⎢⎢⎣
y

∇y

f∗

∇f∗

⎤⎥⎥⎥⎥⎦ ∼ N

(︄
0,

[︄
Γy Γ∗

Γ⊤
∗ Γ∗∗

]︄)︄
, (16)

where Γ is the covariance matrix of multiple output channels. Γ collects the co-

variance of all individual channels, but also includes the cross-covariance between

channels. We therefore need covariances between function values and partial deriva-

tives, and covariances between partial derivatives of different dimensions:

cov

(︃
f(x),

∂f(x′)

∂x′i

)︃
=

∂K(x,x′)

∂x′i
, cov

(︃
∂f(x)

∂xi
,
∂f(x′)

∂x′j

)︃
=

∂2K(x,x′)

∂xi∂x′j
, (17)

where i, j are dimensions. Replacing K with Γ in the predictive equations of (9)

and (10) will yield: [︄
µ∗

µ∇
∗

]︄
= Γ∗

⊤Γ−1
y

[︄
y

∇y

]︄
(18)[︄

ν∗

ν∇
∗

]︄
= diag

(︁
Γ∗∗ − Γ∗

⊤Γ−1
y Γ∗

)︁
, (19)
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where µ∇
∗ and ν∇

∗ are the means and variances for the partial derivative posteriors.

The multi-output covariance matrix Γ of two D-dimensional datasets X and X′,

containing N and N ′ data points respectively, is:

Γ (X,X′) =

⎡⎢⎢⎢⎢⎢⎣
K(X,X′) ∂

∂x′
1
K(X,X′) . . . ∂

∂x′
D
K(X,X′)

∂
∂x1

K(X,X′) ∂2

∂x1∂x′
1
K(X,X′) . . . ∂2

∂x1∂x′
D
K(X,X′)

...
...

. . .
...

∂
∂xD

K(X,X′) ∂2

∂xD∂x′
1
K(X,X′) . . . ∂2

∂xD∂x′
D
K(X,X′)

⎤⎥⎥⎥⎥⎥⎦ , (20)

and is of size N(1+D)×N ′(1+D). This presents a scalability issue for large datasets

of high dimensionality. While standard GPR inference takes O(N3) time, training

and inference with gradient observations scale as O(N3D3) [12]. I will return to this

topic of poor scaling and what it means for the efficiency of BOSS when I discuss

the results of chapter 4.

2.2 The Acquisition Function

After a model is fit to a number of data points, we need to know which atomic con-

figuration to evaluate next in order to gain as much information about the objective

function as possible. This configuration can be found with the acquisition function,

which takes the posterior mean and variance as inputs. There are different types

of acquisition functions—such as expected improvement [13], gradient descent [14],

and entropy search [15]—but in this research I have used the exploratory lower

confidence bound (ELCB) acquisition function.

ELCB, among other acquisition functions, balances exploration and exploitation.

Exploration means that the BO process searches areas where the model is uncertain

in its prediction, i.e., areas with high posterior variance. This aspect of the acquisi-

tion function ensures an inherent space-filling search process. Exploitation searches

areas of low predicted energy, i.e., areas with low posterior mean, increasing model

accuracy where the global minimum is more probable to be found. These attributes

can be quantified with the function a(x):

a(x) = µ∗(x)− κσ∗(x), (21)

where µ∗(x) and σ∗(x) are the posterior mean and standard deviation of the uncer-

tainty. The exploratory weight κ is described by [16]:

κ =

√︄
2 log

(︃
ND/2+2π2

3ϵ

)︃
, (22)
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where N is the number of observed data points, D is the dimensionality of the

problem, and ϵ is a small constant (chosen as ϵ = 0.1 in BOSS). According to

Gutmann and Corander [16], the exploratory weight should increase with iteration

number—i.e., size of the collected data set—so that the BO process will not get

stuck in a local minimum. The location of the next evaluation xnext is at the global

minimum of the acquisition function:

xnext = argmin a(x), (23)

and can be computed by conventional global minimization methods, as the inputs

of the acquisition function are the predictions of the surrogate model which are

relatively inexpensive to evaluate.

2.3 Structure Search Application

Model Fitting
Model

Optimization

Sample

Configuration

Acquisition

Energy

Evaluation

Fig. 6: The BOSS iteration cycle. The surrogate model is fit to energy values using GPR.
It is then optimized for an estimate of the global minimum. A sample configuration that
would best improve the model is generated by the acquisition function. The energy value
of this configuration is then evaluated by the objective function and added to the total
data set, which the model is then fit to, and the process repeats.

BO can be applied to a structure search problem in order to determine the atomic

configuration with the lowest total energy—i.e., the most stable state—in what is

referred to as BOSS. The configuration with the lowest energy is represented as the

global minimum of the PES. The surrogate model of BO is fit to known energy values

in order to emulate the PES, and can then be optimized for an estimate of the most

stable state. If the estimate is inadequate, and more the model requires more data

in order to produce a better estimate, the acquisition function will generate a sample

configuration that will provide the model with the highest amount of information.

The energy for this configuration is evaluated with the objective function—e.g., a

simulation—and added to the total data set. The model is then fit to this expanded

data set and optimized for a new estimate, and the process repeats (see fig. 6).
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2.3.1 Convergence

The process can be performed for a set number of iterations, or it can be discontinued

when the estimate of the most stable state is deemed to be an adequate approxi-

mation of the true energy value. One method of determining the adequacy of the

approximation is to track the change in value for consecutive estimations. Once

the change has stayed below a threshold for a number of iterations, the process is

be said to have converged and can be discontinued. The threshold and number of

iterations is defined by the user.

For my research, I studied structure search problems where the most stable state

was known. Therefore, I could use a different method for determining convergence.

The definition of convergence, that will be utilized to measure the efficiency of BOSS

for the results presented in chapter 4, is for this research as follows:

BOSS has converged for a threshold of ε in i iterations, if the absolute

difference between the global minimum prediction µ̂ and the true global

minimum fmin has stayed below | µ̂−fmin | < ε for iterations {i, i+1, ..., i+n}

For all structure search problems, I use n = 10 and three convergence thresholds of

decreasing orders of magnitude: ε ∈ {10−1, 10−2, 10−3}. However, there is a primary

threshold per problem that is deemed as sufficiently accurate.

2.3.2 Degrees of Freedom

An atomic configuration consisting ofN atoms, each with Cartesian position (x, y, z),

will have 3N independent degrees of freedom. High-dimensional energy surfaces can

become excessively convoluted, which requires many data points for exploration. In

the case of including gradient observations, matrix calculations scale poorly with

high dimensionality, as discussed in section 2.1.2. This issue can be alleviated with

a ”building-block” approximation approach. If allowed by chemical rules, certain

groupings of atoms—such as aromatic rings or functional groups—can be treated

as rigid objects, or ”blocks”. The degrees of freedom can then be constrained to

the translational and/or rotational motions of the blocks. This approach produces

an approximation of the PES with reduced dimensionality, whose global minimum

can be found with BOSS. When the approximate global minimum configuration has

been determined, the constraints on the degrees of freedom can be relaxed, and the

true minimum can be found with gradient descent.

The building-block approach is applicable to the structure search problems that

I have studied for this research, and they will be introduced in the next sections.
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2.3.3 Alanine Conformer Search

Fig. 7: An alanine molecule. Four dihedral angles determine the rotations of functional
groups. Grey atoms correspond to carbon C, white atoms to hydrogen H, red atoms to
oxygen O, and blue atoms to nitrogen N.

The objective of the alanine conformer search is to find the most stable state of an

alanine molecule (see fig. 7). The molecule consists of 13 atoms in total. However,

there are four identifiable functional groups that allows for the application of the

building-block approach. The rotations of these functional groups are determined

by four dihedral angles. An atomic configuration of the molecule can therefore be

represented as a state vector of the four dihedral angles. Thus, the problem has

been reduced to four dimensions.

The alanine molecule is computationally simulated on the IT Center for Science

(CSC) Puhti supercomputer [17], using a force field simulation method. The total

energy of the molecule is computed using AMBER [18] code, with a general AMBER

force field (GAFF). The potential energy between a pair of atoms is described by

the functional form [19]:

V (ri) =
∑︂
bonds

Kr(r − req)
2 +

∑︂
angles

Kθ(θ − θeq)
2

+
∑︂

dihedrals

Vn

2
[1 + cos(nϕ− γ)] +

∑︂
i<j

[︃
Aij

R12
ij

− Bij

R6
ij

+
qiqj
ϵRij

]︃
,

(24)

where req and θeq are equilibrium structural parameters, Kr, Kq, Vn are force con-

stants, n is multiplicity and γ is the phase angle for torsional angle parameters.

Because data from a previous BOSS study of the same problem was available, a

surrogate model could be fit to this data and be used as an emulator function.

I used this emulator function to evaluate energies and gradients. This way a local

installation of AMBER could be avoided and the tests could be performed quickly.
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2.3.4 Benzene Adsorption Search

Fig. 8: A benzene molecule above a Cu(100) surface. Grey atoms correspond to carbon
C, white atoms to hydrogen H, and orange atoms to copper Cu.

The objective of the benzene adsorption search is to find the most stable position of

a benzene adsorbed to a copper surface. The building-block approach can be applied

by treating the benzene molecule as a rigid object, and the copper surface as fixed.

In order to further reduce the problem to three dimensions, I do not consider the

rotation of the benzene molecule, as the tilt of the molecule is known from a previous

study. The most stable position can then be represented as the cartesian position of

the center of mass of the benzene molecule, that minimizes the total energy of the

system consisting of both the molecule and the surface.

The system is simulated on the CSC Puhti supercomputer, using DFT [20]. To

employ DFT, we have used FHI-aims code [21]. With DFT, the ground-state solu-

tion for a many-body system can be approximated using only the electron density

distribution n(r). Properties of a system can be acquired from the total energy

functional, expressed in DFT as:

E[n] = Ts[n] +

∫︂
drVext(r)n(r) + EH [n] + Exc[n], (25)

where Ts is the kinetic energy, Vext(r) is the external potential, EH is the Hartree (or

Coulomb) energy and Exc is the exchange-correlation energy. The first three terms

in eq. (25) can be calculated exactly, but the exchange-correlation energy needs to

be approximated. For this approximation, we have used the generalized gradient

approximation (GGA) by Perdew, Burke, and Ernzerhof (1996) (PBE) [22], and the

dispersion corrections of Tkatchenko and Scheffler (2009) [23].

16



3 Computational Implementation

In this chapter, I will describe the computational implementation I have performed

in order to investigate the role gradient observations have in BOSS. The implemen-

tation was split into two tasks, each in a different Python package. The first task,

described in section 3.1, was to incorporate gradient information into the surrogate

model. The second task, described in 3.2, was to integrate the augmented surrogate

model into BOSS. I describe how the full implementation was validated at the end

of this chapter, in section 3.3.

3.1 Implementation of Gradient Observations in GPR

The objective of this implementation was to incorporate the mathematical theory

of gradient observations in GPR, described in section 2.1.2, for the dependency that

BOSS utilizes for GPR: GPy [8]. This Python package creates and fits the surrogate

model that can then be used to make predictions. The model can be created with a

wide selection of possible kernels. For the purposes of this research, I have focused

solely on RBF (eq. 12) and StdP (eq. 14) kernels, along with the product kernel

(eq. 13) that can combine kernels of different dimensions.

The principal object of focus for this implementation is the multi-output covari-

ance matrix Γ (eq. 20), with which the surrogate model is augmented with gradient

information. The Γ matrix can be subdivided into its constituent parts as:

⋄ Multi-output covariance matrix Γ

⋄ Product kernel

⋄ RBF kernel

⋄ StdP kernel

For the surrogate model to make predictions (see eqs. 18 and 19), the Γ matrix re-

quires first- and second-order derivatives of its constituent kernels. These derivatives

were implemented as functions in work done by Eero Siivola [9], but generalization

was needed for N dimensions. This mainly involved debugging of relevant functions,

and was performed in a bottom-up approach by first focusing on the constituent ker-

nels, and then moving up towards the Γmatrix. Minimization of the surrogate model

means calculating the gradient of the posterior mean and variance, which involves

differentiating the Γ matrix. This differentiation requires third-order derivatives of

the constituent kernels, which I implemented as functions.
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3.2 Implementation of Gradient Observations in BOSS

With the implementation in GPR of the previous section, the surrogate model can

be fit with gradient observations. In this section, I describe how this augmented

surrogate model is incorporated into the BOSS process. First, I describe the BOSS

Python package in detail, followed by my implementation.

3.2.1 Standard BOSS

BOSS [1] is under continuous development at Aalto University by the Computational

Electronic Structure Theory (CEST) group and at University of Turku. BOSS is

written in Python 3, is distributed as a PyPi package, and can be run via a command-

line interface or directly in Python scripts.

BOSS facilitates structure search by building surrogate models, refining the mod-

els iteratively through smart sampling, and inferring global minima. External data,

from the objective function to be minimized, is incorporated into BOSS by a Python

interface, called the ”user function”. The properties of the BOSS algorithm—such

as the number of iterations, convergence thresholds, kernel variants, and acquisition

types—are set by the user in an input file. BOSS relies on the GPy package for GPR

and kernels. Some essential algorithm settings can be determined automatically by

the program if not defined by the user.

BOSS will track key metrics—such as data acquisitions, model hyperparameters

and global minimum predictions. These metrics will be stored and written to output

files during the optimization, and are returned to the user when the process is com-

pleted. If the optimization is inadvertently interrupted or deliberately halted by the

user, it can be restarted at a later time from the iteration at which the process was

stopped. A completed optimization can also be restarted for additional iterations

if required. BOSS also provides the user the ability to study the full history of the

optimization process through post-processing. Options for post-processing include

plotting the evolution of key metrics throughout the optimization, and reconstruct-

ing and visualizing surrogate models at a specific iteration step.
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BOSS Internal Structure

Fig. 9: A diagram of the internal structure of BOSS that shows its constituent modules
and how they relate to each other.

I will now describe the internal structure and modules of BOSS in more detail.

The BOSS algorithm has many parts and utilizes the object-oriented programming

of Python. A diagram of the BOSS structure can be seen in Fig. 9. The BOSS

algorithm uses the following modules to facilitate the structure search process:

□ The BOMain object is the main program for BOSS. It initializes and contains

all other objects. The BO loop is implemented in BOMain.

□ The UserFunc object is the source of the external data from the objective func-

tion. The object ensures that the data shapes of the inputs and outputs are

consistent.

□ The Model object contains the surrogate model and all functionalities it needs,

like predictions and hyperparameter optimization. The BOSS model class is a

wrapper for the GPy model class that performs GPR and makes predictions.

□ Minimization is a utility applied when minimizing the model and the acquisition

function. The model is minimized to predict the global minimum. The acquisition

function is minimized in order to determine the location of the next evaluation.

□ The Settings contain all the algorithm settings that determine the optimization

conditions.
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□ The InitManager determines the initial data point locations for the optimiza-

tion, typically chosen at random across the phase space. The optimization can

also be started with specific data points chosen by the user. The initial data

points are determined before the main loop starts.

□ The RstManager implements reading and writing to the boss.rst output file.

If an optimization was interrupted, the RstManager will give BOMain the data

required in order to restart the optimization from the interruption point.

□ The MainOutput writes to the main boss.out output file during the BOSS

run. The output file contains information about every iteration step—such as

data point acquisition, global minimum prediction, and iteration time.

□ TheResults object stores data, such as acquisitions and model hyperparameters,

during the optimization. When the optimization is complete, the Results object

can be used by other parts of BOSS if they require the data. The Results object

can also be returned directly to the user if BOSS is run in a Python environment.

□ The PPMain object performs post-processing for BOSS runs. Post-processing

options including plotting of key metrics and visualizing surrogate models.

3.2.2 Implementation of Augmented Surrogate Model

I incorporated the augmented surrogate model into BOSS by creating a new model

class. This new model class was built on a copy of the standard model class, ensuring

that both classes had the same essential functionalities, such as fitting with GPR

and making predictions. The augmented model class performs these functionalities

with gradient observations included, and is enabled with a keyword in the input file.

Along with the new model class, minor changes were made in other modules:

• BOMain: Added functionality for main program to utilize gradient data.

• UserFunc: The user function expects the objective function to calculate gradients

along with energies if the relevant keyword is enabled.

• Settings: Added keyword for enabling observations of gradients.

• Added gradient data to the RstManager, MainOutput, and Results object.
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3.3 Code Validation

The code was validated during the implementation in a number of ways. The in-

dividual kernels of GPy were first verified to produce the correct output. With

the bottom-up approach, I checked that the Γ matrix was ultimately calculated cor-

rectly, through printout statements and debugging. A number of simple optimization

test functions were then analyzed with both the standard and the augmented GPR

fit. Measuring the root-mean-squared error between predicted values and true func-

tion values, the augmented GPR fit performed better than its standard counterpart.

The augmented surrogate model was then incorporated into BOSS, and then tested

on a simple 1D function to confirm that all changes made to the program work as

intended.

The 1D function that was tested is written as:

f(x) = sin(x) + 1.5 exp
(︁
− (x− 4.3)2

)︁
, (26)

with global minimum fmin ≈ −0.36. BOSS can be used to make a prediction µ̂ for

the global minimum each iteration. I performed the test with both the standard

variant of BOSS, and the augmented variant with gradient observations included.

The results are illustrated in fig. 10 below:

Fig. 10: Results from testing BOSS on a simple 1D function. The absolute distance
between the global minimum prediction µ̂ and the true minimum fmin is plotted as a
function of iteration. The y-scale is logarithmic. Results that include gradients observa-
tions are plotted in orange.

The results are depicted as the absolute distance between the global minimum pre-

diction and the true minimum, with a logarithmic scale. The results confirmed that

the code works as intended, as both BOSS variants make predictions that tend to-

wards the true minimum as data increases. The results also suggest that including

gradients observations accelerates the process, but this will be investigated further

in the next chapter.
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4 Structure Search Results

In this chapter, I will present, examine and discuss the results from the two com-

putational structure search studies introduced in section 2.3 that have been studied

to investigate the role including gradient information has on the efficiency of BOSS.

Throughout this chapter, I will refer to gradient BOSS as the augmented BOSS

process where gradient observations are included, and standard BOSS as the pro-

cess where the observations are left out. The primary metrics with which I examine

the results will be the amount of data (i.e., number of iterations) and time required

for convergence, as defined in section 2.3.1. Results will be presented with three

convergence thresholds of decreasing orders of magnitude. However, each study has

a primary threshold that is deemed as sufficiently accurate and not excessively con-

strained. The time required for convergence will be examined solely based on this

primary threshold.

For each study, I will first describe the setup and design of the test, followed

by results and a short discussion. First, the alanine conformer search study will be

presented in section 4.1, followed by the benzene adsorption study in section 4.2.

4.1 Alanine Conformer Search

4.1.1 Test Design

Fig. 11: A model of the alanine C3H7NO2 molecule that is the subject of this structure
search study. The four dihedral angles depicted determine the rotation of the functional
groups. Grey atoms correspond to carbon C, white atoms to hydrogen H, red atoms to
oxygen O, and blue atoms to nitrogen N.
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The purpose of the alanine conformer search study is to find the atomic configuration

of an alanine molecule with the lowest energy, indicating the most stable state of the

molecule. The dimensionality of the search space is reduced from the collection of

Cartesian positions for every atom, to the rotational phase space of four functional

groups that also describe the full range of possible atomic configurations, given that

the atoms retain fixed positions within the functional groups. The rotation of the

functional groups is determined by dihedral angles, illustrated in fig. 11.

In order to investigate how gradient BOSS scales with dimensionality, the study

is split into two separate studies with different dimensions. In one study, two angles

are kept fixed and two are allowed to vary. I refer to this study as the 2D alanine

conformer search study. In the other study, all four angles are allowed to vary, and

I refer to this study as the 4D alanine conformer search study.

The energy of the molecule is computed by an emulator function, which is a

converged GPR fitted surrogate model from a previous BOSS run, where the energies

were calculated using an AMBER force field, described in section 2.3.3, with energy

units of kcal/mol. The primary convergence threshold for alanine conformer search

is 1× 10−1 kcal/mol.

parameter 2D 4D
variables d1, d4 d1, d2, d3, d4

bounds [deg.] [-50, 310], [-50, 310] [-50, 310], [-50, 70], [-50, 310], [-50, 310]
range [kcal/mol] [0, 50] [0, 50]

kernels StdP (x2) StdP (x4)
noise variance 1× 10−6 1× 10−6

initial points 2 2
iterations 50 200

Table 1: Test parameters for each case study (2D or 4D alanine conformer search).

The parameters for each test are listed above in table 1. For the 2D study, angles d2

and d3 are fixed to 60◦, while for the 4D study all angles vary. All angles are rotated a

full 360 degrees, with the exception of d2, which has 120 degree rotational symmetry.

For each study, a product of standard periodic (StdP) kernels per dimension is

used. As a prior on the kernel variance, the energy value of the global minimum is

expected to lie between 0 and 50 kcal/mol. I allow for a fixed gaussian noise variance

of 1 × 10−6 in function evaluations. The search is initialized with two data points,

chosen from random locations across search space. The process is then performed

for 50 iterations in the 2D study and 200 iterations in the 4D study. As the search

process is stochastic, it is repeated ten times for both standard and gradient BOSS

for statistical purposes.
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4.1.2 Results

Global Minimum Predictions

Fig. 12: Mean global minimum predictions µ̂ as a function of iteration, for alanine
conformer search. The predictions are averaged over ten runs for each BOSS variant
(standard and gradient). The mean predictions are plotted as full lines, with one standard
deviation above and below the mean plotted as the lighter area surrounding the lines.

The global minimum predictions µ̂ are plotted above in fig. 12, with results from

both the 2D and 4D studies. The predictions are obtained through global minimiza-

tion of the surrogate model. The results from the ten runs of each BOSS variant

(standard and gradient) are combined by averaging the predictions. The y-scale

of the graph is shifted by the known true global minimum fmin, so the predictions

should ideally converge to zero as the number of iterations increases. The same

results are plotted with a logarithmic scaling in fig. 13, to more closely observe the

behaviour of the predictions with increasing iteration.

Fig. 13: Mean absolute difference between global minimum predictions µ̂ and the known
true global minimum fmin, per iteration, for alanine conformer search. The predictions
are averaged over ten runs for each BOSS variant (standard and gradient). The y-scale is
logarithmic.
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Convergence

Fig. 14: Box plot of iterations required for convergence within a specific tolerance ε,
for alanine conformer search. Each box contains data for ten runs of each BOSS variant
(standard or gradient).

With the convergence definition of section 2.3.1, we can determine how quickly each

BOSS run converges. The fewer number of iterations required for convergence N is,

the quicker a BOSS run has converged. I have chosen three levels of convergence

thresholds for investigating how the accuracy of the models increase with iterations.

Fig. 14 displays statistics from both studies (2D and 4D), for each type of BOSS

variant (standard or gradient). Table 2 displays the mean number of iterations

required N̄ for each BOSS variant and study, given a convergence criterion ε. The

primary convergence threshold of 1× 10−1 kcal/mol is bolded.

2D 4D

ε Ns
¯ Nḡ Nḡ/Ns

¯ Ns
¯ Nḡ Nḡ/Ns

¯

10−1 22.2 8.3 0.37 54.9 18.3 0.33

10−2 27.0 11.2 0.41 84.8 26.8 0.32

10−3 30.3 12.5 0.41 96.6 31.4 0.33

Table 2: Mean number of iterations required N̄ for a given convergence tolerance ε. The
number of iterations is averaged over ten runs of each BOSS variant (standard or gradient)
and study (2D or 4D alanine conformer search). The primary convergence threshold is
bolded.

25



Model Visualization

Fig. 15: True function of alanine (2D) con-
former search. The star denotes the location
of the global minimum.

A way of monitoring that the BOSS

process is working correctly is to not

only monitor the global minimum pre-

diction, but to also investigate the sur-

rogate model and how it evolves during

the process. By making predictions for a

grid of locations across phase space, the

models can be visualized. This is what

I will be illustrating in this section for

the 2D alanine conformer search. As a

reference, the PES of the true function

is illustrated to the right in fig. 15. The

true global minimum location is marked

by the star.

Fig. 16: A sequence of surrogate models, with BOSS iterations increasing to the right.
Purple markers are data acquisition locations. The large yellow marker is the location of
the global minimum prediction.

Depicted in fig. 16 above are surrogate models at different iterations in the BOSS

process, for one particular pair of BOSS variants. The top and bottom rows illus-

trates standard and gradient models, respectively. The locations of data acquisitions

and the global minimum prediction are also depicted. The color scale for the surro-

gate models is the same for the true function in fig. 15. The scaling does, however,

accommodate for predictions that are outside the true range of function values.
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Discussion

The results indicate that global minimum predictions made by gradient BOSS have

values that are closer to the true global minimum than standard BOSS, when less

data is available (i.e., when fewer iterations have been performed). This can be

observed in in figures 12 and 13, as gradient BOSS predictions tend towards the

true minimum more rapidly than standard BOSS predictions. The box plots of

fig. 14 clearly illustrate that including gradient observations reduces the number of

iterations required for any convergence of any threshold. The height of the boxes

suggest that standard BOSS runs are more inconsistent in the number of iterations

required for convergence. This could be due to the set of random points used to

initialize each pair of runs. Standard BOSS could be more vulnerable to a suboptimal

set of initial points, i.e., random sets that would produce inadequate surrogate

models of the objective function. Including gradient observations produces surrogate

models that more closely resemble the objective function for any set of points, so

gradient BOSS should be less vulnerable to a suboptimal set of initial points, which

means less variance in iterations required for convergence across multiple runs. Table

2 shows how including gradient observations cuts the number of iterations required

for convergence by over one half in for all convergence thresholds in the 2D study.

In the 4D study, iterations required are cut by two thirds.

The model visualizations of fig. 16 illustrate how surrogate models of gradient

BOSS more closely resemble the true function of fig. 15 than standard BOSS models,

with the same amount of data. At five iterations, the gradient BOSS surrogate model

has found the correct location for the global minimum, while the standard BOSS

model has made its prediction at an incorrect local minimum. With less data, the

landscape of the standard BOSS model is quite a poor predictor of the true function,

while the landscape of the gradient model is a better indicator of the function’s peaks

and valleys.
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4.2 Benzene Adsorption Search

4.2.1 Test Design

(a) The simulation cell. (b) A top-down view perspective.

Fig. 17: Figure (a) depicts the simulation cell used in the benzene adsorption search
study. Figure (b) shows a top-down view of the simulation cell, with the smallest repeating
surface unit outlined as the dashed black square. The bounds for the lateral position of
the molecule (green vector) is defined as the dimensions of the smallest repeating surface
unit. In order to search a surface unit that is not located at the edge of the simulation
cell, a lateral offset (black vector) is applied to the lateral coordinates of the molecule.

The benzene adsorption study involves determining the position of a benzene mole-

cule that has the lowest energy above a Cu(100) surface. The tilt of the molecule is

known from a previous study. The position with the lowest energy is represented as

the global energy minimum of the combined system of the molecule and the surface.

The total energy is calculated with a DFT simulation (described in section 2.3.4),

with units of eV. The primary convergence threshold is 1×10−2 eV, as we determine

it to be sufficiently accurate. For a model of the combined system of the molecule

and the surface, I used a model that was computed in a previous study, that had

a determined simulation cell size and surface thickness. In order to constrain the

structure search to three dimensions, the benzene molecule is treated as a rigid

object with position vector (x, y, z) (defined as the center of mass of the molecule)

above the fixed surface. The tilt and rotation of the molecule is set as fixed for the

same purpose. The molecule is positioned with the Python package ase [24].
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The model is comprised of a slab of copper atoms that is four atomic layers thick,

and a benzene molecule that is positioned above the surface. The simulation cell

is periodic in x and y, and wide enough so that the benzene molecule would not

interact with any of its periodic counterparts. As x and y are periodic variables,

the search is constrained to within the smallest repeating surface unit (see fig. 17

(b)). The bounds for x and y are defined as the dimensions of this smallest surface

unit. While not strictly necessary, a lateral offset is applied to the position of the

molecule so that the search is within a surface unit that is not located at the edge of

the simulation cell. A vertical offset is also applied to the z-position of the molecule

in order to define the z bounds as the height of the molecule above the surface.

parameter
variables x, y, z
bounds [Å] [0, 3.632], [0, 3.632], [2.0, 3.5]
range [eV] [-2, 0]
kernels StdP (x2), RBF (x1)

noise variance 1× 10−6

initial points 5
iterations 65

Table 3: Test parameters for benzene adsorption search.

The BOSS process is started with five initial data points, chosen at random across

phase space. The process is then continued for 65 iterations, as knowledge of the

previous study states that the global minimum should be found within this number

of iterations. The width of the smallest repeating surface unit is 3.632 Å, and the

global minimum is expected to be found at 2.0 and 3.5 Å above the surface. The

lowest energy value is expected to be between −2 and 0 Å. As x and y are periodic,

a standard periodic kernel is chosen for each of those dimensions, while an RBF

kernel is chosen for the z dimension. These kernels are then multiplied together into

a product kernel. I allow for a fixed Gaussian noise variance of 1× 10−6 in function

evaluations. As the five initial data points are chosen randomly and the process is

stochastic, the structure search is repeated only three times—as the simulation is

more computationally expensive—for each BOSS variant (standard and gradient)

for statistical purposes. Each pair of variants are initialized with the same set of

random data points.
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4.2.2 Results

Global Minimum Predictions

Fig. 18: Mean global minimum predictions µ̂ as a function of iterations, for benzene
adsorption search. Both graphs contain the same data, but the graph on the right has
a logarithmic y-scale. Both graphs are shifted by the known true global minimum fmin.
The means are averaged across three runs for each BOSS variant (standard and gradient).
The variance in predictions is depicted in the left graph as one standard deviation above
and below the mean.

The global minimum predictions µ̂ for benzene adsorption search are depicted in

fig. 18 above. The predictions are obtained through global optimization of the

surrogate model. The results from the three runs of each BOSS variant (standard

and gradient) are combined by averaging the predictions. Table 4 displays the mean

number of iterations required N̄ given a convergence criterion ε, for each BOSS

variant. The primary convergence threshold of 1× 10−2 eV is bolded.

Convergence

ε Ns
¯ Nḡ Nḡ/Ns

¯

10−1 9.0 2.7 0.30

10−2 30.0 16.3 0.54

10−3 51.7 24.7 0.48

Table 4: Mean number of iterations required N̄ for a given convergence tolerance ε.
The number of iterations is averaged over three runs of each BOSS variant (standard or
gradient). The primary convergence threshold is bolded.
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Discussion

The results for the benzene adsorption search study suggest that the global minimum

predictions are closer to the true global minimum when gradient observations are

included. The mean number of iterations required in table 4 implies that, for the

main convergence threshold 1 × 10−2 eV, including gradient observations cut the

iterations required for convergence by almost one half. The very low number of

iterations required for a convergence threshold of 1 × 10−1 eV, compared to other

thresholds, could be explained by higher number of initial points used in the benzene

adsorption search study.

4.3 Computational Cost Analysis

The results so far have indicated that including gradient observations in BOSS does

reduce the number of iterations required for convergence. However, due to larger

matrices, an iteration of gradient BOSS is more computationally expensive than an

iteration of standard BOSS. In this section, I will investigate the actual time saved,

or not saved, by including gradient observations.

One iteration of BOSS consists of four main operations that each take a different

amount of time to perform. The time taken for each of these operations was recorded

during the testing of the two material problems whose results have been presented

so far. The four main operations whose durations compound into the total time for

one iteration are:

• Function evaluation

Evaluating the objective function, e.g., a simulation.

• Surrogate model fitting

Fitting the surrogate model to the expanded data set. This includes optimizing

the model to new hyperparameters (see eq. 15).

• Global minimization of surrogate model

Optimizing the surrogate model in order to procure a prediction for the global

minimum.

• Locating next point of evaluation

Optimizing the acquisition function in order to determine the location of the

function evaluation for the following iteration.
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The function evaluation is independent of the BOSS process, and the time it takes

depends on the type of simulation chosen. Furthermore, many atomic simulations

include force—in addition to energy—calculations without any significant increase

in computational cost. Therefore, any difference in time taken between standard

BOSS and gradient BOSS to reach convergence is expected to be observed only in

the latter three operations listed above. All three of these operations involve using

the expanded covariance matrix Γ of eq. (20) in the gradient BOSS case, which

means more computationally expensive matrix calculations. I will refer to the time

taken to perform all these three operations as ”BOSS time”.

To examine timing differences between standard BOSS and gradient BOSS, I

average the time taken per operation, for all BOSS runs of each variant. I then

take the ratio Rg/s of the time taken for gradient BOSS to perform the operation,

compared to how long it takes standard BOSS to perform the operation. The ratios

for alanine conformer search are illustrated in fig. 19 below:

Fig. 19: Ratios of time taken to perform an operation, per iteration, for alanine conformer
search (both 2D and 4D). The BOSS time is the sum of the duration of each operation.

The plotted ratios demonstrate how including gradient observations carries an in-

creased computational cost. The duration taken by fitting the surrogate model with

GPR is what is scaled by the largest factor. When the surrogate model is fit with

a smaller amount of data (lower end of number of iterations), the time taken to fit

the model can vary a lot, which can lead to a large ratio. With more data, the time

taken for GPR fitting for gradient BOSS becomes more consistent. This variation

in time taken by GPR fitting at the lower end of iterations can be seen in the ratio

for total BOSS time. For 2D, the BOSS time tends towards being ∼ 9 times slower

when including gradient observations. For 4D, it tends towards being ∼ 50 times

slower.
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By including gradient observations, the BOSS time per iteration is essentially in-

creased by at least one order of magnitude. Whether gradient information will

accelerate the BOSS process depends on the reduction in number of iterations re-

quired for convergence, and the time taken by the function evaluation. For very

slow evaluations, the BOSS time per iteration will be a small fraction, so the factor

increase will not be as significant.

To determine the evaluation time for which including gradient observations ac-

celerates the process, I calculate the BOSS time taken until convergence for every

run, and add a variable teval to every iteration required. By taking the ratio Rg/s of

time taken for convergence for gradient BOSS to standard BOSS, as a function of

teval, the crossover evaluation time can be ascertained.

Alanine Conformer Search

Fig. 20: Ratio of mean convergence time of gradient BOSS to standard BOSS Rg/s, as a
function of evaluation time teval, for alanine conformer search. The convergence threshold
is 1× 10−1 kcal/mol. Gradient BOSS is more efficient than standard BOSS at teval when
the ratio is below 1.

Graphed in fig. 20 above are the ratios Rg/s of time required until convergence

between gradient and standard BOSS, as a function of objective function evalu-

ation time teval, for alanine conformer search. The convergence threshold is 1 ×
10−1 kcal/mol. The crossover evaluation time is roughly ∼ 13 seconds for 2D, and

∼ 250 seconds for 4D. The energies and forces for the alanine conformer search stud-

ies were calculated using an emulator function based on AMBER code. The average

time taken for an AMBER calculation of the properties of the alanine molecule is

∼ 2 seconds [25]. This suggests that, for the alanine conformer search, including

gradient observations does not improve efficiency.
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Benzene Adsorption Search

Fig. 21: Ratio of mean convergence time of gradient BOSS to standard BOSS Rg/s,
as a function of evaluation time teval, for benzene adsorption search. The convergence
threshold is 1× 10−2 eV. Gradient BOSS becomes more efficient than standard BOSS at
teval where the ratio passes 1.

For benzene adsorption search, the convergence threshold is 1 × 10−2 eV. The

crossover time, where gradient BOSS becomes more efficient, is roughly ∼ 100

seconds. The energies and forces for the benzene adsorption search study were

calculated using DFT simulations (described in section 2.3.4), with a mean function

evaluation time of ∼ 755 seconds. This is well beyond the crossover time. There-

fore, gradient BOSS is more efficient than standard BOSS in the benzene adsorption

study. With a mean evaluation time of 755 seconds, standard BOSS converges, on

average, in 7 h 22min. Gradient BOSS, on the other hand, converges, on average, in

4 h 54min, which means a time save of 2 h 28min.

4.4 Discussion

From the results, two main points can be concluded:

• Gradient observations reduce the number of iterations required for

BOSS

• Including gradient observations substantially increases the BOSS time

taken per iteration
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The number of iterations required for convergence being reduced is synonymous with

requiring less data for global optimization. The alanine conformer search results

suggest that the reduction in data required scales with dimensionality. Table 2

indicates that, by including gradient information, the 2D study required roughly 60

% fewer iterations for convergence, and the 4D study required roughly 66 % fewer

iterations. However, the problem is that including gradient observations results in

larger matrices, which leads to more expensive matrix calculations required by GPR.

This increase in computational cost for matrix calculations scale with dimensions D

and number of data points N as O(N3D3). Therefore, for some problems including

gradient observations would impair the global optimization process, and for others

it would be alleviated. For problems of very high dimensionality, including gradient

observations would almost certainly make the process computationally prohibitive.

Reducing the dimensionality of the problem as much as possible—with the building-

block approach, for example—would greatly improve the efficiency gain provided by

including gradient observations.

For the problems I studied, the deciding factors of whether gradient observations

accelerated the process was the evaluation time of the computational simulations.

For the alanine conformer search study a classical force field simulation was used,

which has lower fidelity than the quantum mechanical DFT simulation used for the

benzene adsorption study. The mean evaluation time of the force field simulation

was a small fraction of the total time of one iteration when gradients were included.

This means that the time per iteration was dominated by the cumbersome matrix

calculations, which ultimately led to an inefficient global optimization process. For

the benzene adsorption search study however, because of the quantum mechanical

nature of the function evaluations, the time per iteration was dominated by the eval-

uation time itself. Now the matrix calculations of gradient observations were only a

fraction of the total iteration time, allowing for a more efficient global optimization

process.

The main issue with gradient observations is the poor scaling of O(N3D3) for

matrix calculations. Further research in the acceleration of BOSS using gradient ob-

servations could be focused on reducing this detrimental scaling. Various strategies

of addressing this issue have been proposed, such as the use of stochastic variational

approximations [12], iterative solvers using fast matrix-vector multiplications to-

gether with pivoted Cholesky preconditioning [26], and Gram matrix decomposition

[27]. The utilization of sparse matrices [28], or the parallel processing of graphical

processing units (GPUs) [29], can increase the efficiency of matrix calculations in

general.
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5 Conclusion

BOSS facilitates structure search by reducing the amount of data required in or-

der to find stable atomic structures, which accelerates the development of complex

devices. Simulations that calculate forces in addition to energies yield data points

with high information content, so utilizing these simulations to their fullest extent

is of interest if one wanted to accelerate structure search further. In this research,

I have implemented the functionality for including gradient observations in BOSS,

and investigated the effect the functionality has on the process.

The results imply that the inclusion of gradient observations does reduce the

amount of data required for the structure search process. However, the time taken

per iteration of BOSS is increased significantly, with poor scaling for increasing

dimensionality. This trade-off is something that will have to be taken into account

when choosing to include gradient observations. The determining factor that decides

whether observing gradients will increase efficiency is the evaluation time of the

simulation. I suggest including gradient observations in BOSS when using quantum-

mechanical simulations, such as DFT, for problems that allow for approximation

by the building-block approach, thereby reducing dimensionality. For situations

where the main concern is the amount of data available—not time taken to perform

structure search—including gradient observations will likely be beneficial.

In conclusion, gradient observations in global structure search with Bayesian

optimization presents an interesting avenue of research in materials science. In this

thesis, I have presented the advantages and shortcomings of this functionality, and

noted how such shortcomings might be alleviated. I hope that my implementation

and analysis facilitates any future research into this topic.
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Summary in Swedish - Svensk sammanfattning

Gradient observationer i global struktursökning

med Bayesisk optimisering

Moderna apparater är ofta beroende av funktionaliteter som härstammar fr̊an de

material som utgör apparaten. Ett materials funktionaliteter beror p̊a dess makro-

skopiska egenskaper, t.ex elasticitet, elektrisk ledningsförmåga eller värmekapacitet.

Källan till dessa makroskopiska egenskaper är materialets mikroskopiska atomkon-

figurationer. Kunskap om ett materials atomära struktur krävs därför när man vill

forma materialet för en specifik funktionalitet.

Det är viktigt att först̊a hur materialet förväntas bete sig i sitt naturliga tillst̊and,

för att möjliggöra effektiv användning av materialet. Det naturliga tillst̊andet rep-

resenteras av en viss atomkonfiguration. Att finna detta tillst̊and är ett av hu-

vudsyftena med struktursökning. Struktursökning kan utföras experimentellt, men

det innebär utmaningar i vissa situationer. Att undersöka ytor av material exper-

imentellt är relativt enkelt, medan nedgrävda gränssnitt i bulkmaterial kan vara

sv̊ar̊atkomliga. Experiment kan ocks̊a sakna tillräcklig noggrannhet för en korrekt

beskrivning av atomstrukturen.

En alternativ metod for struktursökning är användningen av datorsimuleringar.

En simulering kan bygga en modell i atomär detalj, vars struktur kan justeras och

sedan undersökas utan oro för experimentkostnaden. I många fall kommer en simu-

lering även att spara tid jämfört med ett experiment. Olika typer av simuleringar

kommer dock att medföra olika belopp av beräkningskostnader, beroende p̊a model-

lens noggrannhet. Den kvantmekaniska modelleringsmetoden täthetsfunktionalteori

(“density functional theory”, DFT) beskriver väl de mikroskopiska interaktionerna

som bestämmer atomstrukturer för många system [1]. DFT f̊ar sin noggrannhet fr̊an

sin kvantmekaniska grund, men bär änd̊a en måttlig beräkningskostnad jämfört med

andra kvantmekaniska metoder.

En DFT-simulering tar en atomkonfiguration och returnerar ett antal attribut

som beskriver systemet. Ett av dessa attribut är systemets energi. Lägre energier

indikerar ett system med högre stabilitet. Fasrummet för möjliga atomkonfigura-

tioner kan kartläggas p̊a en potentiell energiyta (“potential energy surface”, PES).

Struktursökning, i sammanhang med simuleringar, fokuserar p̊a att utforska denna

yta för att hitta atomära konfigurationer av intresse. P̊a den potentiella energiytan

kan det finnas flera lokala extremer, dvs. punkter där gradienten av ytan är noll.

Minima p̊a ytan indikerar stabila konfigurationer, och det minimum med det lägsta
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energivärdet indikerar systemets mest stabila och naturliga tillst̊and. Detta globala

minimum hittas med global optimering.

Struktursökning använder global optimering för att hitta det globala minimumet,

allts̊a det mest stabila tillst̊andet för systemet. Optimeringen sker i fasrummet för

möjliga konfigurationer. Det finns ingen generell lösning för att hitta det globala

minimumet direkt, s̊a alla lokala minimum inom fasrummet måste bestämmas och

jämföras. Ett kriterium för global optimering är d̊a att fasrummet måste utforskas

grundligt, s̊a att inget lokalt minimum lämnas utanför jämförelsen. Detta medför

många funktionsutvärderingar.

Det höga antalet funktionsutvärderingar som krävs utgör ett problem när struk-

tursökning görs med DFT-simuleringar. Med DFT innebär en funktionsutvärdering

en simulering och den resulterande datapunkten är ett energivärde som represen-

terar en atomär konfiguration. Medan beräkningskostnaden för en individuell DFT-

simulering är l̊ag, blir den globala optimeringsprocessen beräkningsmässigt hin-

drande när m̊anga simuleringar körs sammantaget. Konventionella metoder för

fasutforskning av rymd, s̊asom minimahoppning [4], Monte Carlo-metoder [5] eller

metadynamik [6], kräver vanligtvis tusentals datapunkter [7].

Ett tillvägag̊angsätt för global optimering för struktursökning som minimerar

antalet datapunkter som krävs är därför av intresse. Ett s̊adant tillvägag̊angssätt

är bayesisk optimering struktursökning (“Bayesian Optimization Structure Search”,

BOSS) [1]. BOSS är en maskininlärningsmetod som underlättar struktursökning

genom att välja konfigurationer för funktionsutvärderingar som p̊askyndar pro-

cessen. BOSS bygger en surrogatmodell som lämpas till m̊alfunktionen med funk-

tionsutvärderingar. Med surrogatmodellen kan hela energiytan uppskattas. Mod-

ellen är stokatisk, vilket betyder att den returnerar ett medelvärde för sin uppskat-

tning förutom en osäkerhet i sin förutsägelse. Osäkerheten minskar ju närmare up-

pskattningen är de datapunkter som modellen har lämpats enligt. Modellen kräver

inte hög beräkningskostnad för att utvärdera, s̊a konventionella globala optimiser-

ingsmetoder kan tillämpas.

BOSS är en aktiv inlärningsprocess, dvs. datamängden byggs upp medan sök-

ningen fortskrider. Surrogatmodellen uppdateras kontinuerligt genom att den an-

passas till mer data som väljs av en s.k. ackvisitionfunktion (“acquisition function”).

Modellen kan sökas efter en uppskattning av det globala minimumet varje g̊ang mod-

ellen uppdateras. S̊a småningom har hela fasrummet utforskats, och uppskattningen

för det globala minimumet kommer inte att variera per iteration. D̊a sägs det att

processen har konvergerat, och det sanna globala minimumet och den stabila kon-

figurationen har blivit hittade.
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DFT-simuleringar kan beräkna krafter som verkar p̊a varje atom utöver konfigura-

tionens energi. Krafterna är gradienten av energilandskapet, och ger information

om hur landskapet förändras i närheten av datapunken. Att inkludera denna infor-

mation i surrogatmodellen bör göra modellen mer korrekt i sina förutsägelser. En

mer korrekt modell skulle kräva färre datapunkter för struktursökningsprocessen.

I detta arbete har jag implementerat denna gradientinformation i BOSS. För

att avgöra giltigheten av förbättringen i BOSS som gradientinformationen tillför,

har jag testat b̊ade normala och förbättrade processen p̊a materiella problem. Jag

beskriver teorin bakom implementeringen i detalj, dessutom resultaten fr̊an testen.
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