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Abstract

The focus of this thesis is to investigate how customer churn can be modelled

at a company in the financial industry, by exploring the computational means of

predicting customer churn. The goal is to build a working model for predicting

the churn of borrowers and at the same time explore the main drivers of churn.

The study is carried out in the form of a single-case study, and the purpose of

this thesis is to present the theory and methods used, as well as document the

process and findings.

The problem is defined as a classification task, and a random forest

model is evaluated through cross-validation. Since the problem is framed in this

way, the definition of what constitutes a churn event has a major impact on

the applicability of the results. Therefore, great attention is given to this issue.

Appropriate metrics are used to assess the performance of the model. The choice

of evaluation metrics for the classifiers’ performance is especially important due

to the class imbalance in the data. The metrics AUC and Cumulative gain are

chosen since these are insensitive to class imbalance, compared to metrics such

as Accuracy score.

The model appears to capture the churn phenomenon quite well for the

prepared data and is able to accurately predict which customers will churn during

cross-validation. The model has an AUC score of 0.74.
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Chapter 1

Introduction

Customers belong to the companies most valuable assets. Therefore, companies

need to understand their customer base. The company should know how many

customers are leaving the company and for which reasons. One approach towards

solving these problems is to analyse customer retention, i.e. modelling customer

churn. This thesis is about predicting customer churn using machine learning

methods. This approach has shown to be useful in industries such as telecommu-

nications, banking and insurance [19]. Companies in these industries can use such

methods because of the ease of detecting when a customer has left the company,

e.g. ending the contract with an internet service provider gives a signal at the

exact moment of churn. This allows the company to compare active and churned

customers and use the indicator for churn as the output in predictive models.

These methods have also become increasingly popular with companies providing

subscription-based services [25, 11, 8, 4, 9, 14].

This thesis focuses on a particular kind of churn, namely churn of cus-

tomers with loans. The main interest is in learning which customers will transfer

their loans in the future. To be able to apply machine learning methods, the

problem is framed as a supervised learning task, more specifically a binary pre-

diction problem. Since the interest lies in predicting future churn, the input and

output that comprise the training data for the model are collected from different

points in time. The output is obtained from data that are in the future relative
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to the input data. A fixed time window of six months into the future is chosen

since this gives enough time to apply retention measures to the customers that

are predicted to churn.

The input data consist of information about savings, payments and loans

as well as demographic data. The output is not directly available in the data but

derived from one of the features in the data. The input features and definition of

the output variable are discussed in sections 4.1 and 4.2.

A random forest model [1] is used to predict loan churners, i.e. customers

who consciously decide to transfer their loan to another bank. A fixed time

window of six months into the future is set, meaning that the binary output

variable indicating churn is six months in the future from the date that the input

data were gathered. The output is not directly available in the data, but a

definition must be created based on the other available features that capture the

churn behaviour adequately.

A company needs to understand which customers are going to leave

and what the drivers of this behaviour are, because it is much more expensive

to acquire new customers compared to retaining existing customers [27]. It has

been suggested that it costs as much as 12 times more to gain a new customer

compared to retaining an existing one [26]. This may, however, not always be the

case, since there may be customers for whom the cost of retention exceeds the

gain of keeping the customer, see section 2.1.2.

Customer relationship management (CRM) is an approach to under-

standing customers and building customer relationships [16]. It is an extensively

applied strategy in industries such as telecommunications, banking, insurance

and retail. One major goal of CRM is customer retention, that is, to prevent

customers from leaving and, instead, staying with the current service provider.

Inevitably, some customers will leave, predicting this churn helps make targeted

retention strategies more accurate. This limits losses and improves marketing

decisions [8].

A common challenge in customer churn prediction is that the data are
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imbalanced, meaning that there are few customers who leave [28] since churn

events are quite rare. The significant imbalance between the number of observa-

tions of the negative and the positive classes in the data may cause problems for

machine learning models and their evaluation. The implications of imbalanced

data are discussed in section 3.3.

It may be beneficial to use interpretable models that give insight into the

problem. For example, logistic regression, decision trees or generalised additive

models. However, as logistic regression only captures linear relationships between

the inputs and outputs [12] it is not possible to capture more complex nonlinear

phenomena. Decision trees, on the other hand, are susceptible to noise in the

data [28] and have a tendency to overfit. For generalised additive models, it can

be challenging to tune hyperparameters, especially when there is a high number

of features.

The first goal of the thesis is to create a process that quantifies the churn

that is taking place. The second goal is to create a model that can predict which

customers are going to leave in the future as well as give an idea of what the

drivers of churn may be.
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Chapter 2

Customer churn

2.1 Definition of customer churn

Customer churn is a term used in CRM. It refers to the phenomenon

of customers leaving, that is, the customers completely interrupting their rela-

tionship with the company [2]. It is a key business metric in several industries,

because the cost of customer acquisition is much greater than the cost of customer

retention [16, 2, 27]. Terms such as customer attrition and turnover are also used

for this phenomenon.

There is a distinction between voluntary and involuntary churn [10].

Voluntary churn is when a customer on volition decides to leave or switch to

another company. Involuntary churn is when the customer has to leave due

to reasons outside of their control, e.g. moving to another country or going

bankrupt. It is desirable to only capture voluntary churn, which the company is

able to affect.

Churn can also be narrowed down to specific products or services, identi-

fying a customer as a churner if the customer discontinues the use of that specific

product. For example, a bank may be interested in the churn of bank accounts

[19]. In this thesis, the focus is specifically on the churn of customers with some

substantial volume of loans. The behaviour of customers moving their loans to
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another bank is approximated by measuring changes in loan volumes.

2.1.1 Identifying churners

In many cases, it is not possible to identify customers who have left

the company directly from the data. One must define a criterion for identifying

whether a customer is to be labelled as a churner or not. This is not a trivial

task. The definition should capture the phenomenon one is interested in studying.

There will inevitably be some customers who are falsely labelled as churners

without that being the case. Our definition of churn is based on the assumption

that a customer who has had a large volume of loans, and has drastically decreased

the loan volume in a short period of time, has most likely refinanced their loan.

Three parameters must be specified in this definition:

1. A threshold for what constitutes a large loan

2. A threshold for what constitutes a large drop in the loan volume

3. A time frame during which the loan volume has changed

Both the distribution of, and changes in, the loan volumes are studied to

find good values for these parameters. How the time frame is chosen affects not

only which customers are labelled as churners, but also how far into the future

eventual predictions can be made. With the problem at hand, the time frame

is chosen to be six months, as this provides a reasonably long time to act if a

customer is predicted to be a churner. Churn has been defined in this manner,

also partly because of what data are available.

One problem with this definition is that it may label customers who

have paid off a large proportion of their loan within the time frame as churners.

To counteract this the threshold for what constitutes a large loan should be set

sufficiently high, so that it becomes unlikely for customers to pay off such a large

volume within the time frame.
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2.1.2 Important groups of customers

Some groups of customers are more desirable to retain. If the goal of the

churn analysis is to increase profits, it should focus on the profitable customers

[2], and give the most reliable predictions for this subgroup. For example, ”Loyal”

customers is such a group, and they are profitable both in the short and long run.

One approach is to give weight to the observations according to their importance

in the classification model, while training the model gives a higher penalty for

predicting the class wrong for an important observation.

2.2 Churn rate

Churn rate refers to the number or proportion of individuals who leave

the company during a given period [19]. That is, the number of individuals who

left divided by the size of the whole customer base, during the period. Churn rate

can be calculated for any time span, however, it is usually done on a monthly or

yearly basis due to the binding periods of contracts. Even if the service is not

contract-based, the churn rate can be unreliable for very short periods because

of fluctuations in the number of customers leaving.

2.3 Benefits of predicting churn

The benefits of understanding why and which customers are going to

churn are that it makes it possible to

1. Apply directed measures to retain customers identified to be potential

churners

2. Stop potential churners directly by improving their experience (through

customer service and marketing)

This is desirable for the company, since acquiring new customers is much

more costly than keeping valuable customers from leaving. Suppose a churn

rate of 7% a year in a company with 1 million customers where each customer
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contributes 50 euro on average per year. A discount rate of 6% is assumed.

In the first year, there are 1 million customers, the next year 930 thou-

sand customers and then 864.9 customers and so on. The contribution for the

first year is 50 million euro and for the next years 46.5 million euro and 43.2

million euro. With discounting these become 46.5
(1 + 0.06)1 ≈ 43.9 million euro and

43.2
(1 + 0.06)2 ≈ 38.5 million euro.

The total contribution over 25 years is 392.2 million euro. Assume that

through analysing the reasons for customer churn, the churn rate can be decreased

by 1%. This will increase the total contribution to 419.7 million euro, an increase

of 27.5 million euro over the period of 25 years [10].

Year Customers CF (MEur) Discount DCF (MEur) Cumulative (MEur)
0 1 000 000 50 1 50 50
1 930 000 46.5 0.943 43.9 93.9
2 864 900 43.2 0.89 38.5 132.4
3 804 357 40.2 0.84 33.8 166.1
4 748 052 37.4 0.792 29.6 195.7
5 695 688 34.8 0.747 26 221.7
6 646 990 32.3 0.705 22.8 244.5
7 601 701 30.1 0.665 20 264.6
8 559 582 28 0.627 17.6 282.1
9 520 411 26 0.592 15.4 297.5
10 483 982 24.2 0.558 13.5 311
11 450 104 22.5 0.527 11.9 322.9
12 418 596 20.9 0.497 10.4 333.3
13 389 295 19.5 0.469 9.1 342.4
14 362 044 18.1 0.442 8 350.4
15 336 701 16.8 0.417 7 357.4
16 313 132 15.7 0.394 6.2 363.6
17 291 213 14.6 0.371 5.4 369
18 270 828 13.5 0.35 4.7 373.8
19 251 870 12.6 0.331 4.2 377.9
20 234 239 11.7 0.312 3.7 381.6
21 217 842 10.9 0.294 3.2 384.8
22 202 593 10.1 0.278 2.8 387.6
23 188 412 9.4 0.262 2.5 390
24 175 223 8.8 0.247 2.2 392.2

Table 2.1: Economic cost of churn.

Churn prediction may improve the retention activities by helping to
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understand which customers should be targeted. Suppose that a company with 1

million customers has a churn rate of 5% each year, i.e. 50 000 customers leave.

Assume that the company runs a retention campaign with 25% effectiveness, that

is, a fourth of the customers (12 500) reached by the campaign are retained. If

the campaign is poorly targeted it may only reach 20% (10 000) of the churners

of which 25% (2 500) are retained, the effective retention rate is 2500
50000 = 5%. A

large part of the effort is wasted due to poor targeting.

Churn prediction can alleviate the targeting problem by finding a greater

part of the churners. With a predictive model that can identify 50% (25 000) of

the churners, the retention rate can be as high as 25000 ∗ 0.25
50000 = 12.5%, an

improvement of 250%. An effective retention rate of 100% is not realistic, since

some of the churn may be involuntary.

2.4 Features

In general, four types of variables appear in the customer churn liter-

ature: customer behaviour, customer perceptions, customer demographics and

macro environment variables [2, 10]. Customer behaviour features usually meas-

ure something related to the transaction between the customer and the company,

for example, transaction recency and frequency, active products and services, and

monetary value. Demographic features may include age, gender, education level,

salary, postal code etc. Customer perceptions include features that quantify the

view that the customer has of the company, such as results from customer satis-

faction surveys. Features related to the macro environment are external factors

such as a ”prosperity index”, e.g. GNP per capita [10]; company changes, for

example changes in strategy and moving to digital services.
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Chapter 3

Theory of customer churn

analysis

3.1 Models

With the background information presented in the previous chapter, a

model that is suitable for the task of customer churn prediction can be chosen.

Since the input data consist of numerical and categorical features, and output is

a binary categorical variable, a supervised binary classifier is a reasonable choice.

This chapter describes the background for such models and how their performance

can be evaluated.

3.2 Supervised learning

Within the field of machine learning, supervised learning consists of

tasks where an algorithm should learn an association between a set of inputs

and outputs. The inputs for a task may vary in nature; it can be continuous,

categorical or ordinal data. Most algorithms in their basic form expect the data

to be transformed into numerical form to be able to process it. The type of

output determines the kind of learning task. Tasks may broadly be divided into

two groups; if the outputs consist of continuous numerical data, it is a regression
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task, whereas, if the outputs are discrete categories, it is called a classification

task. Unsupervised learning differs from supervised learning in that the target

outputs are unknown and some patterns should be learned from the input data

alone.

The central concept of supervised learning is for an algorithm to learn a

relationship between input and output data, a model of the relationship between

certain inputs and their associated outputs. The model is trained on a set of

data, and it learns a function between the inputs and outputs, so when given new

data it produces outputs that are close to those that are expected.

There are various algorithms for finding associations between input and

output data. They rely on different ways to model the relationship between

inputs and outputs, some allowing for non-linear relationships and some setting

restrictions on the space of functions that may represent the relationship. In

most cases, algorithms rely on a loss function that measures how well the model

can predict the outputs in the training data. The parameters of the model are

then adjusted to minimise the value of the loss function, also called an objective

function, and this way obtain the trained model. Models can also have hyper-

parameters that affect the loss function or how the optimisation takes place, and

these can be tuned by the user.

Previously studied customer churn prediction models include Neural

Networks, Support Vector Machines (SVM), Logistic Regression, Naive Bayes,

Decision Trees [27] and Random Forest [2]. A boosted version of SVM with a

polynomial kernel works best for the data used in [27], but which type of model

works best for predicting customer churn is highly dependent on the data.

For this study, a random forest model was chosen after some preliminary

testing. It gave a satisfactory performance while being easy to use. It also has

some other desirable properties that are described further in the section 3.8.1.
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3.3 Imbalanced data

The customers who leave usually comprise a small part of the data set,

which can pose problems for the classifier since the group of churners is under-

represented. This is especially problematic since the churners are the class of

interest. Many common classification algorithms do not work well for imbalanced

data [6, 3].

The imbalance can be remedied through resampling; undersampling the

majority class or oversampling the minority class [3, 13]; or by weighting the

observations and putting a higher penalty on the misclassified observations when

using ensemble-, or boosting techniques [3, 6, 5].

Potentially, it may be more costly to misclassify churners as non-churners,

because this means no preventive measures are taken for these customers and they

are therefore more likely to leave. Conversely, classifying non-churners as churn-

ers may not be as costly, since these customers only receive extra attention. Still,

it should be taken into account that the budget for marketing and customer ser-

vice probably is limited. The attempts are misdirected in this case, leading to

unnecessary costs.

To avoid misclassifying churners as non-churners, “cost-sensitive learn-

ing” [17] can be applied. During training, a higher penalty is given for misclassi-

fication of observations of the positive class (churners) than for the negative class

(non-churners). The default approach is to distribute the penalties evenly.

3.4 How to handle missing values

Missing values in the data is a common problem [10] that most models

and learning algorithms cannot handle by themselves. The missing values have

to be dealt with in some way before training the model. Leaving out observations

or features that have missing values can be an option if it does not significantly

reduce the size of the data set. However, this should be avoided, if possible, since
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all the values in the discarded observation or feature are removed along with the

missing value.

Another common solution is to impute the missing values by using in-

formation from the existing ones. One can either impute with an estimate from

a model trained on the available data [10] or impute with the sample mean of the

existing values. Alternatively, one can replace missing values with a predefined

placeholder and add a new binary feature, taking the value one at the rows of the

missing values. This method can pose problems if there are many features with

missing values. Adding new binary features for each feature with missing values

potentially doubles the total number of features without the indicator features

not contributing much additional information.

When deciding how to deal with missing values it is important to take

into account why the values are missing, if that information is known. The ways

in which data can be missing is commonly divided into three types [24, 18].

The first type of missingness is missing completely at random (MCAR),

where the reason for the data being missing is unrelated to the rest of the

data. For example, with sensor data, if data are missing due to random

sensor errors.

The second type is missing at random (MAR), meaning that the missing

values of one variable can be explained by observed values of another vari-

able. An example would be survey data where a certain demographic is less

likely to answer certain questions.

The third type is missing not at random (MNAR), which means that the

reason for values missing is neither MCAR nor MAR. An example would

be a temperature sensor for which the number of missing values increases

with the temperature.

The validity of a chosen method for dealing with missing values depends

on which of the three types the missing values are; for example, if the data are

MCAR, deleting observations with missing values produces unbiased estimates of

means, variances and regression weights. Under the MAR assumption, imputing
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the values using linear regression with the existing data as explanatory variables

gives unbiased estimates of the regression weights of the imputation model if the

explanatory variables are complete. However, it introduces bias for correlations

and variance. The effect of different methods depending on the missingness type

is a vast area and is out of the scope for this thesis, thus, it will not be explored

further here.

3.5 Model validation

Model validation is the process of using the model to generate predic-

tions on input data it was not trained on and then comparing the predictions

to expected outputs. This procedure requires what is called a validation or test

set, a data set that has not been used for training the model but which contains

the same type of inputs and outputs as the training data. When training and

evaluating machine learning models the available data are usually divided into

these separate sets before starting to train the model, ensuring that the model

does not come into contact with the validation data before the evaluation stage.

The outputs in the validation set can be compared to the predicted outputs using

various evaluation metrics. Some metrics for classification tasks will be described

in the following sections.

3.5.1 Classification metrics

In binary classification tasks where the data are imbalanced, i.e. there

are significantly more observations belonging to one class than to the other, it is

important to use appropriate metrics for evaluating models to obtain a realistic

estimate of the models’ true performance [3]. The accuracy score does not give a

good picture of a classifyer’s performance when the data are highly imbalanced,

especially when correct predictions of the minority class are of higher interest

than those of the majority class. For example, in a data set where 99% of the

observations belong to one of the classes, a model with a predictive accuracy of

99% may seem good. However, this level of accuracy can be achieved by a classifier
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that simply predicts the majority class, making accuracy a poor performance

metric when dealing with unbalanced data.

3.5.2 Binary classifiers

In a binary classification task, the test data consist of negative and

positive examples. There are N negative examples and P positive examples. The

model tries to predict the true classes (without having access to them), but some

of the predictions may be wrong. There are four types of classifications:

1. True positives (TP ): the true class is positive and the predicted class is

positive.

2. False positives (FP ): the true class is negative but the predicted class is

positive, also called Type I error.

3. True negatives (TN): the true class is negative and the predicted class is

negative.

4. False negative (FN): the true class is positive but the predicted class is

negative, also called Type II error.

The number of each type of classification can be visualised using a con-

fusion matrix [5]. A confusion matrix shows TP in the top left corner, FN in the

top right corner, FP in the bottom left corner and TN in the bottom right corner.

It holds that TP + FN = P (the total number of positives), and TN + FP = N

(the total number of negatives). The classifier assigns TP + FP to the positive

class and TN + FN to the negative class. Figure 3.1 shows a typical layout of a

confusion matrix.
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Figure 3.1: Layout of a confusion matrix.

Sensitivity, or true positive rate, measures the probability of predict-

ing the positive class given that the observation belongs to the positive class.

Specificity, or true negative rate, measures the probability of predicting the neg-

ative class given that the observation belongs to the negative class [12]. These

metrics are defined by

Sensitivity = TP

P
= TP

TP + FN

and

Specificity = TN

N
= TN

TN + FP

Precision can be seen as a measure of relevance; it measures the pro-

portions of times the true outcome is positive given that the predicted class is

positive. Accuracy is the proportion of predictions that were correct, either pos-

itive or negative. FP rate (false positive rate) is the proportion of times the

predicted class is positive, but the true class is negative.
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They are defined by

Precision = TP

TP + FP

Accuracy = TP + TN

P + N

and

FP rate = 1 − Specificity = FP

TN + FP

.

Regarding churn prediction, the churned customers would be defined

as belonging to the positive class, and non-churners to the negative class. The

metrics would be interpreted in the following way: if a customer has churned,

and the classification model has labelled them as churned, it would be a True

Positive; if the model labels the same customer as not churned, it would be a

False Negative. Analogously, if the customer is not a churner and the prediction

is ”non-churn” it would be a True Negative, and for the prediction ”churn” it

would be a False Positive.

The derived metrics tell us something about the quality of the predic-

tions and, therefore, also about the quality of the model. Accuracy tells us the

proportion of the predictions that are correct compared to the total number of

cases. That is, if the churn status of every customer in the customer base is

predicted, then Accuracy measures how many of those predictions are correct as

a percentage. Sensitivity measures the proportion of churners correctly identi-

fied as churners. The FP rate measures the proportion of non-churners that are

wrongly classified as churners. Ideally, for a classifier, the Sensitivity should be

high and the FP rate low.

Probabilistic classifiers and calibration

Probabilistic classifiers are models that, given an input, predicts a prob-

ability distribution over the set of classes. Compared to a binary classifier, whose

outputs are either 0 or 1, a probabilistic classifier predicts a probability for the
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observations belonging to each of the two classes. The same applies to a classifier

predicting any number of classes.

The predicted probability distribution can be denoted using conditional

probabilities. For a classifier with K classes, the predicted probability for class

k would be written as P (Y = k | X) where k = 1, . . . , K, which reads as ”The

probability of class k given the input data X”.

Many machine learning models are probabilistic classifiers in the sense

that they can generate probability distributions over the classes. Such models in-

clude Naive Bayes, logistic regression, multilayer perceptrons, decision trees, and

certain boosting and ensemble models. However, some of these models generate

outputs that cannot be directly interpreted as class probabilities. From the mod-

els listed above, this applies to all models except logistic regression and multilayer

perceptrons. This is a direct consequence of how the models work, what kind of

objective function they try to optimise and how the optimisation is performed.

That is, some probabilistic classifiers do not give a probability that corresponds

to the true chance of an observation being a member of the class. Such classifiers

are called uncalibrated [29]. That a classifier is calibrated means that if the clas-

sifier predicts a probability of 0.9 for a certain set of observations, approximately

90% of these observations belong to the positive class. For a calibrated classifier,

a predicted probability can be directly interpreted as a confidence level. Some

models produce well-calibrated probabilities by default. For example, logistic re-

gression gives calibrated probabilities if the parametric assumptions are met [15],

due to the model directly optimising the log-loss, while maximum margin meth-

ods such as random forest tend to push the mass of predicted probabilities away

from 0 and 1 [20], making these models uncalibrated. Uncalibrated classifiers can

be calibrated by the means of Platt Scaling or Isotonic Regression [20].

Any probabilistic classifier can be turned into a binary classifier by set-

ting a threshold and classifying observations with a probability higher than the

threshold to the positive class and the remaining to the negative class. For each

threshold, the classes assigned to the observations might differ, since observa-

tions belonging to the same class may receive different predicted probabilities.

17



Therefore, given a probabilistic classifier, it can be turned into different binary

classifiers by adjusting the threshold. Usually, the threshold is set to 0.5 by de-

fault, because it is assumed to be equally likely that an observation comes from

either class. If the class distribution is believed to be something other than equal

based on prior information, the threshold can be set accordingly.

When the threshold is adjusted, there is a trade-off between different

types of misclassifications. For example, if the threshold is set to 1, all of the

observations will be assigned to the negative class, since they need a predicted

score higher than 1 to be assigned to the positive class. This results in the

Specificity being very high, while the Sensitivity is very low. The metrics that

rely on a specific threshold can be defined as functions of said threshold, for

example, TP (p) or FN(p), where p is the threshold. This idea can be extended

to the derived metrics Sensitivity, Specificity etc.

All the metrics described above can be used for evaluating the perform-

ance of probabilistic classifiers, for any fixed threshold. If the classifier is to be

evaluated independently of any threshold, other metrics should be used. Such

metrics are described in the following sections.

3.5.3 Receiver operator characteristic curve

The receiver operator characteristic (ROC) curve is a common way to

visually inspect the performance of a probabilistic binary classifier[5]. The false

positive rate (FP rate) and true positive rate (TP rate) of the classifications are

calculated at different probability thresholds [12, 3]. The different rates are then

plotted against each other with the FN rate on the x-axis and the TP rate on

the y-axis. Each point on the ROC curve shows the FN rate and TP rate for a

specific threshold. The ROC curve is independent of the class balance and may,

therefore, be used even when the data set is highly imbalanced.

The area under the ROC curve (AUC) can be used as a measure of

performance. The value ranges from 0 to 1, where 1 is a perfect classification.

An AUC of 0.5 means that the model performs as badly as a random classifier. To
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calculate AUC, take each negative observation and count the number of positive

examples with a higher assigned score than the score of the current negative

observation. Thereafter, sum them up and divide everything by P · N .

It is the same procedure as the one used for estimating the probability

that a random positive example has a higher assigned score than a random neg-

ative example. An advantage of using AUC as a metric for performance is that

the metric is independent from the classification threshold [5]

The ROC curve can be used to find the optimal threshold, in the sense

of balancing the FN rate and TP rate, i.e., the threshold that gives the highest

TP rate while keeping the FN rate low. Which FN and TP rates are considered

acceptable is often problem-specific. Usually, the threshold is chosen with respect

to the cost of misclassification.

In practice, false negative errors are usually more expensive than false

positive errors. For example, in a system that checks the quality of machine parts,

it is more expensive to miss a faulty part (false negative) than it is to mistake a

correct part for a faulty one (false positive). In this example, it is assumed that

faulty parts should be assigned to the positive class. If the cost of misclassification

is unknown, one solution is to set the costs using the estimated class priors [22].

One way to find a threshold is to optimise the balance between the

true positive and false negative rates. If the Youden’s J statistic defined by

J = Sensitivity(p) + Specificity(p) − 1 is maximised, one obtains the threshold

that gives the highest sensitivity, while keeping the specificity high

poptimal = argmax
p

Sensitivity(p) + Specificity(p)

.

3.5.4 Cumulative gains curve

The cumulative gains curve, also called the lift curve, gives a graphical

representation of what percentage of customers one has to target in order to reach
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a certain percentage of all churners. It is obtained by plotting the Support on the

x-axis against the Sensitivity on the y-axis, for different probability thresholds.

The Support is defined as (TP + FP )/(N + P ), that is, the observations that

were predicted to be positive, divided by the total number of observations.

For a given churn probability threshold, the cumulative gains curve plots

the fraction of all customers above the threshold against the fraction of all churn-

ers above the threshold [28].

3.6 Cross-validation

For a model to be useful in practice it has to perform well on data it has

not seen before; thus, it is of interest to estimate how well it would perform on new

data. This is quantified by the out-of-sample performance. The out-of-sample

performance is the performance, as measured by any of the metrics described

above, on new data that were not used for training the model. It measures how

well the model can generalise outside of its training data and is hence indicative

of how well the model is going to perform in a real setting.

However, it is not possible to obtain the true out-of-sample performance,

but it can be estimated by using the available data. The performance on the

training data (training performance) is usually a poor estimate of the out-of-

sample performance [12]. The training performance usually increases with the

complexity of the model, since a more complex model will more easily overfit

to the training data and decrease the training error to zero. Therefore, other

methods have to be used to obtain a reliable estimate of the true out-of-sample

performance.

The performance estimate can be used both for selecting the best of

several different models, as well as estimating how well the final model general-

ises. For traditional statistical models, e.g. logistic regression, it is common to

measure the relative performance between models analytically, using Mallows’s

Cp statistic, Akaike information criterion or Bayesian information criterion. The

final model can be chosen by comparing these metrics. This is less common for
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machine learning models, since these methods require the maximum likelihood

estimates to be computed, which is too complicated for many machine learning

models.

Cross-validation can be used to estimate the models performance on

unseen data; it is achieved by dividing the available data into separate data sets

for the training and testing of the model. One common way to divide the data

is to use 75% of the data for training and 25% for testing. The training data are

used for training the model, after which predictions are made using the inputs

of the test data. The performance is calculated based on the predicted values

and the test outputs. There are no general rules about how to choose the sizes

of the training and test sets. Usually, the training set is chosen to be larger,

since this allows the model to better learn the relationships in the data. Yet,

there is a trade-off, since a smaller test set results in less reliable estimates of the

out-of-sample performance.

For the cross-validation estimates to be reliable, it is important that the

training and test sets are independent. This condition can be violated in many,

sometimes subtle, ways. For example, in the case of customer churn prediction,

the observations in the data may be correlated with each other if there are several

observations of the same customer. If the data are split into a training and test

set, in a way such that there are observations of the same customers in both

the training and test sets, it will be easier for the model to make predictions

for these observations, and the performance estimates will be biased. The bias

comes from the fact that the cross-validation procedure, in this case, does not

correspond to how the model would be used in reality. In reality, there will be new

customers joining the company for which there are no previous observations, and

the performance estimate does not give information about how well the model

will predict churn for these customers. This can be avoided by not including

observations of the same customers in both the training and test sets.
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3.6.1 K-fold cross-validation

K-fold cross-validation works similarly to the train-test split procedure

described above, with the exception that the procedure is repeated k times. The

data set is partitioned into k different subsets of the same size, then k − 1 of

the subsets are used as the training set and the k:th subset is used as the test

set. This is repeated for each of the subsets. The choice of k heavily affects the

computational burden of running the cross-validation, as most models have to be

retrained in each fold [12]. A common choice for k is 5 or 10. If k is chosen to be

the same as the number of observations in the data set, one obtains leave-one-out

cross-validation [12]. There is also a trade-off between the bias and variance of

the performance estimates depending on the value of k. A lower value for k makes

the estimates more pessimistic, since fewer data can be used for training, but it

keeps the variance low. Higher values of k, with leave-one-out being the most

extreme, gives an almost unbiased estimate of the performance, but the variance

may be very high due to the training sets being so similar to each other.

Figure 3.2 illustrates how k-fold cross-validation would work with k = 4

and a data set with 20 observations. In each iteration, one-fourth of the obser-

vations are used as the test set and the rest are used for training the model.

The model is trained on the training set and predictions are made on the test

set. Performance metrics are computed either separately for each fold and then

averaged, or computed on the whole set of predictions after all folds have been

completed.
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Figure 3.2: K-fold cross-validation with k = 4 [7].

3.7 Decision trees

Tree-based methods work by dividing the feature space into subspaces

and fitting a simple model in each subspace [12]. The splitting of the feature

space can be conceptualised as branching in a tree, hence the name. Each split

is typically made as a decision for a single feature, assuming that the feature is

continuous, one branch goes to the left for values smaller than a threshold and

another branch goes to the right for values greater or equal to the threshold.

The splits are made to minimise the prediction error on the training

data. The splitting continues until certain groups of observations end up in

the leaf nodes of the tree. The criteria for stopping are determined by which

algorithm is used for the tree construction as well as the hyper-parameters of the

algorithm. The simple splits make for an easily interpretable model, as it is easy

to investigate at which thresholds the splits have been made in the trained model.

Decision trees work for both regression and classification tasks. In the

case of regression, the mean of the output values of the training observations in a

certain node is the predicted output value. For classification, the predicted class

is chosen as the most prevalent class in the node. For example in a regression

model, suppose that the output values of a collection of observations in a node

are 2.4, 5.5, 1.7 and 4.3. If a new observation ends up in this node, the predicted
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output for this observation would be the mean of the 4 observations in the node:

3.475. In the case of binary classification where the observations have classes

0, 1, 1 and 1 the predicted output class would be 1 since it is the most prevalent

class in the node. In the case of a tie, the predicted class could be chosen as any

of the classes occurring in the node, as long as it is done consistently.

There are various algorithms for constructing decision trees from data.

The ID3 (Iterative Dichotomiser 3) algorithm was developed by Quinlan [23] in

1986. ID3 learns a classification model from categorical data. It was succeeded

by the C4.5 algorithm which can use continuous input data by splitting the

continuous feature into discrete ranges. The learned trees are then converted to

sets of if-then rules, and the improvement in prediction accuracy resulting from

each rule is then evaluated to determine the order in which the rules should be

applied. Furthermore, the rule set is pruned to lower the chance of overfitting.

Further improvements were made in the C5.0 algorithm, being faster and more

memory efficient. The CART (Classification and Regression Trees) algorithm is

similar to C4.5 but also supports continuous outputs, i.e. regression.

Decision trees can have high variance, meaning that a small change in

the training data can affect the model drastically. This is mainly due to the

hierarchical nature of the model [12]. A change in a split close to the root can

affect the splits made deeper in the tree, significantly changing the topology of

the tree.

3.7.1 CART algorithm for classification

The CART algorithm can construct decision trees for both regression

and classification. Below is a description of the algorithm used for training a tree

for a classification task.

For a classification task with K classes and training data with N ob-

servations in a d dimensional input space, there are training vectors xi ∈ Rd, i =

1, . . . , N and labels yi ∈ {0, 1, . . . K − 1}. The algorithm should partition the

input space in a way such that each node is as pure as possible, i.e. the nodes
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contain mostly one kind of label. To achieve this, a measure of impurity H is

minimised. For node m, representing a region Rm of the feature space containing

Nm observations, let

pmk = 1
Nm

∑︂
yi∈Rm

I(yi = k)

be the proportion observations belonging to class k in node m.

In order to partition the feature space, a measure for the quality of

partitions is required. One way is to measure the impurity H(Rm) of the regions

Rm in a partition. Commonly used measures of impurity in classification are Gini

and entropy.

Gini impurity is defined as

∑︂
k

pmk(1 − pmk)

The Gini impurity will be lower if one of the classes is more heavily

represented in the node and higher if the classes are close to equally represented.

It is a measure of how often a randomly chosen element from the region Rm would

be incorrectly classified if it were randomly labelled according to the distribution

of labels in the subset.

Entropy is defined as

−
∑︂

k

(pmk log pmk)

Entropy measures the average level of information that is needed to describe the

distribution of labels of the observations in the region. The entropy is low if one

class is more prevalent in the region. If all classes are close to equally represented,

the entropy, and therefore also the impurity, is high. To find the globally optimal

partition is computationally infeasible in general, hence the splits are computed

in a greedy fashion.

Let the data at node m be represented by R. Consider a feature j and a

splitting threshold t, the split θ = (j, t) divides the feature space into two regions
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Rleft(θ) = {(xi, yi) | xi,j ≤ t} and Rright(θ) = {(xi, yi) | xi,j > t}

The impurity G for the split is computed using the formula

G(R, θ) = n1

Nm

H(Rleft(θ)) + n2

Nm

H(Rright(θ))

where n1 and n2 are the number of observations in region Rleft and Rright re-

spectively, and Nm is the total number of observations at node m. G(R, θ) can

be seen as a weighted average of the subregion impurities. To find the split that

minimises the impurity, all possible thresholds are evaluated for all features in R.

θ∗ = argmin
θ

G(R, θ)

If the feature is continuous, there may be numerous possible thresholds

that have to be evaluated. To reduce the computational burden, a continuous

feature may be binned so that only thresholds at the boundary points of the bins

have to be evaluated.

The optimal splits are calculated recursively for subsets Rleft(θ∗) and

Rright(θ∗) until one of the criteria for stopping is met. Stopping criteria can be

a maximum allowable depth of the tree, a maximum number of leaf nodes, a

minimum number of observations in a leaf node or a minimum required decrease

in impurity.

The optimal split is found by brute force search, that is, the impurity is

computed for every possible value, for every possible feature, and the split that

gives the lowest impurity is chosen. It should be noted that this tree-building

procedure is greedy in the sense that at every stage the impurity is only minimised

for the current split, without regards to the global optimum. Therefore, it is not

guaranteed that the tree that is built is the one with the lowest impurity. Still,

the quality of the produced tree is often good enough when the training data set

is sufficiently large, and the suboptimal solution may even help avoid overfitting

to the data.
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The tree depth is a model hyper-parameter that may be tuned to adapt

the model to the data. A very large tree may overfit the training data, while a

small tree may not capture all the relevant structures in the data.

To perform prediction for new observations the tree is traversed ac-

cording to the splitting criteria in each node, until a leaf node is reached. The

predicted class of an observation in the leaf node m is the majority class in the

node

k(m) = argmax
k

pmk

. That is, the class k that has the highest proportion pmk in node m is chosen.

3.7.2 Example

The artificial “two moons” data set seen in figure 3.3 is an example of a

binary classification problem with a non-linear decision boundary. The light dots

belong to one class and the dark dots to the other class. There are two features:

X0 and X1.
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Decision surface of decision tree

Figure 3.3: Decision surface of the learned model
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If a decision tree is fitted to the data with the restrictions of 7 as the

maximum number of leaf nodes and a maximum depth of 4, then the tree structure

shown in figure 3.4 is learned. The tree has been constructed using the CART

algorithm with Gini as the measure of impurity.

The coloured regions in figure 3.3 are the decision surfaces, i.e. the

regions in feature space where an observation would be predicted to belong to a

certain class. The tree has learned a non-linear decision boundary, which fits the

data quite well.

The rectangular regions of the decision surface are the results of the

splits in the tree. The first split divides the feature space into two regions:

Rleft((1, 0.46)) = {(xi, yi) | xi,1 ≤ 0.46} and Rright((1, 0.46)) = {(xi, yi) | xi,1 >

0.46}. The first region contains the observations for which feature X1 is less than

or equal to 0.46 (the left subtree), and the second region contains the observations

for which feature X1 is greater than 0.46 (the right subtree). This partition of

the feature space is the horisontal dividing line at X1 = 0.46 seen in figure 3.3.

Similarly, the other splits in the tree correspond to the other lines that divide the

light and dark regions. Each subtree divides the regions further.

In figure 3.4, the nodes in the tree are coloured by the class that would be

predicted at that node. The array in each node shows the number of observations

of each class, and the prediction is chosen as the majority class in a node. For

example, a new observation [X0, X1] = [1.50, 0.5] would end up in the rightmost

node in the tree, since the first condition 0.5 ≤ 0.46 is false and the second

condition 1.5 ≤ 1.424 is also false. The predicted class would be 1 (light) since it

has the majority with 8 to 0 in that node.
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Figure 3.4: Decision tree learned from the data

3.8 Ensemble methods

In ensemble methods, the goal is to combine several models into a single

model, in order to improve its robustness and ability to generalise, compared to

any of the single models alone. One form of ensemble method is Bagging (Boot-

strap aggregating). Bagging is a method where several models are trained on

bootstrap samples of the same training data, and the predictions of the individual

models are averaged to produce the final prediction. Bootstrap sampling means

that the training data set is sampled with replacement to produce training sets

for each of the models in the ensemble. By averaging, variance is reduced, which

helps avoid overfitting the training data [18]. The essential idea is to average

many noisy but approximately unbiased models and, thus, reduce the variance.

The models used in Bagging should be able to capture complex relations

in the data, hence, trees are an ideal candidate since they are highly flexible.

Furthermore, they are approximately unbiased if grown sufficiently deep. Each
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tree generated in bagging is identically distributed and, therefore, the expectation

of an average of the trees is the same as the expectation of any individual tree.

This means that the bias of the bagging model is the same as that of the individual

trees, and the only way to improve the model is through variance reduction [12].

The variance of the average of N identically distributed random vari-

ables with variance σ2 and positive pairwise correlation ρ is

ρσ2 + 1 − ρ

N
σ2

. As N grows, the second term diminishes. This means that the variance of

the model can be decreased by increasing the number of trees in the ensemble.

However, the variance is limited by the term ρσ2 and, thus, by the correlation

between the trees.

3.8.1 Random forest

Random forest is an ensemble method, closely related to bagging, based

on decision trees as the base learner. It was introduced by Breiman in 2001 [1].

The model consists of an ensemble of several trees. Each tree in the ensemble

is built using a bootstrap sample from the training data. Furthermore, during

tree construction, only a random subset of the features is considered at each node

split. These modifications introduce randomisation into the learning process, and

the random feature selection makes the trees less correlated [12].

The idea is that random forest can improve upon the bagging method by

making the trees less correlated, without increasing the variance too much. The

random feature selection works by selecting k of the d features to split on, k ≤ d,

at each splitting. By default, the decision tree algorithms chose one feature to

split on from all the features. The value k is typically chosen to be ⌊
√

d⌋. In

practice, this parameter should be tuned for best performance.

The predictions of each tree in the ensemble are combined to produce

the final prediction. This is achieved by taking either the most prevalent class or
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averaging in case of probabilistic predictions.

Due to the random selection of features at each split, the bias of each

tree is slightly increased. The general trend is that the bias increases as the

number of selected variables at each split decreases [12]. However, due to the

averaging during prediction, the variance of the model decreases, compensating

for the increase in bias.

With random forest, the training of individual trees is performed inde-

pendently and can thus be performed in parallel. Therefore, this allows for the

training time to be decreased by taking advantage of parallel computing archi-

tectures.

3.8.2 Model explainability

Model explanation is the concept of trying to understand why a machine

learning model gives certain predictions for certain inputs. This is especially rel-

evant for black-box models, meaning models that are too complicated for humans

to understand directly. The difficulty understanding may arise from the model

including parameters that do not have an intuitive interpretation, or simply that

it has a large number of parameters.

Random forest models usually consist of a large number of trees, each

with their own set of parameters specifying the splits. Even if individual trees

are usually considered to be interpretable models, in a random forest the trees

have not been trained on identical input data since the data is randomised, mak-

ing them incomparable to each other. Also, predictions of individual trees are

combined to produce the final prediction of the model, making it more difficult

to understand the connection between input and output. Thus, random forest

can be seen as a black-box model.
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3.8.3 Feature importance

In a random forest model, one way to assess which features the models

find important is through calculating feature importances. Feature importance

provides estimates of the predictive power of the features. The importance value

for one feature tells us how much that feature contributes to the prediction,

compared to the other features.

The importance of a feature can be calculated as the normalised total

reduction of the impurity caused by splitting on that feature. In a random forest,

the importance values are calculated in the individual trees, and then averaged

over the whole forest. Since the impurity measures how well the observations

belonging to different classes have been separated in the split, this gives a direct

way to measure how well that feature can separate the classes.

3.8.4 Partial dependency

The impact a feature has on the score can be investigated by plotting

the partial dependence of the feature. One-way partial dependence plots show the

interaction between the target feature and the output. The partial dependence

of a feature is computed by averaging the logarithm of the predicted scores for

every combination of the target value and the rest of the features.

To estimate the partial dependence for a feature:

• The partial dependence of a specific value of the feature is computed by

holding that value constant and varying all other features over their possible

values and predicting the score for every combination.

• Then the logarithm of the scores is computed, and the mean is subtracted

from the scores. The partial dependence is the mean of these scores.

• This is repeated for every possible value of the feature.
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Chapter 4

Data set

4.1 Data set

The data set used in this study consists of customer data from a bank.

The data are updated daily, and at the end of each month, one snapshot of the

data are saved. The data consist of information about approximately 300 000

customers, including demographic data, savings amounts, payment and loan

amounts.

The data set used for analysing and modelling customer churn consists of

data from the period 31 January 2015 to 31 December 2017. The data are filtered

according to five criteria. The customers included in the study have a total loan

volume of 50 000 euro or higher. This threshold was given by the client company

and is used to avoid including customers who do not have a substantial amount

of loans. Only private customers are included in the analysis. The term private

customer is used by the company to denote customers who are not corporate and

institutional customers. Only customers who are Finnish citizens are included

in the analysis. Customers who have displayed payment problems in the past

are excluded. These conditions together limit the number of customers to about

40 000 in each monthly data set.

The threshold of 50 000 euro for the total loan volume has been chosen
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in an attempt to leave out customers without a home loan from the analysis. The

decision is based on the observation that the number of customers with a certain

loan volume size “stabilises” for volumes higher than 50 000 euro before gradually

decreasing.

Figure 4.1 shows the number of customers who had a loan volume within

a certain range, each range increasing with 10 000 euro increments. For example,

there were about 2 600 customers with a total loan volume between 50 and 60

thousand euro at the end of October 2016. The distribution of loan volumes is

quite similar for every monthly snapshot, within the time span considered. In this

figure, customers with a total loan volume below 50 000 euro are also included.
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Figure 4.1: Distribution of loan volumes

If the number of customers in each range is subtracted successively from

the total number of customers, the complementary cumulative distribution is ob-

tained. In figure 4.2, the complementary cumulative distribution of loan volumes

is shown. Each bar shows the number of customers who have a loan volume

greater than or equal to the value on the x-axis. The vertical dashed line indic-

ates the 50 000 euro threshold. The number of customers with a volume greater

than or equal to the threshold, as well as, the proportion they constitute of the

customer base, is shown in the legend. In this figure, customers with a total

loan volume of less than 50 000 euro are also included. In October 2016, about

41 000 customers had a total loan volume of 50 000 euro or more. This number

constitutes about 61% of the customers considered.
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Figure 4.2: Complementary cumulative distribution of loan volumes

4.2 Definition of the churn variable

In this thesis, churn is defined in terms of changes in loan volumes. The

definition is assumed to label those customers who transfer a large part of their

loans as churners.

Definition A customer is said to have churned if their total loan volume has

dropped by 80% or more, six months into the future. This percentage threshold

is chosen, since it seems to capture the churn phenomenon.

The churn phenomenon is assumed to be stable over time, meaning that

the indicators of churn are the same in the future as they are now. For example, if

the age of a customer is found to be a strong predictor of churn, it should also be

a strong predictor in the future. This is a modelling assumption that affects how

the data are prepared for the model, and how the results should be interpreted.

The complementary cumulative distribution of changes in loan volumes

for October 2016 can be seen in figure 4.3. Here, only customers with a total loan

volume of 50 000 euro or more are included.

The x-axis shows how much the loan volume has decreased over six
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months in percentages, and the y-axis shows how many customers have had a

decrease of this percentage or greater. For example, about 1 000 customers have

shown a decrease of 80% or more in their total loan volume and would, according

to the definition, be labelled as churners. Note that the scale of the y-axis is

logarithmic.
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Figure 4.3: Percentage change in loan volume

The churn rate defined in this manner is quite stable over time, with

about 1 000 customers labelled as churners per month. However, this number may

not be representative of the true number of churners due to how the churners are

counted. A customer who has churned, according to the definition, can still be a

customer in the following months and again be labelled as a churner.

For example, if a customer has a loan volume of 120 000 euro on 31

January 2015 and transfers the loan in June 2015, it means that the loan volume

on 30 June 2015 will be 0 euro. Then it means that the customer will be labelled

as a churner 31 January 2015, since the change in volume is over 80%. Even if

the customer only pays off a small amount of the loan in February, the customer

will still be labelled as a churner 28 February 2015, since the decrease in loan

volume will still be over 80%.

Some churners are accounted for twice, meaning that the actual churn

rate is lower than the one shown in the previous figure. In the predictive model,

36



this issue may be handled by sampling the data, for example by only using the

most recent observation of each customer and, thus, avoiding an ambiguous churn

status. If double counting is avoided by keeping track of the customers that have

already been labelled as churners in previous months, the calculated number of

churners is significantly lower, about 200 per month.

Figure 4.4 shows the ratio of customers labelled as churners, without

double counting, as a ratio of the total number of customers (dark coloured line),

as well as the total number of customers (light coloured line) for each month. All

customers have a total loan volume greater or equal to 50 000 euro before the

moment of churn. Notably, the churn rate is quite low, 0.5% on average for the

period in question.

Figure 4.4: Ratio of churners to the number of customers included.

4.3 Implications of the definition

A major issue with the definition is that it does not explicitly capture

the event of interest, namely when a loan has been transferred. The definition

tries to capture churn by measuring a proxy, a large change in the loan volume.

This results in customers possibly being labelled as churners even though they

are not, for example, if a customer has paid off over 80% of the loan within six

months. We try to avoid this kind of mislabelling by choosing a reasonably high

starting volume and a required change in volume.
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4.4 Features

Table 4.1 shows the features used in this study. These features have been

chosen since it is believed that they can be relevant for predicting churn, and data

for them have been stored as monthly snapshots for a long time. The left column

in the table shows the name of the feature, and the right column contains a short

description of each feature. Most of the descriptions are obvious, but a few require

some elaboration. Premium and Privileged are customer segments defined by the

client company, the definition is based on which products the customer subscribes

to. For example, to be eligible for the Premium banking product, the customer

must have funds, savings or products worth 50 000 euro at the company.

The feature named Sector is a categorical variable indicating the eco-

nomic sector the customer works in. It includes seven categories: “Non-profit

institutions serving households”, “Employers and own-account workers”, “Em-

ployees”, “Recipients of property income”, “Recipients of pensions”, “Recipients

of other transfers” and “Non-financial corporations, excl. housing corporations,

national private”.

There were some missing values in the data, but all were in the continu-

ous variables and the missingness was not random. It was concluded in discussions

with the client that the missing values in these columns are a different encoding

for the values being zero and, therefore, all the missing values could be replaced

with zeros.
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Name Description
Private banking Private banking customer
Premium Customer belongs to certain customer seg-

ment according to the company definition
Privileged customer Customer belongs to certain customer seg-

ment according to the company definition
Customer category Customer type
Sector Sector (economy)
Cross sales index Number of active product categories
Cross sales product categories Active product categories
Age Age of the customer
Civil status Civil status (categories)
Language Customer service language
Postal code Postal code of residence
Revenue 12M Revenue of customer (running mean of last

12 months)
Predicted revenue Predicted revenue of customer (calculated

based on active products and assets)
Payment volume Amount of money used for payments by the

customer
Savings volume 1 Amount of money in assets that bring profit

to the company: e.g. deposits/funds
Savings volume 2 Amount of money in assets that do not bring

profit to the company: e.g. stocks
Loan volume The combined amount of money in loans
Payment volume (shared) Payment volume for shared accounts
Savings volume (shared) Savings volume for shared accounts
Loan volume (shared) Loan volume for shared accounts

Table 4.1: Features used in the model
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Chapter 5

Empirical study

5.1 Empirical study

A model for predicting loan churn is built and evaluated using customer

data from 2015-01-31 to 2017-12-31. The model learns to score customers accord-

ing to their likelihood to churn, giving a higher score to customers who are more

likely to churn.

5.1.1 Predictive model

A random forest model is used to predict customer churn. In this thesis,

the random forest implementation from scikit-learn 0.19.1 [21] is used. The hyper-

parameters used for the model are described in table 5.1. The hyperparameters

control different aspects of how the model is trained, but all of them can be

explained in terms of the theory described in section 3.7.

The parameter number of trees is the number of decision trees used in

the ensemble model, in this case, it is chosen to be 100, which is quite moderate.

A moderate number of trees makes training and evaluating the model faster,

while having the benefits of the ensemble. Split criterion is the impurity measure

H used to decide the quality of the splits. Maximum number of features is the

number of randomly selected features that are considered while performing each
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split of the feature space. The parameter value is kept at the recommended value,

i.e. the square root of the number of features.

The following parameters are stopping criteria. Maximum depth de-

termines how deep the trees in the ensemble are allowed to grow, while the depth

is defined as the largest number of splits from the root node to a leaf node. Min-

imum number of samples for split is a stopping criterion for a branch of a tree. If

the number of observations in one node is under this limit, the node is not split.

Minimum number of samples in leaves determines if a split can be done, by con-

sidering the number of observations in the resulting child nodes. If the resulting

child nodes have fewer observations than this value, the split is not performed.

Maximum number of leaf nodes determines if splitting should stop for a tree by

checking the number of leaf nodes; should the number of leaves exceed this limit,

splitting stops. Minimum impurity decrease determines if a split should occur

by checking the decrease in impurity. If the resulting decrease is lower than this

threshold, the split is not performed. The stopping criteria used here has been

chosen as to not restrict the building of trees in other ways than the training data

would allow for.

5.1.2 Data preparation

The data set contains the information described in table 4.1 as inputs,

as well as a binary output variable. The output variable takes the values 1 if

the customer is a churner in that month or otherwise 0. There are 36 months in

this period and about 40 000 customers per month, which results in a little over

1 480 000 observations in total. Still, a majority of these observations are of the

same customers, since there is neither a large number of customers joining nor

leaving during this period.

The data are prepared for training and evaluating the classifier model by

using the most recent observation of each customer. Since most of the customers

in all the periods are the same, the size of the data set is reduced significantly.
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Hyperparameter Value Description
Number of trees 100 The number of trees in the

forest.
Split criterion Cross-Entropy The measure of quality for

splits.
Maximum number of features

√
41 The number of features con-

sidered when looking for the
best split.

Maximum depth unlimited The maximum depth of trees.
Minimum number of samples
for split

2 The minimum number of ob-
servations required to split an
internal node.

Minimum number of samples
in leaves

1 The minimum number of ob-
servations required at a leaf
node.

Maximum number of leaf
nodes

Unlimited Restriction on the number of
leaf nodes in each tree.

Minimum impurity decrease 0 A node will be split if this split
induces a decrease of the im-
purity greater than or equal to
this value.

Table 5.1: Random forest hyperparameters

In this sampled data set, there are 52 681 customers, 7 313 of whom are churners

(14%). Since every observation in the sampled data set comes from distinct

customers, it is assumed that every observation is independent.

Then 10-fold cross-validation is performed using the sampled data. This

means that in each fold 90% of the data is used for training and 10% is left for

testing the model. In each fold, the training and test data are different, and the

cross-validation is stratified, meaning that the ratio of churners is the same in

every fold.

The results are predictions for every observation in the data set, where

the observation the prediction is made for was not used to train the model.

This means that the predictions are not biased, which would be the case if they

were made on the same observations as were used for training the model. Thus,

they can be used to calculate unbiased estimates of the model’s out-of-sample
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performance.

5.2 Results

The distribution of the predicted scores is shown in figure 5.1a. Due

to the imbalance in the data set, the predicted scores are concentrated around

0.14. The classifier is not able to perfectly separate the classes, meaning that

the predicted scores for some churners are lower than the scores for some non-

churners. The histogram suggests that the classifier gives low scores to most

customers.

The scores ordered by their magnitude 5.1b were plotted for the obser-

vations in the test set. The plot follows a sigmoid shape, which is typical for the

scores produced by a random forest model. The sharp increase in the curve shows

that there are fewer customers who receive a high predicted score. This reflects

the fact that the proportion of churners to non-churners in the data is low.
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Figure 5.1: Predicted scores.

5.2.1 Calibration

The scores should not be interpreted as probabilities directly. This is

because the model is uncalibrated. In figure 5.2, the predicted scores and the

average number of positive observations are plotted against each other. The
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scores and true classes have been sorted by the magnitude of the predicted scores,

grouped into 10 bins and averaged. The curve shows how well the scores of the

classifiers correspond to the true empirical probabilities in the data. A classifier is

perfectly calibrated if the calibration curve follows the diagonal line. For example,

if a calibrated classifier predicts a probability of 0.80 for a group of observations,

80% of them belong to the positive class.

According to this plot, the model is quite well calibrated, but it gives

slightly too high scores for non-churners and too low scores for churners. This

behaviour is expected of the random forest algorithm [20]. Attempts at calib-

ration were made by applying Platt Scaling and Isotonic Regression, but it did

not improve the results. Even if the scores cannot be interpreted as probabilities

directly, they can still be used to order the customers according to their likelihood

to churn.
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Figure 5.2: Calibration curve for model predictions.

5.2.2 Model performance

To turn the predicted scores into a predicted class, a threshold has to

be chosen. Depending on where this threshold is placed, the number of false

positive and false negative predictions vary. The trade-off can be visualised by
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plotting the true positive rate (TPR) against the false positive rate (FPR). The

resulting plot is called the receiver operator characteristic (ROC) curve. The true

positive rate estimates the models probability of detection, i.e. the probability

that the model will identify a true churner. The false positive rate estimates

the probability of a false alarm, i.e. the probability that the model will label a

non-churner as a churner.

The area under the curve (AUC) can be used for summarising the per-

formance of the classifier. An AUC of 1 is the best case, where the classifier can

distinguish between the positive and negative class perfectly, whereas 0.5 is the

worst, meaning that the predictions are no better than randomly assigned scores.

The AUC can be interpreted as the probability that the classifier will rank a

randomly chosen churner higher than a randomly chosen non-churner.

The ROC curve for the predictions is shown in figure 5.3. Since the

evaluation is done through a 10-fold CV, the models in each fold differ slightly

due to them being trained on different parts of the data set. To obtain an overall

estimate of the performance of the classifier, the ROC curves of each fold are

averaged using the arithmetic mean. In the figure, an interval with the width of

one standard deviation is drawn around the mean ROC curve. The area under

the curve is shown in the legend, also with a one standard deviation interval.
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Figure 5.3: ROC curve for model predictions

Figure 5.4 shows the cumulative gains curve for the predictions. The

cumulative gains curve shows the percentage of the overall number of churners

that would be identified by considering a certain percentage of the total number

of customers. For example, the height of the curve at 20% of the total number of

customers is about 50%. This means that if the classifier is used to score a data

set and sort it by the scores, we expect 50% of the churners to be in the group

with the top 20% highest scores. Thus, if the data set has 40 000 customers of

which 200 are churners, and 8 000 customers (20%) with the highest scores are

selected, we expect to find 100 (50%) of the churners.
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The threshold that gives the best balance between TPR and FPR is

found by maximising Youden’s J statistic. The statistic can be seen as the height

of the ROC curve above the diagonal line. The J statistic for different score

thresholds is shown in figure 5.5. We see that the maximum value is obtained

when the threshold is set to about 0.17.
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Figure 5.5: Youden’s J statistic, and the score threshold that gives the highest
value.
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The optimal threshold is used to produce the predictions in the following

confusion matrices in figure 5.6. With this threshold, the model can classify 67%

of the churners correctly, while classifying 72% of the non-churners correctly.
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Figure 5.6: Confusion matrices.

5.3 Model evaluation

5.3.1 Feature importances

The top 15 of the features ordered by importance are shown in figure

5.7. The features that the model finds most important seem to be related to the

revenue, loan volumes, and location.

5.3.2 Partial dependency

The partial dependence, described in section 3.8.4, shows how the values

of the features affect the predicted score, according to the model. The partial

dependence for a few selected features is shown in figure 5.8. There seems to be a

non-linear dependence between these features and the predicted churn score. For

example, in the feature Loan volume there is a decrease in the partial dependence

between 50 000 and 170 000 euro, after which the score increases until 400 000

euro.
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Figure 5.7: Feature importances.
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Chapter 6

Conclusions

The purpose of this work has been to review customer churn prediction and its

applications, theoretically and through empirical study. This was accomplished

through a study of the literature and a single case study. The goal of the study

was to establish if it is viable to use a machine learning model for modelling and

predicting customer churn at the client company.

The first part of the thesis gave a general overview of customer churn,

how it can be defined, the economic benefits of churn prediction, and variables

that can be used for predicting churn. Challenges common for customer churn-

related data, such as class imbalance and missing values, were also discussed.

Then the modelling aspect of churn analysis was described, which machine learn-

ing models are typically used, as well as their advantages and disadvantages.

Furthermore, the procedures for evaluating models and their explainability were

described.

The second part focused on the empirical analysis. First, the data set

at hand was explained, what features were available and how the churn variable

was defined. Next, the methods discussed in the first part was applied to the

data. Moreover, the data preparation, modelling, as well as the evaluation of the

model were described.

The results show that economic variables related to income, spending
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and saving are the most important followed by demographic variables. By study-

ing partial dependencies of the features, it was observed that the churn score is

highly dependent on the magnitude of certain features. By evaluating the model

using cross-validation, it was found that the model has a reasonable performance

on the data set, with an AUC score of 0.74. This gives support to the viability

of using machine learning for predicting customer churn in this setting.
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Att förutsp̊a kundbortfall inom

finansindustrin

Introduktion

Denna avhandling behandlar hur kundbortfall (eng. Customer churn) kan förut-

sägas vid ett företag inom bankindustrin. Med kundbortfall avses ett avslutat

kund-förh̊allande. Mer specifikt handlar det om s̊adana kunder som flyttar sina

l̊an fr̊an en bank till en annan. Fokus ligger p̊a att undersöka hur dessa kunder

kan identifieras genom användning av maskininlärning. Fr̊agan närmas p̊a detta

sätt eftersom det kan beskrivas som binär klassificering inom ramverket av väglett

lärande (eng. supervised learning). Därtill har företaget en stor mängd data om

kunderna, som kan användas vid träningen av maskininlärningsmodeller.

Avhandlingen är strukturerad som en fallstudie, och kan delas in i tre

delar. Den första delen tar upp begreppet kundbortfall i allmänhet: hur det kan

definieras, varför fenomenet är av intresse för företag och vad nyttan är med att

försöka förutsäga kundbortfall. Den andra delen tar upp grundläggande teori

för maskininlärning: vanliga problem med data som ska användas för väglett

lärande, hur prediktionsmodeller kan evalueras, och teorin för beslutsträd och

ensemblemodeller behandlas eftersom denna typ av modeller används i den em-

piriska delen av avhandlingen. I den tredje delen beskrivs det praktiska arbetet

som gjorts för ett företag, som del av ett konsulteringsuppdrag. I denna del

redogörs för olika aspekter p̊a de data som används som inlärningsmaterial för

prediktionsmodellen, och hur kundbortfall definieras för detta ändam̊al. Sedan
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presenteras den valda maskininlärningsmodellen, parametrar som användes vid

träning av modellen och resultaten fr̊an evalueringen av modellen. Det avslutande

stycket lägger fram de slutsatser som gjorts utifr̊an studien.

Kundbortfall

Termen kundbortfall används för att beskriva företeelsen d̊a kunder säger upp

sitt förh̊allande med ett företag för gott. Trots att det är enkelt att beskriva

begreppet, kan det vara sv̊art för ett företag att veta om, och exakt när, en kund

avslutar sitt förh̊allande. Inom branscher där förh̊allandet är kontraktsbaserat,

s̊asom försäkrings- och telekommunikationsbranchen, kan det vara lättare att

avgöra när förh̊allandet sagts upp. Däremot kan det vara sv̊arare för ett före-

tag inom detaljhandeln att säga exakt när bortfallet sker, eftersom det kan ske

gradvis.

Ofta krävs det att man fastställer en definition för när en kund kan anses

ha fallit bort, vilket gjordes i denna avhandling. En ändamålsenlig definition

skapades genom att välja de kunder som ans̊ags ha en ansenlig mängd l̊an, 50 000

euro eller mera. Detta krävdes för att endast inkludera kunder med bostadsl̊an.

Sedan kontrollerades hur mycket mängden l̊an hade förändrats över sex månader.

Ifall mängden sjunkit över 80% ans̊ags kunden ha förflyttat sitt l̊an. Förändringen

p̊a 80% valdes utifr̊an mönster som kunde hittas i data, och för att det ans̊ags

vara en s̊a stor förändring att l̊anet inte kunde ha betalats inom loppet av sex

månader. Tidsgränsen sex månader valdes p̊a företagets begäran, och ans̊ags

vara en lämpligt l̊ang tid för att kunna åtgärda det genom kundservice eller

marknadsföring om kunden skulle förutses falla bort inom den tiden.

Teori för prediktionsmodeller

Den grundläggande idén med maskininlärning är att automatiskt lära sig mönster

som finns i data. Det innefattar algoritmer som med hjälp av den information

som finns i data kan lära sig att lösa uppgifter de inte har explicita instruktioner
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för att lösa. Med väglett lärande avses s̊adana problem där man har exempel

best̊aende av b̊ade in- och utdata. Algoritmens uppgift är att lära sig regler som

kopplar indata till rätt utdata, och att generalisera fr̊an de givna exemplen.

I denna avhandling har maskininlärningsmodellen “slumpmässig skog”

(eng. random forest) använts för att lära algoritmen kopplingen mellan kund-

data och benägenheten att flytta sitt l̊an. Modellen faller under kategorin en-

semblemodeller, och best̊ar av en samling beslutsträd som tränats med slump-

mässigt valda delmängder av träningsdata. Den slumpmässiga skogen gör förut-

sägelser genom att ta medeltalet av förutsägelserna fr̊an de enskilda träden som

ing̊ar i modellen. Beslutsträd är en enkel modell som byggts upp av en algoritm

som delar upp indata i olika regioner s̊a att varje region inneh̊aller s̊a liknande

exempel som möjligt. Slumpskogar ger ofta bättre resultat än ett enskilt beslut-

sträd, eftersom de slumpmässiga valen motverkar beslutsträdens benägenhet att

överanpassa (eng. overfit) sig till data.

Utöver val av modell är det ocks̊a avgörande att modellen evalueras p̊a

ett korrekt sätt. D̊a är det viktigt att man väljer ett sätt att mäta prestandan hos

modellen som tar i beaktande egenskaper hos data man utför evalueringen med.

I typen av data som behandlas här finns det ofta en stor obalans i träningsdata,

eftersom det är mycket färre kunder som faller bort jämfört med de kunder som är

kvar. Det är ocks̊a viktigt att evalueringen utförs p̊a ett sätt som inte introducerar

bias. Exempelvis skulle det ge felaktiga resultat om modellen evalueras med

samma data som den tränats med. Av den orsaken ska korsvalidering användas

s̊a att tränings- och testdata h̊alls åtskilda.

Data och empirisk studie

Data som används för denna studie är kunddata fr̊an en bank som samlades under

perioden 31 januari 2015 till 31 december 2017. Data för träning av modellen

väljs ut s̊a att endast finländska privatkunder med över 50 000 euro l̊an beaktas.

Kunder med betalningsproblem fr̊an tidigare tas inte med. En kund markeras som

bortfallen om mängden l̊an som denne har sjunkit med över 80% inom 6 m̊anader.
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Ett problem med denna definition är att kunder som markerats som bortfallna

under en månad, kommer att vara markerade som bortfallna även i följande

månad. Till exempel om en kund har ett l̊an p̊a 120 000 euro i januari och flyttar

l̊anet i maj, s̊a kommer kunden att markeras som bortfallen eftersom mängden l̊an

sjunkit med över 80% mellan januari och juli. Men samma kund kommer ocks̊a

att markeras som bortfallen i februari eftersom mängden l̊an sjunkit med över

80% fr̊an februari till augusti. För att f̊a giltiga träningsdata tas därför endast

den senaste observationen av kunden med i mängden av träningsdata. S̊aledes är

varje exempel i träningsdata fr̊an unika kunder och kan ses som oberoende.

Maskininlärningsmodellen evalueras enligt tiodelad korsvalidering. Det

betyder att träningsdata delas upp i tio lika stora delar där balansen mellan

klasserna, bortfallen eller icke-bortfallen, är jämn. I varje iteration av korsval-

ideringen skapas prediktioner för en av de tio delarna, efter att modellen tränats

p̊a de nio resterande delarna. Detta upprepas för alla tio delar s̊a att model-

len har skapat förutsägelser för alla data utan att ha tränats med samma data

som förutsägelserna görs för. De förutsagda klasserna jämförs med de korrekta

klasserna och fr̊an dessa räknas modellens AUC (eng. Area under Receiver Op-

erating Characteristic Curve) poäng, som ger ett estimat av hur bra modellen

är.

Avslutning

I denna avhandling har prediktionen av kundbortfall undersökts genom att studera

den existerande litteraturen och att utföra en fallstudie. Målet var att bilda en up-

pfattning om möjligheterna för en bank att använda sig av maskininläring för att

förutsäga när deras kunder kommer att flytta sina l̊an till en annan bank. Vad som

avses med kundbortfall har behandlats samt hur det kan definieras, vad nyttan

är med att förutsäga kundbortfall och vilka typer av variabler som kan användas

för ändam̊alet. Vidare har grundläggande aspekter ang̊aende väglett lärande

och evaluering av maskininlärningmodeller diskuterats. Modellen slumpträd har

diskuterats mer ing̊aende, eftersom den valdes för den empiriska studien. Därefter

har bakgrundsdetaljerna, själva experimentet och resultaten presenterats. Med
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ett AUC-poäng p̊a 0,74 kan den slutliga modellen anses vara relativt bra. Detta

ger stöd för att en maskininlärningsmodell skulle vara användbar för att förutsäga

kundbortfall.
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