

Åbo Akademi

Cloud Migration to Azure Logic Apps: A

Case Study Using the Cloudstep Decision

Process

Marcus Skrifvars 38514

Master’s thesis in Computer Engineering

Supervisor: Marina Waldén

Åbo Akademi University

Faculty of Science and Engineering

2022

ii

Abstract

Owing to the growing popularity of cloud computing, many companies are moving

their applications to the cloud. Aveso OY is an IT company looking to migrate its

on-premises integration software to the cloud. Microsoft’s cloud-based integration

service Azure Logic Apps is chosen as the target platform. While migration

tutorials are abundant, models for analyzing the suitability of cloud services are

scarce. For the thesis, the Cloudstep migration decision process is used to

investigate the compatibility between Azure and Aveso’s application. Cloudstep is

relatively old and intended for general use. Therefore, its usefulness for modern

cloud services is investigated. After performing the decision process and creating a

small-scale pilot project in Azure Logic Apps, both the cloud platform and

Cloudstep are evaluated. On Azure, Function Apps is the superior option to Logic

Apps for Aveso’s integration application. Cloudstep has several benefits, namely

the clarity provided by profiles. Its weaknesses involve redundant steps and the

difficulty of creating an accurate cloud provider profile during the first iterations.

By encouraging testing before starting the analysis, Cloudstep better fits Azure.

Keywords: Cloud computing, cloud migration, data integration, Cloudstep, API,

Azure

iii

Preface

I want to thank my supervisor Maria Waldén for her valuable guidance during the

lengthy writing process. Furthermore, I want to express my gratitude to Sami Heino

at Aveso for providing me with an opportunity and resources to work on this thesis.

Marcus Skrifvars

Turku, 23 January 2022

iv

Table of contents

Abbreviations .. viii

1. Introduction ... 1

2. Cloud Computing .. 3

2.1 Definition .. 3

2.1.1 Cloud characteristics ... 4

2.1.2 Deployment Models .. 4

2.1.3 Service Models .. 5

2.2 Benefits and Disadvantages .. 5

2.3 Microsoft Azure .. 7

3. Cloud Migration .. 8

3.1 Migration Models ... 8

3.2 Migration Strategies .. 9

3.3 Cloudstep .. 10

4. Data integration ... 13

4.1 Definition and challenges ... 13

4.2 Extract Transform Load (ETL) ... 14

4.2.1 Extract ... 15

4.2.2 Transform .. 15

4.2.3 Load ... 16

4.2.4 ELT and Alternate Methods .. 16

4.3 Data Integration System Structure and Design 17

4.3.1 Data Integration Models .. 17

4.3.2 Point-to-Point Versus Hub-and-spoke ... 17

4.4 Integration types ... 18

4.4.1 Batch- and real time data integration .. 18

4.4.2 Virtualization ... 20

4.5 Application Programming Interfaces .. 20

v

4.5.1 Definition and Types ... 20

4.5.2 HTTP Protocol .. 21

4.5.3 Representational State Transfer ... 21

4.5.4 API Specifications ... 22

4.5.5 Common Formats (XML and JSON) .. 23

5. Case introduction ... 25

5.1 Company Background .. 25

5.1.1 Aveso ... 25

5.1.2 IFS ... 25

5.2 Current Integration projects .. 25

5.3 Azure Logic Apps ... 26

5.3.1 Logic App Workflow .. 26

5.3.2 Pricing ... 27

5.4 The Case ... 27

6. Cloudstep Decision Process .. 29

6.1 Define Organization Profile .. 29

6.2 Evaluate Organizational Constraints .. 30

6.3 Define Application Profile (Aveso Integration Framework) 30

6.3.1 Usage Characteristics .. 31

6.3.2 Technical Characteristics .. 31

6.4 Define Cloud Provider Profile (Azure Logic Apps) 33

6.4.1 Main Features .. 33

6.4.2 Solution Architecture .. 33

6.4.3 Security, Support, and Logging ... 35

6.5 Evaluate Technical and Financial Constraints .. 36

6.6 Addressing Constraints and Assessing Other Cloud Providers 37

6.6.1 Address Application Constraints ... 37

6.6.2 Change Cloud Provider ... 38

6.7 Define Migration Strategy .. 39

6.8 Pilot Project .. 39

vi

6.8.1 Essential Functionality .. 40

6.8.2 Creating a logic app ... 40

6.8.3 Selecting a Trigger .. 41

6.8.4 Connecting to an On-Premises Folder with a Gateway 41

6.8.5 Looping Through and Validating XML Files 42

6.8.6 Mapping Data .. 43

6.8.7 API Calls and Proxy .. 44

6.8.8 Hybrid Connection and Proxy Use in Logic App 46

6.8.9 Mapping Tables ... 46

6.8.10 Error Handling ... 47

6.8.11 Operating Costs of Pilot Project .. 49

7. Results and Discussion .. 51

7.1 Pilot Project .. 51

7.1.1 Positive Aspects .. 51

7.1.2 Negative Aspects ... 52

7.1.3 Unresolved Constraints and Goals for Next Iteration 54

7.2 Cloudstep .. 55

7.2.1 Positives ... 55

7.2.2 Negatives ... 56

7.3 Discussion ... 56

8. Conclusion ... 58

8.1 Further Research ... 59

9. Molnmigrering till Azure Logic Apps: en fallstudie med Cloudstep-

beslutsprocessen .. 60

9.1 Introduktion .. 60

9.2 Molntjänster .. 60

9.3 Migrering till Molnet .. 61

9.4 Systemintegration ... 62

9.5 Utförande och Implementation ... 63

9.6 Analys och diskussion .. 64

vii

9.7 Avslutning... 65

References ... 66

Appendix ... 70

viii

Abbreviations

API Application Programming Interface

AvIF Aveso Integration Interface

AWS Amazon Web Services

ELT Extract, Load, Transform

ETL Extract, Transform, Load

ERP Enterprise Resource Planning

HTTP Hypertext Transfer Protocol

IaaS Integration-as-a-Service

JSON JavaScript Object Notation

PaaS Platform-as-a-Service

REST Representational State Transfer, often synonymous with

RESTful APIs

SaaS Software-as-a-Service

SDK Software Development Kit

SLA Service Level Agreement

SOAP Simple Object Access Protocol

SQL Structured Query Language

TCP Transmission Control Protocol

URI Uniform Resource Identifier

XaaS Anything-as-a-Platform

XML Extensible Markup Language

1

1. Introduction

There is no doubt that cloud computing has gained tremendous popularity during

the last decade. The shift to cloud services has benefited small businesses and large

companies alike due to lower up-front costs and a higher level of scalability. By

transferring maintenance over to a cloud provider, the threshold for accessing high-

end hardware from anywhere in the world is now lower than ever. Working from

home has become a regular occurrence in the past few years, and cloud computing’s

benefits extend to remote working. Flexibility and greater security compared to

saving data locally on employees’ devices are only some of the advantages that

have become visible due to widespread remote work. Given the surge in popularity

of cloud services, it is easy to look at cloud computing through rose-tinted glasses.

Moving an existing application to the cloud is not an easy task, especially

considering the number of distinct cloud providers that are available, all with their

strengths and weaknesses. As seen in this thesis, it can be unclear what services to

use on the same platform. A topic that is ignored in many cases is investigating

whether an application benefits from cloud hosting, i.e., if cloud migration is

necessary at all.

The IT company Aveso currently manages several programs that combine data

from separate sources for various corporations. One of these so-called integration

services has been selected as a prime candidate for a cloud migration experiment.

There are numerous guidelines for moving applications to the cloud, both official

documentation by provider companies and paid consultation services by third-party

corporations. A common factor for most guidelines is that the platform’s suitability

is not questioned, and it is up to the customer to determine it in advance. In this

thesis, a cloud migration decision model intended for general contexts will be

utilized to analyze the appropriateness of the selected cloud platform.

In addition to investigating how well Aveso’s integration application works on

Microsoft’s cloud service Azure, the thesis’ main research question will concern

how valuable a general decision process will be in our specific integration case.

Analyzing existing migration suitability processes would allow pointing out

improvements that can be used for similar scenarios. As no public decision process

exists for Azure, the relevant aspects of the results could be applied for potential

models in the future.

2

The thesis will begin in Chapters 2 and 3 with an overview of cloud computing,

followed by descriptions of the main aspects of migrating an application to the

cloud. In Chapter 4, data integrations will be discussed, focusing on integration

structure and types. Chapter 5 will describe the case in closer detail, while the

migration process will be detailed in Chapter 6. In Chapter 7, the results of both the

decision model and the cloud migration itself will be analyzed. Finally, concluding

remarks of the thesis and suggestions for future research and improvements are

discussed in Chapter 8.

3

2. Cloud Computing

Until recently, the standard way for companies to run applications was to install

them on their hardware. This way of running services locally, on-premises, requires

the person or organization to either develop the software themselves or purchase it

from a company. Deploying the products to an existing computing infrastructure is

usually a costly project, requiring thorough planning, technical know-how, and

possibly additional investments to hardware capacity. The high expenses of scaling

up the business were the main barrier holding smaller companies from expanding.

During the early 2000s, an alternate solution, cloud computing, started to develop.

Introduced to the masses by Amazon in 2002, Amazon Web Services (AWS) was

the first large-scale public cloud service where the provider company supplies the

user with computing power and storage. Therefore, users can run applications

remotely on the servers without necessitating any active control. Cloud computing

has since gained traction, with industry giants such as Microsoft and Google also

providing cloud platforms. Spending on cloud services has increased yearly, with

forecasts predicting a growth of 23% to $332 billion in 2021 [1]. This chapter will

describe the main principles of cloud computing.

2.1 Definition

The National Institute of Standards and Technology (NIST) has the following in-

depth definition: “Cloud computing is a model for enabling ubiquitous, convenient,

on-demand network access to a shared pool of configurable computing resources

(e.g., networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service provider

interaction” [2] . Other definitions, including IBM’s [3], furthermore emphasize the

fact that the computing resources are accessed via the internet. The term “cloud”

stems from how external networks were illustrated, in that services are run

somewhere else than the user in a large cluster of objects. Cloud computing merges

data from several resources using hardware virtualization (see 2.4.2). The

virtualization of the computing hardware allows for dividing the resources amongst

several users. Cloud services are not synonymous with cloud computing, as they

refer to the business products delivered in real time over the internet using cloud

computing. NIST further defines cloud computing using what many call the 5-4-3

4

principles of cloud computing: Characteristics, deployment models, and service

models.

2.1.1 Cloud characteristics

NIST considers the following five characteristics to be essential for any cloud

computing model:

1. On-demand self-service: Computing abilities can be provided automatically

without control actions by humans.

2. Broad network access: Resources are available via the internet or local area

network, with low latency, supporting standard devices such as computers,

phones, and tablets.

3. Resource pooling: Multiple consumers can use the same physical

infrastructure simultaneously isolated from each other, and resources are

dynamically allocated based on demand.

4. Rapid elasticity: The cloud service should scale elastically, providing no

limit on capabilities for the user.

5. Measured service: The usage of resources is measured, allowing users only

to be billed accordingly. Payment models can range from “pay-per-use” to

subscriptions with a set price each month.

In Essentials of Cloud Computing, K. Chandrasekaran adds 14 requirements to the

list, specifically for cloud services [4]. Many of the requirements touch on the same

subjects as NIST’s characteristics. However, some notable additions are

interoperability and security: It is expected that the cloud environment has

established specifications. Additionally, cloud providers must strictly control

access to various resources.

2.1.2 Deployment Models

Cloud services can be deployed in a variety of ways, depending on the location and

structure of the organization. If the cloud infrastructure is exclusively for internal

use, it is private. A private cloud gives the company the benefits of cloud computing

(see 3.2), except that the IT department is still accountable for managing the cloud

[5]. This approach has advantages and disadvantages, as the company does not

depend on a third party (the cloud vendor) in case of outages while offering deeper

configuration options. The drawback is that running a private cloud requires

technological expertise not necessarily found in every organization. If access rights

are expanded slightly to allow shared use by several organizations with the same

5

interests, the term community cloud is used. Opposite on the spectrum is public

clouds, accessible to the general public. Finally, combining two or more of the

previously mentioned deployment models creates a hybrid cloud. Due to the high

popularity of public clouds, when people refer to cloud computing, they often

pertain specifically to public clouds. Contrary to private clouds, the cloud service

provider is responsible for managing and maintaining the system. As the user base

in public clouds is substantial, security concerns are even more paramount

compared to other deployment models.

2.1.3 Service Models

 According to NIST, there are three standard service models for cloud computing,

the first of which is Software as a Service (SaaS). Sometimes the SaaS service

model is referred to as cloud applications. This service model offers the highest

level of abstraction, supplying the consumer with applications running on the cloud

provider’s servers. The customer does not control or see the underlying

infrastructure unless the cloud provider has expressly provided configuration

settings for the application. With Platform as a Service (PaaS), consumers are

provided with a development environment, making it possible to create

applications. The PaaS vendors are responsible for managing the underlying

hardware.

Moreover, PaaS includes several sub-models, for instance, Data Platform as a

Service (dPaaS) and Integration Platform as a Platform (iPaaS) for data

management and integration flows. If a customer demands even more control of

the process, they can choose Infrastructure as a Service (IaaS). With IaaS,

consumers are in charge of the operating system, storage, applications, and

particular network elements, namely firewalls and virtual local area networks.

Using abstraction, low-level settings such as data partitioning are controllable using

APIs (see 2.5). Researchers use the term Anything as a Service (XaaS) as an all-

encompassing term to express the increased rate of selling technology as services.

Businesses are not confined to the three models proposed by NIST, and today,

specific utilities, including databases and security, can be sold as cloud-based

services [6].

2.2 Benefits and Disadvantages

The continual growth of the cloud computing market can be attributed to the high

number of benefits involved in the process. Many advantages have become even

6

more evident during the COVID-19 pandemic [7]. Resources on the cloud are by

design accessible at any time from anywhere in the world. In addition to the

necessary support for remote working, teamwork and overall collaboration are

enhanced by shared access to applications and documents. Cloud computing offers

a nimbler way to regulate system productivity compared to a traditional on-

premises solution. Users can quickly scale the used resources to match the demand

to reduce redundant overhead and, therefore, operational costs as well. Capital costs

also decrease significantly, as significant investments into hardware and licensing

fees are no longer necessary. As the user installs no physical hardware, the time to

deploy is likewise shortened, as is the time and work involved with updating cloud

applications. There is less need for in-depth knowledge in areas like server

installations, minimizing the requirement for specially trained personnel. Cloud

services can furthermore be deployed to users worldwide simultaneously.

A considerable drawback involving cloud computing is the requirement of a

constant, high-speed network connection for it to function. Even if the user’s

connection is stable, high traffic on a cloud server can still lead to high response

times. Even if the internet connection is not a problem, companies are still faced

with the issue of resource ownership and control. Ultimately, users are at the mercy

of the cloud vendors, with possible restrictions on the availability and more

complex configurations. The two most significant concerns for users moving into

clouds are security and data privacy [8]. For companies handling sensitive data,

storing information on the cloud can make it more susceptible to cyber threats such

as data breaches, data loss, and account hijacking.

It is worth bearing in mind that data safety provided by the cloud can, in some cases,

benefit a company, depending on its size and access to security infrastructure.

Smaller companies might prefer cloud providers’ data safety and backup options

with vastly developed security controls compared to their own. Ultimately, it is up

to the end-user to decide if they trust their on-premises solution or the cloud. The

level of accessibility of cloud services can also be either a positive or a negative

based on client requirements. All cloud providers offer service level agreements

(SLAs) for their services. SLAs are contracts between customers and service

providers where aspects such as availability and quality are agreed upon. SLAs can

have different tiers based on pricing, with compensations if the agreement is

broken. The guaranteed availability of 99.9% is expected for cloud services and is

sufficient for most companies, sometimes even better than what corresponding on-

premises options would achieve. Nevertheless, the resulting allowed downtime of

7

44 minutes per month can be a dealbreaker if uninterrupted access to the service is

critical.

2.3 Microsoft Azure

Microsoft’s cloud computing service Azure [9] was launched in 2010 as a PaaS

product, competing against rivaling cloud services Amazon EC (Elastic Cloud) 2

and Google App Engine. The Azure platform initially focused on four pillars:

computing services, blob storage, database services, and the Azure Service Bus, a

messaging service originating from BizTalk. Azure has since expanded, with the

platform now offering over 200 cloud services and products, including solutions

for Big Data, IoT and data integration. Relevant tools and applications on Azure

will be presented in Chapter 4. Actual subscriber amounts cannot be found on the

web, although in 2018, it was reported that Azure gathered 120,000 new

subscriptions per month while managing 95% of all Fortune 500 companies on its

cloud services. [10]

8

3. Cloud Migration

Because of the increased appeal of cloud computing, many companies have started

to migrate their technically outdated applications to the cloud. These are often

referred to as legacy applications, systems that work as initially intended but do not

allow for implementations of newer technology, therefore hindering growth and

interactions with modern systems [11]. Migrating a legacy application to the cloud

is not a straightforward procedure, and neither is it a “fix-all” solution that

automatically reduces costs and maintenance. Every aspect of the migration process

must be thoroughly examined in advance. The risks and benefits of the migration

should be assessed to ensure that the chosen cloud platform is a good match for the

application in question. It might even be beneficial to take a step back and look at

the entire organizational profile and end goals of the application to evaluate if cloud

migration is even warranted. This chapter will discuss cloud migration models and

strategies, followed by an example model [12].

3.1 Migration Models

Cloud migration models are structured methodologies to help users make informed

migration decisions and choose a cloud platform. Migration models have been

created in the realm of academics for public use but have also become a service for

specialized companies. Cloud providers, namely Microsoft and Amazon, have

published their migration models [13] [14] that are to some extent tailored to their

services but nevertheless valuable for general cases. Although migration models

can vary in business area and scope, they generally contain the following steps in

one shape or form: Assessment, planning, execution, validation, and operation.

Depending on what is emphasized in the migration model, steps can be missing,

combined, or further divided into more parts. The iterative approach is common for

all models: After the migration is executed, goals can be set for the next iteration

after evaluating the results.

The first phase, assessment, generally involves selecting a cloud provider,

reviewing the purpose of the migration, performing technology and business

analyses followed by a workload estimate. Migration to the cloud can be motivated

by a variety of triggers, including changes in capacity needs and cybersecurity

threats. Therefore, it is reasonable to investigate how significant the benefit of using

cloud computing is in concern to the trigger. Business analysis can be done using

9

metrics such as the return of investment (ROI). In contrast, an analysis of the

technology is helpful for discerning architectural and technological differences

between the on-premises application and the cloud environment. Once an

assessment has been completed, planning can commence. A suitable migration

strategy (see 4.2) is selected in this phase, and necessary steps to make it possible

are defined. Required changes to network infrastructure, code, and dependencies

are among the elements that must be considered. The migration can be executed

using the selected strategy when a plan has been established and approved.

Validation and optimization are continuous processes that start when the migrated

application has been deployed. Performance and functionality are compared to

expected results expressed in the assessment and planning phases. Improvements

and fixes can then be implemented iteratively. Finally, operating the finished cloud

service demands governance in monitoring and securing cloud resources.

3.2 Migration Strategies

A cloud migration strategy is a plan of how an application will be adapted to the

cloud. In the e-book Migrating to AWS: Best Practices and Strategies by Amazon,

six different strategies are presented, referred to as “the 6 R’s” [14]:

I. Rehost. According to Amazon, most applications are rehosted in large

legacy migration scenarios where implementation speed is crucial [14].

This method is often called “lift-and-shift” because the application can be

moved to the cloud without any changes to code or architecture. A basic

rehost does not automatically bring all the benefits of cloud computing, as

legacy applications are not optimized for the cloud, nor are they as scalable

as applications native to the cloud. Rehosting can be done via tools provided

by Azure and Amazon.

II. Refractor. The most expensive and time-consuming strategy is to modify

the application to better suit the cloud environment. Re-architecting can

require substantial changes to the application code and, therefore, more

testing, although it does outweigh the negatives by offering cost savings

over the course of time.

III. Replatform. Replatform or “lift-tinker-and-shift” can be seen as a middle

ground between the strategies above. Replatforming requires managing

scope so that the migration does not turn into refactoring and re-

architecting. Minor modifications and optimizations are done, but the core

architecture remains unchanged.

10

IV. Repurchase. Repurchasing reduces the effort and skill required to carry out

a cloud migration. A company can ignore its existing application and

instead use a cloud service with corresponding features.

V. Retire or retain. Some assets and services can be identified as no longer

valuable and can thus be retired and ignored completely. An organization

might not be prepared to migrate parts of its services and applications to the

cloud, instead preferring to keep them on-premises. In these cases, it is best

to reassess the situation later.

These migration strategies are not exclusive. For example, applications can be

easier to refactor and re-architect once they have first been rehosted and are run on

the cloud [14].

3.3 Cloudstep

Introduced by Patricia V. Beserra et al. in the conference paper “Cloudstep: A Step-

by-Step Decision Process to Support Legacy Application Migration to the Cloud”

in 2012 [15], Cloudstep is a cloud migration model designed to systematically

guide application developers and project managers in cloud adoption decisions.

Compared to contemporary migration models, Beserra et al. have emphasized the

careful assessment of various factors involved with the process that are either risks

or benefits. A large part of these factors can be found by identifying the

characteristics of the organization, the legacy application, and the selected cloud

provider.

As seen in Figure 3.1, the Cloudstep workflow is divided into nine activities. First,

the organization profile is defined, and its constraints are evaluated. Administrative

and legal characteristics are outlined, provided that they are relevant to the

migration. Essential questions such as the main motivations and benefits for the

migration will be answered here, in addition to researching if any laws restrict the

physical location of the data. The inspection of organizational constraints is done

here to pinpoint critical factors hampering cloud adoption at an early stage. IT

knowledge of the organization’s staff and the location of the data can be listed at

this point.

11

Figure 3.1: Cloudstep workflow [15]

The next step is to define application and cloud provider profiles. The former

includes identifying both usage and technical characteristics. The application’s

main features, user numbers, and patterns are analyzed for usage characteristics.

Aspects like technologies necessary for the application and performance

requirements are in turn considered when creating technical characteristics.

Features such as service models, SLAs, price, and safety are investigated for

the cloud provider profile. When both profiles are complete, they can be

compared to evaluate technical and financial constraints. Beserra et al. have

listed a set of seven constraints that can be used to judge the suitability of the

match between a legacy application and a cloud provider:

12

1. Financial: Cost restrictions of operation and performing migration.

2. Organizational: Requirements on the skill level of staff, legislation

regarding storing of data.

3. Security: How well do the cloud provider’s security mechanisms

conform to the organizations?

4. Communication: Restrictions on bandwidth, transfer rate, and latency.

5. Performance: Limits on capacity and quality of communication with

the cloud provider.

6. Availability: Are the offered SLAs sufficient?

7. Suitability: Evaluate necessary changes to the application to make it

suited for the cloud platform.

If there are no violating constraints, the organization can continue to the next stage,

where the migration strategy is selected and executed. If there are unresolved

constraints, three possible actions are possible depending on which profile violated

the constraints. The violating constraints can be addressed either in the legacy

application by modifying it and increasing migration scope or in the provider by

selecting another cloud service. The selected profile is created again after

addressing the issues in both cases. If the constraints are deemed unsolvable, the

process is aborted.

After the migration is performed, the process again checks for unresolved

constraints and loops back to the second step. This cycle functions as a feedback

loop and allows for iterative development of the cloud migration.

13

4. Data integration

Data integration solutions become useful when gathering data from several

independent sources. Consider the following simplified example:

You have created a website for finding movies to watch. A basic web scraper is

used to gather movies to your database, where the movie’s title, the director, and

the release date are stored. You quickly notice that users might want to access

additional information regarding the movies, such as actors, writers, and

composers. Adding these rows to your database proves to be a vast undertaking,

increasing the size of your data by a considerable amount and making it more

challenging to maintain. Furthermore, it has come to your attention that users would

like to see the reviews for each film on your website. You would also want to

provide links to where the film can be watched. This task turns out to be even more

laborious than the previous one; You find that using scores from a single website

is insufficient, so a combination of the scores from the five most popular review

providers is utilized to calculate an aggregate score. Links to watching the movie

are created by parsing all available streaming sites. The database is becoming

progressively more demanding to manage. You observe that the new columns must

be refreshed frequently. Review scores can change over time, and movies can

switch between streaming services or be removed entirely depending on what deals

have been struck with the distribution companies. You have realized that this way

of gathering and storing data is not feasible, and you are forced to rethink your

approach. You are gathering and combining a large amount of data from various

sources, with some values such as review scores requiring additional calculations

and formatting.

This example illustrates a case that would benefit from using a data integration

system. It is worth noting that real-life scenarios are more complex, with hundreds

of connections with a vast array of possible data formats.

4.1 Definition and challenges

As businesses grow, they also start producing more data. Massive technology

companies such as Facebook are notable for the amount of data their users generate

[16], and the growing number of mobile- and IoT devices fuel the surge of data

even further. Today the term big data is used, meaning exceedingly large data sets

that cannot be handled via conventional data processing due to their size [17]. It

14

has become beneficial for corporations to be intertwined by sharing databases.

Combining information from databases requires data to be processed in various

ways, as they can often be incompatible with each other in their original formats.

Data integration is a set of methods for allowing data providers to share data in its

most simple definition.

In “Principles of Data Integration”, AnHai Doan et al. give a more in-depth

description of data integration. According to Doan et al., the goal of a data

integration system is “to offer uniform access to a set of autonomous and

heterogeneous data sources” [18]. Heterogeneity signifies that the data sources

have been developed separately. They can run on different systems, and the

provided data do not have to be in the same format. Autonomy describes the fact

that the administrative rights to the sources can vary, meaning that the access rights

and times can change based on the provider. Doan et al. point out that the primary

use case for most integration systems is to access data via queries. However,

updating the data in the sources can also be necessary for some instances.

Doan et al. describe the challenges one must face when creating data integration

systems. They separate them into system-based and logical obstacles. System-

based obstacles express that making systems communicate is not easily achieved.

Even though their databases are in a standardized format, variations in

implementation can lead to discrepancies when data are finally combined. There

can also be disparities in how quickly the data sources can process queries. Logical

obstacles encompass variances in database schemata. There can likewise be

differences in how the table presents data. For example, one database stores users’

first and last names separately while another database stores them as one “full

name” field. This inconsistency makes matching the users between the two

databases more laborious. Lastly, Doan et al. name social aspects as the third and

final obstacle concerning data integration systems. Merely finding the data in

question can be a problem, as the provider might only store a portion of the data

electronically. Moreover, obtaining access rights to datasets requires cooperation.

Some companies might not want to share their data due to legal reasons, or their

data can give them a technological advantage compared to competitors.

4.2 Extract Transform Load (ETL)

The use case prevalent for all data integrations is to move data from one location

to another. Before the data are transferred to the end system, they often require

formatting to be in an appropriate format. The steps mentioned earlier have been

15

termed extract, transform and load (ETL). The concept is the base principle behind

all data integrations, with deviations in implementation resulting in a wide range of

different processes.

4.2.1 Extract

Before extracting information from a source system, it is imperative first to profile

the incoming data, that is., analyze and evaluate the format and content. Profiling

tools allow for the creation of validity checks for the source data. It is up to the

integration designer to handle invalid data. Incorrect extract data could be discarded

or corrected manually in the source domain or as part of the transform later in the

procedure. Further thought must likewise be put into how the extracted data are

accessed. The information is most often situated in another physical location or

organization, meaning that several network security layers need to be passed.

Servers that store the integration data often have an application security layer.

Fortunately, it is common practice for organizations to have separate networks for

internal and external activities, each one separated with a firewall. This separation

allows for easier access for the server(s) intended for public use without

compromising the rest of the company’s network. A standard way to call the source

system is using an API (application programming interface, see 4.5). The requested

data are exported or copied to a staging area that acts as an intermediate point

between the source and target platforms.

4.2.2 Transform

What happens in the transform stage largely depends on the target system’s

requirements. Basic transform processes perform tasks in a linear sequence. One of

the most basic procedures is transformations by mapping. When fields have a

consistent format in both systems, matching parts can be translated via

predetermined rules. Examples of mapping are altering the file format from JSON

to XML and changing the format of all Boolean fields to integers, such as from

“True” to 1.

Further data might also have to be gathered using the extracted data in

a lookup action. For example, the extracted data contain the user IDs, whereas the

target system expects to be supplied with usernames and emails. In this case, the

required information could be fetched by querying a user database using the ID as

an input. An expected value can also be based on several lookups, where the

retrieved data must be normalized or aggregated to be in the appropriate format.

Calculations and conversions using the extracted data can also be necessary if the

target value is derived from several extracted data fields. Other possible actions are

16

transposing and splitting of rows and columns. Finally, more complex data

validation can be performed in the transformation stage in addition to checking for

null values and removing duplicate rows.

4.2.3 Load

The final step is transferring the extracted and transformed data to the target system,

e.g., a database on a server. Target stores can often be accessed via API codes

supplied by the system vendor. The database in the end system has its validity

checks that the delivered data must pass. How data are added depends on the

specifications of the destination system. New rows can be added to database tables,

either instantly or incrementally. Some businesses might demand a complete

refresh of their tables once new data are available, essentially erasing all earlier

records. An audit trail can be employed to keep track of changes in the database,

while the performed operations of the integration software can be saved in a

separate archive.

4.2.4 ELT and Alternate Methods

Some modern cloud services have switched to an alternate version of ETL, where

the last two stages are executed in a reversed order. This method is called ELT

(extract, load, transform), and it involves loading the raw extracted data directly to

the destination system. The main prerequisite for the ELT procedure is that the

target database uses data lakes. These storage repositories act as the main staging

area for raw data to be transformed into structured data. Using ELT eliminates

staging in the extraction phase, which is a time-consuming part of the integration

process due to the slow f loading and reading data from the disk where it is staged.

The flexible nature of data lakes also allows for out-of-order field processing in the

transform stage, further improving the execution time. Data lakes started garnering

popularity in the mid-2010s, with companies like Amazon and Microsoft now using

the technology in their cloud storage solutions [19]. ELT is overall more suited

for data warehouses and data analysis and reporting systems. Integration speed is

crucial for data warehouses due to the large amount of data they process. This

version of the ETL procedure can be regarded as widespread in the industry as more

and more companies use cloud solutions that support this feature [20].

17

4.3 Data Integration System Structure and Design

4.3.1 Data Integration Models

In the book Business Intelligence Guidebook: From Data Integration to Analytics,

Rick Sherman illustrates all the stages of designing a data integration process [21].

Planning starts with a conceptual model where all data sources used in the

integration are approved. In addition to data services and databases, source systems

can include external or enterprise applications and unstructured files. The next step

involves creating a logical model. Here, the sources are again listed, this time on a

data set level, meaning that entity/table and file structure are specified. Knowing

the format of both the source database and extracted data allows for one or more

“success” paths to be set up for the data. Extracted data that do not meet the

necessary standards or lead to errors in the transform phase can likewise be directed

to a “reject” path. The physical integration model, all sources, targets, and lookups

are listed in the third step. On this component-based level, the optimal data flow of

the integration environment is also represented. In Figure 4.1, the logical and

physical models demonstrated by Sherman are combined, creating a somewhat

simplified model for demonstration purposes. Tables and components are clearly

defined, as is the order in which they are handled. According to Sherman’s best

practice methods, reject cases are also detailed for each integration component.

Figure 4.1: Logical and physical model using three sources

4.3.2 Point-to-Point Versus Hub-and-spoke

Conventional data interfaces, applications used to move data between systems, are

built using a point-to-point method. A system is connected to a single receiver with

18

point-to-point integration, signifying a 1:1-relationship. In the book Managing

Data in Motion: Data Integration Best Practice Techniques and Technologies [22],

April Reeve labels “hub-and-spoke” design as “the most significant and most

important design pattern for architecting real time data integration solutions.”

Reeve describes how managing traditional point-to-point interactions becomes

infeasible when the number of systems grows. If every system wishes to share data

via direct communication, the number of interfaces is (n * (n – 1)) / 2, where n is

the number of systems. The value can be seen as a worst-case scenario, as rarely do

all organizational systems communicate with each other.

Nevertheless, the exponential nature of the formula is evident, with ten systems

resulting in 45 interfaces, while 100 systems would require up to 4950 interfaces.

The term “hub” in hub-and-spoke can be misleading, as it does not refer to

centralized data hubs used in business intelligence. Instead, the hub and spoke

signifies a system in charge of communications between all systems. Rather than

saving data in a repository, hub-spoke architecture requires all data passed among

systems to be transformed into a shared format. The typical format is called the

canonical language and must be thoroughly planned to support all systems. Using

hub-and-spoke design reduces the number of interfaces to the number of systems,

n. Only one new interface is necessary for each system, which translates the data to

the canonical language, instantly making it compatible with all other systems.

4.4 Integration types

4.4.1 Batch- and real time data integration

There are two predominant approaches to data integrations: batch and real time.

Both have their strengths and weaknesses, making them suitable for distinct

situations.

Batch integrations, also called asynchronous integrations, involve grouping data

and scheduling the transfers according to a predetermined schedule, such as daily

or weekly. The layout and format of the extracted data would be agreed upon in

advance between the two parts in order to maintain compatibility. The organization

from which the data are sent does not require an instantaneous response for its

process to finish. This method of sending data in “batches” is better suited for

processing large volumes of data sent consistently. An example of batch

integrations is the history page on bank accounts, as it can take numerous days for

19

credit card transactions to appear on the service. In contrast, real time or

synchronous integrations are used in systems that require a response without delays.

Real time data interfaces wait for the transaction to finish in all systems involved

before terminating the process. Data sent in synchronous interfaces are generally in

the form of compact messages. For instance, when purchasing an item from an

online store, the data interface waits for the user’s bank account to be updated on

the bank service and the order to be confirmed and saved in the online store’s

database before proceeding. Inconsistencies between the two systems could lead to

critical errors. The customer also expects an immediate response to ensure that the

purchase was successful. Real time systems have specified constraints in response

time and responsiveness. Some organizations want to process data quickly but do

not have any precise requirements, with some delays being acceptable. These

interfaces are near-real-time systems and involve response times in the range of

minutes compared to seconds (or below) in conventional real time interfaces. Batch

integration is the most cost-efficient type, making it the preferred method to handle

non-critical data. The system designers can adjust the integration period according

to their preferences, with a refresh interval of one hour theoretically being possible.

The variance in implementation can blur the lines between the integration types.

Ultimately, the difference lies in the time constraints placed on the data interface

and the level of importance they have on the system’s overall functionality.

When managing networks with many data interfaces, the terms loose and tight

coupling become relevant. The concepts concern how independent the components

in a system are related to each other. It is best to strive for loose coupling while

designing interactions between applications and organizations. Loose connections

allow a system to fail or be replaced without impacting other systems. According

to Reeve in her book Managing Data in Motion [22], the API must be clearly

defined for one side of the interaction for loose coupling to work in practice.

Knowing the methods for all actions, such as requesting functions and storing

information for the API, makes replacing one of the systems involved in the

interaction achievable. Designing real time data interfaces to allow for applications

to be unavailable for a short period essentially makes the interface near real time

instead. Batch integrations require tighter coupling as data transfers with large

volumes are not necessarily performed via APIs. Changes in either of the systems

can require planning from both parties. The coupling of interfaces can, in some

cases, be decreased by using standard formats like JSON and XML (see 4.5.5).

20

4.4.2 Virtualization

A data management approach that is particularly prevalent in business intelligence

(BI) is virtualization. In essence, data visualization is a subgroup of the data

integration concept, employing several integration methods to present all data

sources in a consolidated form. As the virtualization layer hides the sources for the

consumers, applications can use all provided data without worrying about aspects

such as the physical location of the data, database languages, and API definitions.

Additionally, using caching mechanisms, virtualization products can reduce the

workload contention that a data consumer can cause on data stores when running

resource-intensive queries. Data integration and virtualization are not

interchangeable terms. While integration is almost always a part of the

virtualization process, there are cases where it is not used, for instance, if all data

comes from the same data store. The main difference between traditional ETL

processes and virtualization is that while the former physically move data from

several sources into a centralized data store from where it is accessed, the latter

pass on the queries to the source systems without moving any data. [23]

4.5 Application Programming Interfaces

4.5.1 Definition and Types

An application programming interface, often referred to in its abbreviated form

API, is one of the most common ways for software applications to communicate

and transfer data between each other. APIs can be perceived as the combination of

two components. The first component is the interface, which is visible to external

systems. This part contains the specifications to all interactions, often conveyed

using internet protocols for web APIs, namely HTTP (Hypertext Transfer Protocol)

and standardized formats (see 2.5.5). Specifications usually come in the form of

documentation. In addition to describing the interface’s functionality, the

specifications can also contain technical and legal constraints such as rate limits

and branding limitations. The second component of an API is the implementation

that provides functionality by handling the requested tasks. The strength of APIs

lies in their simplicity for users. By virtue of abstraction, developers are only

exposed to relevant information, requiring no knowledge about the underlying

operations and structures. There are two principal types of APIs: private and public.

Both function in identical ways, and only their service goals and legal agreements

distinguish them from each other.

21

Private APIs are used internally by staff and partners in a company. In these

instances, the API acts as a front-end interface to access data and application

functions in the back end. Private APIs are inherently restricted and thus necessitate

contracts for partner companies to access them. Some have further differentiated

in-house and partners’ APIs by creating additional partner APIs. This type is

commonly used in integration scenarios where two parties want to share data.

 In contrast, public APIs offer open access to internal resources. Public APIs are

accessible to anyone and do not demand any contractual arrangements. Third-party

applications can therefore use their features without any licensing fees. APIs can

also be separated by use case, ranging from communicating between database

management systems and applications (Database APIs) to managing services on a

kernel-level (Operating systems APIs). The most common class is web APIs,

referring to both web servers and browsers [24] [25] [26].

4.5.2 HTTP Protocol

Web APIs primarily use the HTTP application layer protocol to deliver requests

and responses from web applications and servers. An HTTP process starts with a

request containing a method, URI (Uniform Resource Identifier), and the protocol

version. The HTTP methods, also known as verbs, are used for specific actions,

such as GET for retrieving a resource and POST for creating a resource. After the

request has been processed on the server, the client receives an HTTP response that

contains a status code used to diagnose errors, the protocol version, and possibly a

body containing requested data. Several API protocols and architectural styles

utilizing HTTP have been created to standardize the data exchange between web

services. One example is SOAP (Simple Object Access Protocol), used to exchange

data via XML. Lately, the REST (Representational State Transfer) architectural

pattern has gained popularity. Web services that follow the architectural constraints

of REST are called RESTful APIs and have, in some cases, become synonymous

with web APIs in general. [27]

4.5.3 Representational State Transfer

REST was first introduced in the landmark Ph.D. dissertation “Architectural Styles

and the Design of Network-based Software Architectures” by Roy Fielding in 2000

[28]. In the dissertation, Fielding uses the term resource as an abstraction for any

information, be it a file, image, or physical person. A resource can have several

formats, called representations. For instance, a server could return an item in either

JSON or XML format. Resources are identifiable by unique URIs in a format

readable for humans. Using the URIs, resources can then be manipulated via HTTP

22

verbs. These manipulations should always be atomic, independent of other

processes. Partial resource updates are prohibited in REST, so when updating a

resource’s field, its entire state must be sent in the request. The website

restfulapi.net [29] lists the six guiding architectural principles of REST; here, the

five mandatory rules are recited in a more concise format:

1. User interface concerns must be separated from data storage concerns.

2. Session state is kept on the client. Therefore, all requests to a server must

contain all necessary information to interpret it.

3. Response data must be labeled either cacheable or non-cacheable. If the

response is cacheable, it can be reused for identical requests.

4. The interface must be uniform. There are four constraints:

a. Identification of resources is made using URIs.

b. Resources are manipulated through HTTP methods and URIs.

c. Messages are self-descriptive and contain all information to process

them.

d. Hypermedia is the engine of the application state. In a genuine

RESTful API, all resources carry an explicit or implicit address,

allowing REST clients to discover all resources using hypermedia

links contained in the response’s content.

5. Place constraints on component behavior to allow the architecture to be

composed of hierarchical layers.

Aside from the implicit benefits of using a uniform interface, the significant

advantages of following REST conventions are increased performance, visibility,

and reliability. The separation of client and server allows for tasks such as scaling

and editing components to be done independently.

4.5.4 API Specifications

OpenAPI is the most common interface description language (IDL) used in

documenting RESTful APIs. The most popular tools used for implementing

OpenAPI specifications use the name Swagger. In addition to the API’s name and

version, the OpenAPI specification defines all operations in the interface paired

with sample responses. The JSON-formatted OpenAPI specifications are suited for

developing new APIs and interacting with existing ones. Swagger developers have

added several tools and subprojects, such as Codegen, which generates server stubs

23

and client SDKs based on OpenAPI definitions. Swagger-UI also visualizes the

data on an interactive web page, providing documentation and interaction. A

screenshot of the API specifications for the IFS REST API used in this thesis can

be found in Appendix A. The OpenAPI file is displayed using SwaggerHub [30].

4.5.5 Common Formats (XML and JSON)

The two most common formats used when requesting and receiving data using APIs

are XML (Extensible Markup Language) and JSON (JavaScript Object Notation).

Both formats are language-independent, allowing them to be used in any

programming language. XML files are based on nodes, where the node’s name

describes the attribute, while the data inside the node display the value. Nodes have

an opening and closing tag, represented using “<” and “>” symbols. Instead of tags,

JSON files use key-value pairs separated by commas to represent data. Tying this

subject together with the Chapter introduction, the code snippets in Figure 4.2 are

examples of how fetching movie information would look like using the two

formats.

The formats have distinct advantages. JSON is deemed by many to be simpler to

use due to its smaller file size and higher readability for humans. However, unlike

XML, JSON is not self-describing, as the former usually includes links to its

schema in the header, allowing for easier validation of the document. In addition to

supporting metadata and mixed content, the formatting of XML files enables

browsers to render the documents in a discernible pattern. It is important to point

out that XML and JSON have different purposes. Compared to JSON, XML is a

data format and also a language. XML is used for document markup, while JSON

is used for structured data interchange where metadata is not required. JSON is the

standard for transferring REST data, making it a hugely popular format. XML is

still used for generic API calls such as SOAP. [27] [31] [32].

24

Figure 4.2: Files containing information for 2 movies, XML (left) and JSON (right)

25

5. Case introduction

5.1 Company Background

5.1.1 Aveso

This thesis has been done in collaboration with Aveso Oy, which is also my current

place of employment. Aveso is an IT company based in Turku, currently employing

roughly 20 consultants in data management and integrations. Since its foundation

in 2014, the company has released several software solutions and worked with

customers in telecom, aviation, finance, and manufacturing on numerous projects.

Aveso Data Studio is their most recent product, which controls master data and data

quality processes. Furthermore, as Aveso is a certified partner with IFS, many

business cases revolve around installing, upgrading, and managing IFS software

for customers.

5.1.2 IFS

IFS is an international software company that develops and delivers enterprise

software resources. The company was founded in 1983 in Sweden and has since

expanded to offer its suite of products, IFS Applications, worldwide. Some of the

main elements of the IFS Application suite are enterprise resource planning (ERP),

used to manage business processes, and enterprise asset management (EAM)

solutions. The newest version of IFS is IFS Applications 10, employing the new

Aurena user interface. As of 2021, IFS has 4,000 employees, 10,000+ customers

and 1,000,000+ users of its solutions [33].

5.2 Current Integration projects

Many of the integration projects developed by Aveso specifically revolve around

IFS ERP solutions. Traditionally, ERP data have been retrieved and added to IFS

using PL/SQL package procedures. Datasets are collected from one location, such

as XML files inside a folder on a customer’s server, then parsed, processed, and

transferred to their IFS system. Many integration services are installed on-premises

on the same host as the IFS ERP. Lately, Aveso has been investigating new ways

to modernize its integration projects. An iPaaS-based solution would allow for the

use of state-of-the-art features and could seem more enticing to customers. A cloud

service that has often been mentioned in discussions with clients is Microsoft

Azure, specifically its integration platform, Logic Apps.

26

5.3 Azure Logic Apps

Azure Logic Apps is Microsoft’s iPaaS solution, first released in 2016 as a part of

Azure’s integration suite. The platform is used to integrate both on-premises and

cloud services and had a reported user base of 40,000 as of September 2020.

Microsoft has offered regular service updates ever since, such as support for Visual

Studio Code and increased hosting alternatives [34].

5.3.1 Logic App Workflow

Logic Apps Designer offers a visual approach to creating integration workflows

without writing code. Every process is based on a trigger, followed by a series of

steps containing processes or tasks. In Figure 5.1, an example workflow is

displayed.

Figure 5.1: Basic Logic App workflow that runs once every hour, fetching data from an

API and sending them to a specific email address

The first step of a logic app is the trigger (1), the condition that prompts the

remaining actions (2,3) to run. Actions are separated into two types; Built-in

operations (2) are run natively inside the logic app and are therefore not associated

with any specific service. Examples of this are conditional operations, the creation

of variables, and HTTP requests. Conversely, managed (further separated into

standard/enterprise) connectors (3) allow creators to access apps and systems

separate from the workflow process. Many of Azure’s services and Microsoft’s

products can be accessed through these connectors, in addition to supporting

actions for programs such as Oracle DB and IBM. For example, Logic apps can

27

detect emails from Office Outlook or read files from an on-premises file system

using data gateways. Lastly, Microsoft allows the community to create custom

connectors for their logic apps [35] [36].

5.3.2 Pricing

Azure Logic Apps offers numerous pricing options. When using the standard plan,

users are billed by the hour, separately for CPU and memory usage. Another option

is the consumption plan, where the user is billed based on the triggers and actions

employed inside the logic app workflow. The price per execution is separate for

actions, standard connectors, and enterprise connectors, the latter being the most

expensive. When using the consumption plan, there is also a data retention fee.

Lastly, a dedicated integration service environment can be set up to secure

connections to applications in addition to added features. The dedicated service

environment is the most expensive option by a significant margin, even when

selecting the cheapest alternative out of the two available service environments.

An integration account must also be created to access specific capabilities, such as

business-to-business connectors. Microsoft offers a pricing calculator on their

website to help with selecting the appropriate logic app plan and features for users’

projects. By estimating the number of connector executions per day in addition to

integration service environments and integration accounts, upfront and monthly

costs can be projected. [37]

5.4 The Case

One notable feature introduced in IFS Applications 10 is the support for API calls,

meaning that ERP data management is no longer exclusively done via PL/SQL

package procedures. Thus, Aveso has decided to use API calls in some of its

integrations. The change raises the question of how Aveso’s current IFS ERP

integration services would have to be modified to allow these HTTP requests.

Implementing the new feature would require modifications to code to run using

existing integration service logic. Considering that changes are inevitable, now

would also be an appropriate time to investigate a possible cloud migration of the

service. Azure Logic Apps has been deemed a prime subject for potential migration.

Before any actual migration is done, it is essential to ensure that Logic Apps meets

the needs and demands of Aveso’s projects. Cloudstep has been chosen as a

decision process. Used to examine factors such as cost and performance and

28

identify constraints, Cloudstep allows for a well-informed decision regarding

whether cloud migration is beneficial for the legacy application.

The subject of this thesis is to use Cloudstep to investigate the suitability of a

migration to Logic Apps by creating profiles of Aveso and Azure to identify

constraints. A small-scale “pilot” project is carried out when the process is finished,

as suggested in the Cloudstep paper. After following all the steps of the decision

process, the suitability of Azure will be assessed. Moreover, the Cloudstep process

itself will be examined, analyzing its strengths and weaknesses. Any suggestions

for improvements to the model will be listed. If any pitfalls are detected, they will

be listed so that others facing similar migration decisions can avoid them in the

future.

29

6. Cloudstep Decision Process

This chapter will apply process activities defined in the Cloudstep paper [15] to the

Azure Logic Apps migration. The paper contains several illustrative questions that

can be answered for each phase to assist readers. Many of these questions will be

used as a guideline in the forthcoming steps. Although Cloudstep stages are

described only once in this chapter, many have been iterated several times, notably

the application profile. The description and creation of multiple profiles in separate

iterations have been omitted. Changes caused by constraints are instead pointed out

when relevant for each step.

6.1 Define Organization Profile

Legal and administrative attributes are detailed in the organization profile. First, it

is vital to determine why the company is considering migrating the cloud. A large

part of the driving force behind a cloud migration is the increased popularity of

cloud services, which has led to competitive prices and perpetual development in

the form of optimizations and new features. Aveso staff has personally heard

numerous customers mention that Azure is their current integration platform of

choice, making Logic Apps relevant for further research. Aveso’s current

integration services are only installed on-premises, which some customers can

perceive as legacy software. In a progressively more competitive market, it is

essential to offer up-to-date solutions in order to entice new business partners. As

Azure is a well-established platform in the industry, expanding Aveso’s integration

service portfolio to include Microsoft-hosted options would benefit the

organization by attracting many possible customers.

Aveso’s computing resources are divided between servers managed on-premises

and deployments on cloud platforms. Likewise, there is no uniform method for

developing, testing, and deploying services and software products. Typical projects

are, however, generally developed locally before publishing them on a customer’s

remote server or cloud service. It is worth noting that several of Aveso’s projects

are either published on Azure or use Azure’s tools. This means that while the

organization’s IT professionals have no experience with Logic Apps integrations,

they are nevertheless familiar with the Azure ecosystem and many of its features.

In addition, Aveso’s personnel are experienced in the field of data integrations in

general, meaning they most likely possess the proficiency needed to develop and

30

maintain workflows using a new platform. Monthly meetings are held in the

company to review the staff’s competence regarding new trends in the business. If

shortcomings are found in an area, a team member will research the subject. The

moderate staff size of Aveso means that large-scale projects must be planned well

in advance to reduce the risk of the company becoming shorthanded. One of the

questions brought up in the Cloudstep paper is if the physical location of the

organization’s data and applications are in some way restricted by law. No evidence

of any legal restrictions has been found specifically on the physical aspect of data

storage. However, the General Data Protection Regulation (GDPR) rules

undoubtedly apply to Aveso. Physical restrictions could potentially be determined

in project contracts between companies on a case-to-case basis.

6.2 Evaluate Organizational Constraints

Based on the organizational profile that has been created, no organizational

constraints have become apparent at this stage. Potential restrictions listed in the

Cloudstep paper, such as IT staff fearing dismissal or reduced governance over IT

resources, can widely be ignored as Azure cloud services are already ingrained in

Aveso’s current solutions. The risk of unauthorized access to data stored on the

cloud is a topic without a definite answer. It can be debated whether a global

technology leader’s security system is more secure than the server room of a

commercial building. The accessibility of data from outside the organization can

place some constraints on the possible cloud-based alternative. As legacy

applications are installed on-premises in the same location as the input folder and

IFS installation, their way of accessing the ERP is straightforward. For a cloud

service to access the IFS ERP not located in the same endpoint, the complexity of

the necessary changes depends on the server’s configuration. Firewalls and security

certificates are areas where modifications can be required.

6.3 Define Application Profile (Aveso Integration

Framework)

The subject of analysis is the batch integration interface Aveso Integration

Framework (AvIF). AvIF interfaces work similarly to Windows Services and are

run as background jobs. Many of Aveso’s IFS ERP projects have used this method

of deploying and running code. The application profile is split into two sub-

activities: Usage- and technical characteristics.

31

6.3.1 Usage Characteristics

The main feature of the AvIF application in question is to read XML files from a

folder, parsing their contents and adding the data to the customer’s IFS ERP system.

Data is modified according to a mapping scheme that has been created per the

client’s requirements. Some values are reformatted or concatenated, while others

are fetched from separate mapping tables to match predefined values. The

integration service creates part catalogs, inventory parts, purchase parts, and sales

parts, all using values from the same XML file. By modifying the config file in the

service’s install directory, users can set the file paths from where XML files are

retrieved and processed and where invalid files are moved. The AvIF interface runs

on a set time interval, which can also be modified in the config file. The user can

select the interval in seconds, minutes, or hours, along with the possibility to run

the service at a specific time of the day. Several AvIF-interfaces can be deployed

on the same location to handle separate tasks. Services are controlled via an

interface called AvIF Manager, where they can be started, stopped, and reloaded.

Additionally, AvIF Manager can view logs generated by the services. Logs created

by AvIF are also saved in Windows’ Event Viewer.

As the integration services are installed on the same physical location as the

customer’s IFS ERP, they can only be accessed remotely, thus requiring the

creation of Windows users specifically for integration admins. By virtue of being a

windows service, the AvIF integration does not require any interactions by the user

once the service has been started in AvIF Manager. The integration service’s usage

patterns depend on the selected poll interval, albeit it is executed consistently. Most

ERP handling is not time-critical, and therefore scheduling intervals below an hour

are uncommon. While AvIF runs 24/7, most data are handled during office hours

when people create parts. The cost to operate and maintain AvIF is comparatively

low because the services are installed on preexisting hardware hosting the IFS ERP.

Slight modifications to the code can be done quickly, although changes to the input

XML file structure can demand rewrites of specifications and mapping tables. The

integration is expected to handle between 10 and 100 XML files each day.

6.3.2 Technical Characteristics

All AvIF interfaces are written in C# and are developed specifically for Windows

hardware. The current AvIF integrations are running on a Windows Server

operating system. No release version has been targeted explicitly, meaning that the

interface can also be run on various Windows operating systems. No minimum

hardware configurations have been specified, although a minimum RAM size of

32

4GB is recommended, a limitation that should not be an issue for modern servers.

Interfaces are coded and built internally by Aveso before deploying them to the

customer’s environment, as are any subsequent updates created for the service. The

interface is limited to the server’s private computer network, called intranet, and

accessing the service from another location requires a Remote Desktop connection.

There are two separate AvIF services installed on the customer’s server: part

handling and product data management, the former being the only one investigated

for cloud migration for now. A simplified architecture model for the integration

interface can be seen in Figure 6.1. The part handling service loops through all

XML files found inside the input folder and looks for the root node called

<objectArray> for each one. If the node exists, there are data in the file, and the

service can proceed to the next step. Now, each <item> node is parsed separately,

validating the contents and then modifying them to match the expected formats for

IFS. Part catalogs, inventory parts, purchase parts, and sales parts are either created

or updated in IFS in the specified order. Some steps, such as purchase part handling,

can sometimes be skipped according to rules in the mapping table row for the

inventory part type. Each instance is handled in a separate C# method where data

are transformed and finally sent to the IFS ERP via an SQL call. The AvIF interface

that is being migrated uses .NET version 4.5. The .NET framework is utilized to

connect to the IFS ERP and .NET runtime to execute the service itself. Concerning

data handling, the service uses the LINQ interface to handle XML files. The IFS

ERP is an Oracle database, and SQL calls are done using

Oracle.ManagedDataAccess framework drivers.

Figure 6.1: AvIF Solution Architecture

Regarding quality-of-service requirements, the service is expected to run

continuously, executing systematically according to the predetermined time

33

interval. If any errors occur during the XML validation or data transformations, it

is logged for the Windows Event Viewer. Additionally, a row is added to an error-

logging table created specifically in IFS for the service.

6.4 Define Cloud Provider Profile (Azure Logic Apps)

6.4.1 Main Features

As Logic Apps offers many features and services due to its interconnected nature

with other Azure products, the scope has been limited to only present features

relevant to the solution. Logic Apps is just a part of the Azure Integration Services

suite, with Azure Functions being the sole additional component used in our

integration case. Microsoft’s iPaaS-solution allows users to run logic applications

locally and on-premises in addition to on Azure. Aside from the visual Logic Apps

Designer tool, processes can be developed using Visual Studio Code on Windows,

Linux, and macOS. Estimating the total price for the cloud-based integration can

be difficult due to the potential use of several Azure services with separate costs.

For the logic app, the consumption pricing plan was selected for the current

integration as it offers the best value for the project scope. It is expected that the

total executions for one month should equal a price below 10 euros when using the

prices per execution listed in Table 6.1.

Table 6.1: Consumption plan pricing as of October 2021 [37]

 Price Per Execution

Actions 0,000022€, First 4 000 actions free

Standard Connector 0,000108€

Enterprise Connector 0,000857€

6.4.2 Solution Architecture

In Figure 6.2, the architecture of an Azure iPaaS solution for part handling is

presented. The logic app is where the main application logic and workflow are

located. The logic app is where the code from the legacy integration must be

replicated using the Logic Apps Designer. Many aspects of the original AvIF

service can be reproduced using standard actions, such as string concatenation.

Some operations, notably API calls to an on-premises ERP and file reading, require

more advanced methods. An on-premises data gateway is combined with a File

System connector as a trigger for the logic apps workflow to detect and read files

from a folder on a server. Microsoft’s cloud services can access data that would

34

otherwise be unreachable externally by installing an on-premises data gateway on

the server where the input folder is located. The gateway is run in the background

as a Windows service and allows multiple users to connect to the same data source.

Figure 6.2: Azure Logic Apps solution architecture. NB: The input folder does not have

to be situated in the same location as IFS ERP

A proxy server can be required (see 6.5 and 6.6) when API calls are done from a

logic app to the IFS ERP located on-premises. The proxy is realized by creating

a Function App for our service, containing Functions corresponding to each API

call to the ERP system. Azure functions are used to build serverless apps by

triggering user-created code based on events in Azure or third-party services.

Functions can be created locally, and Microsoft offers support for many languages,

for instance, C#, Python, and JavaScript. In this case, the functions were written in

C# using Visual Studio’s built-in Azure Function feature. Inside the Functions, API

calls are executed using ASP.NET’s HttpClient package. Once the functions are

published to a Function App in Azure, they can be accessed inside a logic app

workflow. From the logic app’s perspective, the function is selected along with its

input parameters. All API calls occur inside the Functions, allowing the logic app

to receive the function’s result data and proceed to the next step. In order to access

35

on-premises services, such as the IFS ERP’s API, the Function App must use a

Relay Hybrid Connection.

Azure Relays allow services in a network to be visible to the cloud without opening

any ports in a firewall. Hybrid connections are a new feature to the relay services,

offering the possibility to send requests and receive responses using HTTP and

WebSocket protocols. For a hybrid connection to work, a relay agent must be

deployed to a location where both Azure and the needed endpoint can be contacted.

In this case, the Hybrid Connection Manager (HCM) is installed to the on-

premises server, working as the relay agent. HCM connects to Azure Relay using

port 443, while the application (in our case, the proxy Function App) also connects

to the relay. TLS 1.2 is employed for connection security, whereas shared access

signature keys are utilized for authorization and authentication. Function Apps are

billed separately from logic apps. Hybrid Connections are only available in the

premium plan, to which prices can be seen in Table 6.2. There are no execution

charges in the premium plan, and the user instead pays based on memory allocation

and the number of core seconds. The function app can scale its instances according

to load, but at least one instance is allocated on any occasion. If a Function App

proxy is required for the logic app, the prices of actions and connectors found inside

the logic app become insignificant compared to the monthly fee of over 100€ that

is paid for the premium Function plan.

Table 6.2: Premium plan pricing for Function Apps as of October 2021

[38]

Meter Price

vCPU duration 105.131080€ vCPU/month

Memory duration 7.491377€ GB/month

6.4.3 Security, Support, and Logging

When a logic app is created, the deployment region can be selected out of the 20

regions around the world where Azure operates. The closest options for Finland are

North and West Europe, with data centers in Ireland and the Netherlands,

respectively. Microsoft’s SLA guarantees the availability of logic apps to be 99.9%.

If the Service Levels are not met, customers will be granted Service Credits used

to pay monthly fees. Azure’s infrastructure complies with pivotal reliability and

security standards NIST SP 800-53 and ISO/IEC 27001:2013 [39]. Microsoft

currently employs over 3,500 security experts and places considerable investments

36

into cybersecurity research. Some examples of steps taken by Microsoft to increase

security are the isolation of Microsoft- and customer networks for protection

against attacks and built-in mechanisms to guard services against distributed

denial-of-service (DDoS) attacks. The person or organization responsible for

managing the security of the application service varies depending on what features

are activated in the Azure subscription. For instance, Azure Defender is a tool

integrated with Security Center that offers threat protection for Azure workloads.

Web Application Firewall and Application Insights are other services that can be

selected for Azure,

Alternatively, the logic app can be added to an Integration Service Environment

(ISE) to isolate it using an Azure virtual network. The pricing of 0.97€-6.02€/hour

makes this feature outside the current integration budget. Application Insights can

furthermore be used to analyze the executions and logs of Logic Apps and

Functions. If users want to examine earlier logic app runs, they can be viewed in

the workflow designer window. The executions list displays the execution status of

the latest logic apps runs if the user only wishes for a quick overview of process

executions.

6.5 Evaluate Technical and Financial Constraints

The most apparent restrictions in the Azure Logic Apps integration involve

communication constraints, specifically the lack of support for self-signed

certificates in HTTP requests. For customers whose servers are using SSL

certificates, this is a non-issue, albeit, for others, this necessitates the purchase of a

certificate, the use of a proxy, or the use of an integration service environment to

circumvent the restriction. These options tie into the next area of constraints,

financial, which are therefore highly dependent on the customer’s existing server

infrastructure. Although they can be relatively inexpensive, it can be seen as

unreasonable to expect the customer to purchase an SSL certificate for their

server(s) for the sole reason of being compatible with Aveso’s solution. Therefore,

the approach involving certificates is omitted in this case. Using an ISE would add

support for self-signed certificates, but for Aveso’s clients, the monthly price

increase of at least 700€ would be over the budget. This leaves some sort of proxy

solution as the only viable option. To summarize: If the customer’s servers use SSL

certificates, the cost of an integration service using logic apps will be low, with a

monthly cost in the range of 5-10€. For the rest of the customers, most of the

integration’s expenses will go to creating and maintaining a proxy.

37

Next up are organizational constraints. Aveso’s staff are familiar with many of

Azure’s services and would undoubtedly have the skills necessary to manage a

logic apps integration. Comparing Figures 4 and 5 demonstrates that the iPaaS-

solution would undeniably be more complex, especially if a proxy system is used.

Managing both a logic app and a proxy is a sizable endeavor compared to the

comparably simple legacy service. For example, one small change in the IFS ERP

API could require code adjustments and redeployment of the Azure Function App

in addition to updating the Logic App. There are no glaring issues regarding

security constraints when migrating the legacy application to Azure. Aveso

already hosts several of its products via Azure, and there have not been any

problems concerning the security of customers’ data compared to on-premises

solutions. Nevertheless, this aspect should be discussed with clients in advance to

verify that they approve of Azure’s security measures. Performance constraints

are not as critical to the integration service as availability constraints. As long as

the service is run consistently, processing speeds have minimal impact. The only

requirement is that the integration process must finish its execution before the next

scheduled run is started. Azure’s SLA of 99.9% availability, corresponding to

maximum downtime of 1m 26s each day, makes it highly unlikely that a process

run once or twice every hour is impacted. What is more, if one scheduled run is

skipped due to Azure downtime, the XML files can be handled in the subsequent

execution. No problems were discovered when evaluating suitability constraints,

that is, changes needed for the application to make it fit the migration.

6.6 Addressing Constraints and Assessing Other Cloud

Providers

6.6.1 Address Application Constraints

There are no severe constraints that require a change in migration scope. In our

case, the issue involving self-signed certificates in API calls will be handled using

Azure Functions and a Hybrid Connection. The Azure Functions are coded in C#,

resembling a legacy application. All HTTP requests used in the integration are

executed through the methods defined in these functions. Using a proxy depends

on the client’s infrastructure, so financial constraints are highly variable. There is

no decisive way to address these constraints, and they should instead be evaluated

on a case-to-case basis. For the migration in this thesis, using Function Apps is

required, and its operating costs are within the budget for the project.

Organizational constraints can be disregarded since Aveso’s staff have the

38

competence required to create and manage both the Logic App and the Function

App. There are no critical constraints that stop us from creating a pilot project at

this stage.

6.6.2 Change Cloud Provider

As there are constraints regarding Azure, other cloud services should be inspected

to solve the constraints defined earlier. Investigating an alternate cloud provider is

redundant in our case, as the only feasible option is Azure. Instead, we have

considered how the solution defined in Figure 5 could be modified to benefit

different cases. First, suppose the customer’s IFS ERP endpoint uses an SSL

certificate. In that case, the proxy can be disregarded from the solution, and HTTP

requests can be made directly via the logic apps workflow using standard

connectors. This solution is ideal, offering the cheapest operating cost and most

straightforward management as only the logic app and on-premises gateway would

have to be maintained. As stated before, the method above is ignored, as we cannot

assume that all clients have purchased certificates. An ISE could be used if the

integration was done for a large-scale project and budget was not a concern. Even

though the operating costs would skyrocket, the need for proxies would be

eliminated. There would also be the added benefits of the dedicated environment,

namely isolated storage and more reliable performance.

If a proxy is necessary for the integration, it could be created via some third-party

software or service instead of Azure. These might be more cost-efficient than using

Function Apps, but it was decided that it would be best to keep the solution

contained in the Azure environment. Functions are highly compatible with Logic

Apps and can be accessed from the workflow designer straightforwardly. Another

modification could likewise be done if Functions are used; much of the logic inside

the logic app workflow could be moved inside the functions. Compared to C#, some

data operations are cumbersome to code in the Logic Apps Designer. If/else-checks

and complex string manipulations are some actions that would be cleaner to write

inside the Functions. This modification would have little monetary benefits, as the

price of individual actions in the logic app is minimal. Additionally, the logging

potential of the process would be reduced. When viewing logic app executions of

the workflow, the results of individual actions and branch decisions can be

discerned. To achieve the same level of logging inside of functions, in-depth error

handling and application insights must be used. This function-based method is a

good approach but moving any extra logic to the functions was avoided for the pilot

case.

39

6.7 Define Migration Strategy

Considering the 6 R’s defined in 3.2, the migration strategy used in this case mainly

involves Repurchasing. Instead of using legacy software developed and deployed

by Aveso, the integration service will be moved to a new product, Azure Logic

Apps. There are no convenient ready-made services available on Azure, so the logic

app will have to be developed manually by Aveso. The original code, written in

C#, will be translated to the visual Logic Apps workflow view while maintaining

all its features. To some extent, the migration resembles re-architecting because all

the features cannot be moved straightforwardly to Azure. Several aspects, such as

the change from SQL queries to API calls and the need for a proxy, indicate that

the solution must be reworked. The technical documentation used for the original

on-premises service containing mapping rules and administrative information will

be used as a guideline when creating the logic apps workflow (see Appendix B).

The next chapter will discuss how these guidelines are transformed in logic apps

where the pilot project is created.

6.8 Pilot Project

No actual migration will be performed in this thesis. In the Cloudstep paper [15],

Beserra et al. suggest that while defining the migration strategy, organizations

should start with a scaled-down “pilot” project to ensure that the cloud service

works as intended. The part handling AvIF integration will be used as a template

for the Logic App pilot project. The scope is reduced, and only the handling of part

catalog and inventory parts are replicated. However, the logic for handling the

remaining components, purchase- and sales parts, correspond very closely to what

is handled in this small-scale test. They do not contain any unique behavior not

seen anywhere else in the code. Therefore, it can be assumed that if the processing

of part catalogs and inventory parts functions correctly, so would the rest of the

legacy application.

The pilot project’s creation will be presented in this step, first focusing on the

general parts of establishing a logic app, followed by in-depth examinations of how

the fundamental aspects of the AvIF integration are handled. Results and analysis

are discussed in the next chapter. Due to the visual nature of Logic Apps, there will

be plenty of screen captures of the workflow and its settings. These can also be

useful for anyone attempting a logic app migration in the future.

40

6.8.1 Essential Functionality

The following functionality has been established as essential in the AvIF solution.

Consequently, Azure must be able to handle the following tasks to replace the

existing application:

1. Support various poll modes, either specific times or intervals.

2. Detect and read XML files from a folder located on an on-premises server.

3. Validate that the XML file is in the correct format.

4. Map/reformat XML data using a set of rules.

5. Fetch additional data from a mapping table if required

6. Create and update elements in IFS ERP based on XML data.

7. Log and handle errors if they occur.

6.8.2 Creating a logic app

Logic Apps are created by going to the Logic Apps resource list in Azure and

selecting “Add”. In order to be able to create Azure resources, a Subscription and

Resource Group has to be created. The Azure subscription is used for management

and billing reasons, supporting several payment methods. Subscriptions allow for

creating resources that are then grouped into logical collections. These resource

groups can contain any Azure assets, such as databases, apps, and virtual machines.

Figure 6.3 is a screenshot that displays the settings for the current logic app. Aveso

is a member of the Microsoft Partner Network, which grants several benefits,

including the use of Microsoft’s unique subscription method. The existing

AvesoDev resource group was selected, and the consumption type (pay-as-you-go)

was chosen for the app. Once the resource is deployed, it can be accessed from the

list of Logic apps. When the app is selected for the first time, Azure offers a wide

range of templates and triggers as a starting point for the workflow. In our case, the

default blank Logic App will be used.

41

 Figure 6.3: Create Logic App window

6.8.3 Selecting a Trigger

Selecting the blank Logic App template opens the workflow designer view. Every

app has to start with a trigger. Out of all the triggers available in Logic Apps, the

“File System – When a file is created” is the most appropriate. The user can choose

how often the trigger checks for items in the unit “polls per time unit”, where the

selectable time units range from seconds to months. The trigger selected for this

app inspects the folder two times every hour, equaling every thirty minutes. The

trigger and its settings are visible in Figure 6.4 (left). The XML files will be read

from my PC, and I have created the folder LogicAppFolder on my C drive

specifically for this application. The File System connector cannot automatically

access the computer; hence an on-premises gateway must be created between my

PC and the logic app.

6.8.4 Connecting to an On-Premises Folder with a Gateway

 An on-premises data gateway is installed by launching the installer on the endpoint

with access to the folder used to trigger the app. In this case, the gateway was

installed on my PC. The gateway is linked to the user’s Azure account during the

installation process, and it is given a unique name. After the gateway is registered,

it must likewise be linked to a gateway resource in Azure. Users select amongst all

installed gateways for the chosen resource group when creating a gateway resource.

42

Now the gateway can be accessed from connectors in Logic Apps. In Figure 6.4

below, the file system trigger uses the Marcus-PCLogicApps gateway, which in

turn is linked to the MarcusLogicApp resource found in Azure.

6.8.5 Looping Through and Validating XML Files

When a new file is detected in the specified folder, the next step is to use the “List

files in folder” connector. Logic apps save the results of actions in various formats,

allowing for dynamic content to be accessed later in the workflow. In our case, the

“list connector” result’s body, containing all files in the folder, can be referenced

in a for-each loop. This loop makes it possible to process each file separately. Inside

the loop, the first action is to retrieve the data from the file. Access is done by using

the “Get file content” connector and the file path for each file in the folder. A

screenshot of the finished process can be seen in Figure 6.5.

Before proceeding to any data mapping, the XML file should be validated to assure

that it is in a correct format and contains all required nodes. XML validation is

performed using a connector with the same name that takes a file’s content and

XML schema as inputs. Currently, the only way to create schemas is by adding

them to an integration account. These Azure resources manage integration artifacts,

including maps, certificates, and schemas. Several pricing tiers are available for

integration accounts, including a free option. The free account offers a minimal

number of integration resources, but fortunately, only one XML schema is

necessary for our process. By opening a valid XML file in Visual Studio and

Figure 6.4: File System trigger connected to on-premises folder C:\LogicAppFolder

(left). View of installed On-premises data gateway from my PC (right)

43

choosing “Generate Schema”, a schema was created and subsequently added to the

account with the name headerSchema. All necessary inputs are now defined.

Figure 6.5 Looping and validation logic of XML files. Arrows have been added to

visualize dynamic references

6.8.6 Mapping Data

Each XML file can contain several items inside of the objectArray node. The XML

data is transformed to JSON arrays in order to conveniently reference the nodes in

transformations and API calls. The XML-to-JSON conversion is achieved in the

workflow by defining a schema that describes the structure of the desired JSON

data. Now that the data are easily accessible, mapping can be performed. Mapping

rules are taken directly from the documentation for the legacy application. A

condensed version is found in Appendix Table 2. As seen in the mapping table,

many different validations and transformations of varying complexity must be

carried out. The most rudimentary verifications, such as ensuring that item status

equals “ACCEPTED”, are best accomplished with an if/else-control action. All

remaining workflow actions are placed inside the True case while remaining cases

must be handled (see 6.8.9). Other mappings can be tackled using different

methods. A switch control action was used to translate Finnish magnitudes (“kpl”

and “mm”). If the magnitude is one of the Finnish options, the magnitude variable

is updated to the corresponding English version. Otherwise, the magnitude is kept

44

in its original lowercased form. In Figure 6.6 below, the logic being discussed is

displayed.

As seen in Figure 6.6 with the use of the toLower method, Logic Apps supports

expressions in the form of string, logical, and conversion functions, amongst many

others. Solving some of the mapping tasks using inline code can produce lengthy

expressions. A case in point is the inventory part description field formed by

combining the description_1- and 2 fields from the XML, separated with

whitespace. The inline code looks like the following:

join(createArray(items('For_each_item_in_file')['item_desc1'], ' ',

items('For_each_item_in_file')['item_desc2']), '')

Other mappings are too complicated to handle purely with inline code. One of these

is the prime commodity field for the inventory part, based on the item_group node

in the XML. The field has a maximum length of five characters, where all leading

letters are used, followed by at most two numbers. In the legacy application, this

was solved using regex operations. In this instance, a JavaScript Code connector in

Logic apps was utilized to achieve equivalent results.

6.8.7 API Calls and Proxy

Rows are inserted and updated in the IFS ERP using API calls. For this test project,

the ERP is hosted on an Aveso server that uses a self-signed certificate. Therefore,

it is necessary to create a proxy, which will be done with a Function App. First, a

separate app service plan is created. The “Premium v2” plan, with a monthly price

of 125,91€, is the least costly option that supports Hybrid Connections. Individual

functions can be created once the Function App has been set up with the premium

service plan. Visual Studio’s Azure Functions template was used to develop the

Figure 6.6: Item magnitude mapping using switch control actions. There are three switch

cases: “kpl”, “mm” and default case (not visible in screenshot)

45

proxy. Listing 6.1 displays the code for the function used for Part Catalog PATCH

calls in the IFS ERP API.

public static class PartCatalogPatch
 {
 [FunctionName("PartCatalogPatch")]
 public static async Task<IActionResult> Run(
 [HttpTrigger(AuthorizationLevel.Anonymous, "patch", Route = null)] HttpRequest req)
 {
 ApiClass.InitializeClient();

 var reader = new StreamReader(req.Body);
 reader.BaseStream.Seek(0, SeekOrigin.Begin);
 var rawJson = reader.ReadToEnd();

 PartCatalog part = JsonConvert.DeserializeObject<PartCatalog>(rawJson);

 bool success = ApiCalls.UpdatePartCatalog(part.PartNo, rawJson).Result;

 return new OkObjectResult(success ? "Success" : "Failed");
 }
 }

Listing 6.1: Part catalog PATCH function main class

The function takes a part catalog JSON object as its input parameters. The raw

JSON is first extracted using the StreamReader class. Then, the JSON is

deserialized to a PartCatalog object in order to reference its part number. It is sent

to the “update” API call method with the raw JSON string (displayed in the next

listing). The .NET HttpClient is also initialized via the InitializeClient function.

Inside the function, default request headers are added to the client. The base URL

for API calls and the username/password combination are added to the client as

well, their values being defined in a locally stored JSON file. The full code,

including the InitializeClient method, can be found in Appendix C.

In listing 6.2, the code for the API call itself is executed. The URL for the PATCH

request is formed by the HttpClient’s base URL concatenated with the relevant

projection link, defined in IFS API documentation. The part catalog JSON string is

added as content to the asynchronous PATCH call. If the request is successful and

the part catalog is updated, the HTTP response is a “success” status code, and

consequently, a Boolean true is returned from the function. GET, POST, and

PATCH calls are defined for all part items using corresponding logic. The functions

can be deployed directly to the Function App from Visual Studio.

46

public static async Task<bool> UpdatePartCatalog(string partNo, string partJson, ILogger log)
 {
 string url = "PartHandling.svc/PartCatalogSet(PartNo='" + partNo + "')";
 try
 {
 ServicePointManager.SecurityProtocol = SecurityProtocolType.Tls12;
 var content = new StringContent(partJson.ToString(), Encoding.UTF8, "application/json");
 ApiClass.ApiClient.DefaultRequestHeaders.Accept.Add(

new MediaTypeWithQualityHeaderValue("application/json")
);

 using (HttpResponseMessage response =

await ApiClass.ApiClient.PatchAsync(ApiClass.ApiClient.BaseAddress + url, content))
 {

 if (response.IsSuccessStatusCode)
 {
 return true;
 }

 else
 {
 Console.WriteLine("Error");
 throw new Exception(response.ReasonPhrase);
 }
 }
 }

 catch (Exception e)
 {
 if (e.Source != null)
 Console.WriteLine("Exception {0} source: {1}, {2}", e.InnerException, e.Message, e.HelpLink);
 throw;
 }
 }

Listing 6.2: Code for update part catalog API call

6.8.8 Hybrid Connection and Proxy Use in Logic App

The Function App is not yet able to connect to the on-premises server, as a hybrid

connection must be set up in the same location as the IFS ERP. It is installed similar

to the on-premises data gateway. When the hybrid connection is operating, it is

linked to the Function App via the app’s settings. The server’s TCP port (48080)

must be specified in the endpoint when adding the connection. Values stored in the

local settings file (base URL, API username/password) must be added to the

Function App’s configuration settings manually in Azure. Finally, the public key

certificate of the server hosting the IFS ERP needs to be included in the SSL settings

of the Function App. At this stage, Functions can finally be used inside of Logic

Apps. Figure 6.7 shows a view of the proxy call from the workflow designer.

Values written in the request body field are passed to the proxy and, therefore, to

the API. In this case, all values have been transformed to the intended format before

calling the proxy.

6.8.9 Mapping Tables

Many XML fields, for instance, item_type, are used to fetch values from mapping

tables in IFS. I did not have access to any of the tables employed in the legacy

application. A custom projection was created and deployed in IFS for testing

purposes, allowing it to access data via HTTP requests. The table contains only one

row and two columns, functioning as inputs and outputs. In our primitive scenario,

47

the input of value1 produces the output value2. There would be separate mapping

tables containing more rows for each part type in genuine cases. Requests are

handled through the Function App akin to API requests. Figure 6.8 shows a

screenshot of a successful fetch from the custom IFS ERP mapping table using the

GetFromMappingTable1 function.

Figure 6.7: Part catalog PATCH functions. Parameters are a mix of hard coded and

dynamic values. The request body values are sent to the Function App, which in turn makes

the HTTP request using the parameters.

Figure 6.8: Successful request to a mapping table. “value1” is used as input, producing

the output “value2”.

6.8.10 Error Handling

Error handling in Logic Apps is accomplished by a combination of retry policies

and “run after” behavior. All HTTP requests, such as the one done through the

48

Function Apps proxy, have retry policies activated when connectivity exceptions

occur or an HTTP status code signifying a failure is returned. The default policy

retries the request up to 4 times with an exponential interval. The retry intervals can

be tweaked, or the policy can be disabled altogether, but the default settings were

kept in this instance.

If errors are to be handled for any other actions in the logic app workflow, they

should be surrounded by a scope, followed by “run after” logic. These components

closely match the try/catch-logic found in C# code. In the pilot project, all data

mapping actions and API requests are moved inside a scope. The scope is followed

by a control action that examines if the scope is completed successfully. By default,

logic apps terminate their executions if an action fails. This practice can be altered

by utilizing the “run after” settings. In Figure 6.9, the “run after” settings for the “If

scope failed” control action is set so the workflow advances there even if the scope

is timed out, skipped, or failed.

Figure 6.9: Mapping actions and API calls have been moved inside a scope. Most

actions are located inside the “For each item in file” loop and are therefore not visible in

this screenshot.

The control action checks if the scope’s result status is either failed or aborted, in

which case the error is to be handled. The AvIF application handled errors by

logging them in a specific table in IFS through a SQL query. The same functionality

is possible to produce with API calls, although no such table has been created in

IFS for the test project in Azure. Until then, an empty function was created that is

49

called in error states. Relevant API calls can be placed inside of the function later.

A notification could be sent to admins to look at the specific workflow execution

for more information, as they can see precisely where the issue appeared using the

visual tools. If all actions in the scope are completed without exceptions, the XML

file is moved to a different folder, indicating that it has been handled. Figure 6.10

exhibits the “If scope failed” control action more closely.

Figure 6.10: Error handling. There are different branches depending on if errors are found

(True) or not (False)

6.8.11 Operating Costs of Pilot Project

The finished pilot project uses one trigger and 37 connectors. This sum includes the

connectors in all possible branches in the workflow, and hence all connectors

cannot be executed in one run. Estimating the operating costs for the app is

challenging, as the service’s usage can fluctuate daily. Because the logic app

employs a consumption pricing plan, the cost for the actions and standard

connectors can be added together to calculate the price. The maximum number of

connectors that can be used in one execution is 29, of which 18 are actions and 11

standard connectors. This number assumes that the XML file only has one item,

which is often not the case. By separating the operations inside the item loop(s) (10

and 7) from the rest in the workflow (8 and 4), the max number of actions (𝑥) and

standard connectors (𝑦) used can be calculated with the equation:

𝑥 = 8 + 𝛼 ∗ 10

𝑦 = 4 + 𝛼 ∗ 7

where α = the number of items in the XML file. A reasonable number of items to

loop for each XML file is 3. Inserting the value into the equation results in the

following:

𝑥 = 8 + 3 ∗ 10 = 38

𝑦 = 4 + 3 ∗ 7 = 25

50

There can also be more than one XML file in the folder. Estimating that the total

number of files handled per day is under 100, we can assume that the load is evenly

distributed for simplicity. A poll interval of 30 minutes means that two files are

handled each time the app is triggered. The average month contains 730 hours,

meaning that the app is triggered 1460 times. We can assume that all operations are

re-run for each file. Estimating the monthly cost for workflow operations with these

assumptions equals

1460 ∗ 𝛽((𝑥 ∗ 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑎𝑐𝑡𝑖𝑜𝑛) + (𝑦 ∗ 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟))

where 𝑥 = number of actions, 𝑦 = number of standard connectors, and 𝛽 = number

of files. Inserting the values 𝑥 = 38 actions, 𝑦 = 25 connectors and 𝛽 = 2 files each

30 minutes results in:

1460 ∗ 2 ((38 ∗ 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑎𝑐𝑡𝑖𝑜𝑛) + (25 ∗ 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟))

= 2920 ∗ (38 ∗ 0,000022€ + 25 ∗ 0,000108€)

 ~ 10,32€/𝑚𝑜𝑛𝑡ℎ

The result does not consider that the first 4 000 workflow actions are without charge

in the consumption pricing plan. A proxy is furthermore required for the solution.

Using a Function App with a premium service plan V2 makes the estimated

monthly cost for the pilot project:

Logic App operations (estimate) 10,32€

Function App service plan (case dependent) + 125,91€

Total 136,23€

As expected, the operating costs for the Logic App pale in comparison to the

Function App that serves as a proxy. It is also worth noting that estimations used in

the Logic App price calculations (number of files and items) are “worst-case

scenarios” with 100 files handled each day. This would not occur in practice,

especially considering that these calculations include all weekdays, including

Saturdays and Sundays, when there would otherwise be less activity.

51

7. Results and Discussion

In this chapter, the results will be analyzed. First, the outcome of the pilot migration

project will be discussed, along with general impressions of Azure. Secondly, the

benefits and drawbacks of using the Cloudstep decision process are examined.

Finally, my personal impressions about the migration will be presented at the end

of the chapter, with suggestions for further improvements.

7.1 Pilot Project

Overall, the pilot migration project was successful. All essential functionality of

the legacy application was replicated on Azure, and the process was executed with

anticipated results. The processing time of approximately 15 seconds was slightly

larger than the legacy application, but the time difference can be neglected in this

case due to the infrequent executions. The number of required operations, and

therefore the price, was slightly higher than expected. Several caveats regarding a

full-scale migration were exposed during the pilot project’s creation. As such, it is

best to discuss the positive and negative aspects of cloud migration separately.

7.1.1 Positive Aspects

The main advantage of developing Logic Apps processes is the visually oriented

workflow designer. Compared to a C# application, starting with a new process is

considerably faster when using the Logic App Designer. Utilizing templates in

combination with actions and connectors provided by Azure reduces the level of

coding experience required to create a functioning integration process. In Logic

Apps, features such as threading can easily be enabled in for-loop settings, while

logging is done automatically. Especially for integration processes of lower

complexity, Logic Apps is a good option. Developing the proxy with Function

Apps was also remarkably simple.

In contrast to testing and publishing code for AvIF services, Visual Studio’s built-

in support for Azure Functions made the process faster and more accessible. No

longer do developers have to manually copy files to the existing installation via a

combination of VPN and RD connections. Visual Studio allows for instant

publishing of Functions to Function App by synchronizing the application with the

developer’s Azure account. Once configured correctly, the on-premises data

gateway and hybrid connection work as intended and allow for increased flexibility

52

since the application is no longer tied to the IFS ERP’s location, an integral

restriction of the legacy application. Additionally, the input folder for XML files

can be in a different location altogether, further increasing the possibilities for the

integration.

7.1.2 Negative Aspects

As for the negative aspects of the pilot project, a noticeable issue is the limited

support for data manipulations and operations in Logic Apps. This drawback results

in a solution that appears overly complex, as it requires several operations for

seemingly simple tasks. Listing 7.1 and Figure 7.1 display the same process in C#

and Logic Apps, respectively. The code was created purely for demonstration

purposes and contains data operations of similar intricacy to those found in the pilot

project. The function examines the string variables vehicle and price and checks if

the vehicle is a car that costs under the chosen maxPrice value. The result is then

written to the resultString variable. Comparing the two, it is evident that the C#

code is more concise than the logic apps workflow. Note the complexity of the

workflow; While the logic app process makes logical sense and is seemingly

intelligible if the workflow were zoomed in, placing several analogous chains of

actions in a sequence would negatively impact the readability of the workflow.

Additionally, inline code in logic apps workflows is placed inside expressions

blocks that obscure much of their contents. The editor for writing expression code

is also very cramped, consisting of only a single line. It is impossible to see the

entire code for extended expressions in the editor, making it troublesome to write

elaborate operations.

Listing 7.1: Code for checking the price of vehicles. The code uses switch-cases and

integer conversions in order to compare values.

53

Further problems arise when logic apps actions and connectors are placed inside

loops, scopes, and conditions. This nested method of loops within loops makes it

laborious to obtain a clear workflow overview. Viewing a scope opens up a large

box in the UI that often hides or shifts the remaining operations out of view. It was

not possible to acquire any clear screenshots of the entire process for this reason.

Due to limitations within logic apps, some parts of the original solution require

rethinking to work inside Azure. The JavaScript code operation used for regex

operations is a case in point, displayed in Figure 7.2. The JavaScript code receives

values from XML files based on the loop index, which is not stored as a dynamic

loop value in logic apps. Creating an index variable that was incremented in each

loop was revealed to be impracticable because JavaScript code actions in Azure do

not support variables as of now. The problem was solved by creating an object of

the index variable using a “compose” action. The result of the action, i.e., the index,

could then be accessed in the JavaScript code. The described solution resolved the

issue, but it is doubtful that Azure’s developers intended this way of handling data.

Figure 7.1: The price check operation created using Logic Apps alone. Note the number

of expressions (pink blocks) and large workflow size that makes it impossible to make all

actions visible in one screenshot.

54

Figure 7.2: Workaround necessary to access loop index inside of JavaScript Code action

in Logic Apps

The testing capabilities of logic apps are limited compared to Functions. Workflow

operations can be tested individually in a workflow without executing the entire

process, but most actions and connectors currently do not support this feature. This

hindrance makes testing more time-consuming, since the trigger must be activated

for each attempt, which means that XML files had to be moved to an input folder

every time the process was to be activated. As the workflow became more

elaborate, the easiest method was to create a separate Logic App for testing

purposes, where only the operation in question was added. Quick task testing inside

a workflow is a standard feature in other iPaaS products, such as Frends by HiQ

[40]. It is safe to assume that Microsoft will improve this component of Logic Apps

in the future.

7.1.3 Unresolved Constraints and Goals for Next Iteration

The pilot project exhibits the potential of a migration to a cloud platform utilizing

a combination of Logic and Function Apps. In its current form, mapping data inside

the Logic App workflow makes the process overly complex and challenging to

manage. For a full-scale migration, adding all the requests to mapping tables in

addition to the handling of purchase- and sales parts would increase the number of

workflow operations to hundreds. At that stage, managing the integration process

would become unwieldy. A solution for this issue would be to handle most, if not

all, mapping logic inside the Function App, as proposed in 6.6.2. A switch to Azure

Functions would leave the Logic App to manage the scheduling and reading of

55

XML files. As the legacy application is written in C#, much of the code could be

reused in the functions, with the main modification involving the change from

PL/SQL package procedures to API calls. Some additional data might also need to

be handled, as, from my experience, the constraints regarding required fields are

slightly different for SQL queries and API calls. Functions and Logic Apps are very

complementary, and the difficult part is to determine which one is better suited for

the use case. I am confident that a more considerable emphasis on Azure Functions

would provide a better solution for the next iteration.

7.2 Cloudstep

There exists no metric for assessing the performance of a cloud migration decision

process; neither can it be compared to any earlier methods used. Not many decision

processes are available publicly on the web, as many are tied to companies’

consulting services. Therefore, the analysis of the Cloudstep process will be highly

subjective. As with the pilot project, the evaluation will be split into positives and

negatives.

7.2.1 Positives

Even though application profiles are created at some level when planning a

migration, at least subconsciously, systematically specifying them allows for a

more precise evaluation to be made. Companies could disregard the organization

profile unwittingly if they are too enchanted by the new cloud service. Identifying

constraints at this early stage can eventually save time and resources. Identifying

both usage and technical characteristics for the application profile makes for a well-

defined description of the legacy application. This furthermore helps create the pilot

project, as it is clear what functionality must be recreated in the cloud. Cloudstep’s

focus on iterations and constant constraints evaluations provide realistic

expectations for companies looking to migrate their applications. It is unreasonable

to assume that all relevant points will be detected, and the correct approach will be

chosen in the first attempt. Consequently, continuous iterations are unavoidable.

Compared to other migration analysis works described by Beserra et al. [15], the

Cloudstep process does not require the assignment of grades or weights for decision

factors. I find this advantageous as the weights can oversimplify the constraints.

Using profiles and evaluating them provides a more dynamic solution.

56

7.2.2 Negatives

Creating the various profiles can be very laborious, especially for the cloud

providers, which often encompass several services and possible options, as was the

case with Azure. According to the Cloudstep model, the cloud provider should be

changed if significant provider constraints exist after evaluating technical and

financial constraints. In our situation, the required work would be excessive and,

most importantly, redundant, as it is specifically Azure that Aveso is investigating.

Modifying the step so that changes within the cloud provider are analyzed instead

was an acceptable compromise. However, the most critical problem encountered

with Cloudstep was the difficulty of creating an appropriate cloud provider profile.

Many aspects and constraints of Azure became apparent only during pilot projects,

as their finer details were hidden in various documentations that were not observed

during this early phase. As such, the first iterations are destined to fail due to

insufficient information. A great example of this problem is the lack of support for

self-signed signatures for HTTP requests in Logic Apps. This issue only became

evident when creating one of the many test projects and ultimately required

redesigning the entire solution to incorporate a proxy server. Ultimately, the infinite

possibilities of cloud services such as Azure and AWS combined with their

multitude of documentation might not be a good fit for Cloudstep. For now, a

significant reason behind the need for many iterations is the constant discovery of

new constraints and alternate solutions.

7.3 Discussion

I was satisfied with the project’s results, with the following possible iteration of the

integration service showing great potential. The need for several iterations was not

surprising, yet it was frustrating because some of the issues were due to the lack of

clear documentation on Azure’s side. The problem concerning self-signed

certificates was not known during the planning phase of the first pilot project, but

devising the solution for the constraint ended up taking up a sizable portion of the

entire migration’s timetable. Even so, the spontaneous decision to use Function

Apps to serve as a proxy server proved to be a happy accident, as it led to further

analysis of the service and ultimately the choice of switching to a primarily Azure

Functions-based solution. I find that Microsoft’s marketing for Azure can be

unclear, as their intended use cases for Logic- and Function Apps are never

disclosed. At a surface level, they may appear very similar. Based on my

experiences on this project, it seems like Logic Apps are better suited for smaller-

57

scale integrations that can use the connectors to Microsoft’s products, such as

Outlook or BizTalk. Additionally, it can be challenging to decide on the optimal

distribution of the services when using both. In our case, the project started with a

solution based exclusively on Logic Apps, but it now seems like the best approach

is to primarily use Functions, with some logic app elements for scheduling and file

access.

The Cloudstep decision process proved to be a valuable resource for migration. I

was not thoroughly familiar with the AvIF service, but I got a good grasp of the

legacy software by creating the application profile. The small-scale pilot projects

are an excellent way to test the integration, but the model would benefit

significantly if more emphasis were placed on them. The best method would be to

start the project by creating short test processes on the cloud provider, providing

valuable insight for the provider profile. Pre-testing might be something that

Cloudstep’s authors [15] assume to be obvious, but it should nevertheless be

pointed out. Cloudstep displays various shortcomings when applying it to a large

and modern cloud service like Azure. The decision process is intended to be applied

in general contexts and domains and is relatively old, released in 2012. Therefore,

it can be unreasonable to expect a fit-all migration framework. It is unsurprising

that companies offer consulting and migration services for cloud migrations to

complex environments for which straightforward models such as Cloudstep are ill-

suited.

58

8. Conclusion

This thesis has examined the cloud migration of a legacy integration service to

Azure using the Cloudstep decision process. The main reasons for migrating to the

cloud were increased flexibility and easier access. An ETL batch integration

application by Aveso was selected as the legacy program to be investigated. The

AvIF application is hosted on a remote server and parses XML files in a folder,

transforming the data and sending them to an IFS ERP. When moving to Logic

Apps, Microsoft’s iPaaS, changes were necessary. The code from the legacy

application had to be remade in Logic Apps’ visual workflow system, and instead

of PL/SQL operations, API calls were utilized. Profiles for the organization, legacy

application, and cloud provider were created as described in the Cloudstep paper

[15]. A pilot project was executed to examine the cloud platform’s suitability

further.

A pilot project was completed, where approximately half of the legacy application

was replicated successfully with a combination of Logic- and Function Apps. After

several iterations, it became apparent that the data operations necessary for the

integration become cumbersome to implement via the visually controlled Logic

Apps Designer. If the entire legacy application were to be migrated to Logic Apps,

the number of operations would make the process laborious to manage. Therefore,

a more significant emphasis on Function Apps would benefit the solution as it

supports C# and would thus allow for reusing much of the legacy application’s

code. As it now stands, the Function App-based solution is the objective for the

next iteration, which by all accounts should be the final rendition of the integration

service.

The shift from Logic Apps to Function Apps during the migration process displays

the obstacles faced when planning and executing a migration to cloud services. The

services can seem suited for similar tasks at face value, but their strengths and

weaknesses become evident once implementations start. The same fact applies to

discovering limitations of actions and connectors in Logic Apps, causing increased

complexity and workarounds that gradually increase execution costs. The monthly

cost of the pilot project was approximately 136€. A full-scale migration would raise

the price by 10-15€, with the non-obligatory proxy solution taking up most

expenses. A shift to a Function App-based solution would alter the monthly costs

slightly, but it would still be in the same price range. Overall, the monthly cost of

below 150€ is not unreasonable compared to that of rivaling cloud providers.

59

The Cloudstep decision process was beneficial, albeit not as suitable for migrations

to platforms allowing numerous potential implementation methods. By developing

the legacy application and cloud provider profiles, constraints could be detected

and evaluated. The most glaring constraint concerned communication and the lack

of support for self-signed certificates for HTTP requests. The issue was solved by

creating a proxy using Azure Functions. There were no constraints in critical areas

such as security and availability since Azure’s security features and SLAs were

deemed satisfactory. Creating an accurate cloud provider profile is impossible

without first creating small-scale tests to understand the various available features

better. Some steps can seem excessive, such as changing the cloud service in case

of provider constraints. In these cases, it would be more suitable to first change the

solution within the cloud platform to avoid the time-consuming task of creating a

new profile for an entirely different provider.

8.1 Further Research

Decision models tailored for the cloud provider should be developed for optimal

migration analysis. An all-purpose model such as Cloudstep was not designed for

services like Azure, where implementation methods are limitless. As the trend of

cloud computing continues to grow, progressively more businesses migrate their

applications to platforms such as AWS and Google Cloud in addition to Azure. It

would be advantageous for customers if providers offered precise decision models

and example scenarios to their potential clients without any need for joining

programs or paying for consultation services. Migration models explicitly created

for Azure undoubtedly exist, as is evident by many associated consulting services

available online. A common factor for all these models and tutorials is that they

start from the assumption that the platform’s suitability has already been

established. Tailored versions of Cloudstep could be explicitly created for each

cloud service, although it is ultimately up to providers to create official decision

models for their services. Offering more precise comparisons between services,

even on the same platform, would be a step in the right direction.

60

9. Molnmigrering till Azure Logic Apps: en fallstudie

med Cloudstep-beslutsprocessen

9.1 Introduktion

Användningen av molntjänster har ökat alltmer under det senaste årtiondet. Det är

lättare än någonsin att närsomhelst få åtkomst till högpresterande hårdvara.

Molntjänsters många fördelar, såsom lägre förskottsavgifter och högre nivå av

skalbarhet, har lett till att många företag migrerar sina program till molnet. En

migrering till molnet är i många fall inte oproblematisk. Med avseende på det stora

antalet olika molntjänster kan det vara svårt att hitta den optimala lösningen till

företagets behov. I allmänhet finns det få modeller för att avgöra en molntjänsts

lämplighet för ett existerande program, och även om olika bolag erbjuder

djupgående handledning i de olika stegen av en migrering, utgår de från att kunden

redan bekräftat att tjänsten är rätt för dem.

Aveso är ett it-företag med fokus på systemintegration och konsultation. Bolaget

undersöker kontinuerligt olika sätt att modernisera sina program, och ett av deras

program har valts som huvudkandidat till migrering till molnet. I denna avhandling

analyseras hur Avesos systemintegrationsprogram skulle fungera på Azure,

Microsofts molnplattform. Dessutom kommer en generisk beslutsprocess,

Cloudstep, att användas för att noggrannare granska användbarheten av en sådan

process i dessa specifika fall. Brister och styrkor med Cloudstep kommer att lyftas

fram, samt förbättringsförslag som kan hjälpa företag som tänker utföra liknande

molnmigreringar i framtiden.

9.2 Molntjänster

Att köra program i egna lokaler på bestämd hårdvara, det vill säga on-premises, har

länge varit normen för företag. Det är relativt nyligen som datormoln har blivit ett

tänkbart alternativ. Teknologin introducerades för allmänheten av Amazon år 2002

i form av Amazon Web Services (AWS), och andra storbolag har senare

introducerat sina egna molnbaserade plattformar. Organisationen National Institute

of Standards and Technology (NIST) definierar molntjänster som ”en modell för

att möjliggöra bekväm nätverksåtkomst till en delad pool av konfigurerbara

datorresurser på begäran varifrån som helst. Dessa datorresurser, som är i form av

nätverk, servrar, lagring, applikationer och tjänster, kan snabbt provisionernas och

61

släppas med minimal hantering eller interaktion från tjänsteleverantören (övers.)”

[2]. NIST beskriver molntjänster noggrannare med hjälp av vad som ofta kallas för

5-4-3-principerna för moln. De listar fem egenskaper som är väsentliga för alla

molntjänster, varav den första är självbetjäning på begäran, det vill säga

datorkapacitet ska kunna levereras utan kontrollåtgärder från människor.

Omfattande tillgänglighet via nätverk och resursfördelning mellan användare är de

två följande aspekterna. De två sista egenskaperna berör snabb elasticitet och

mätning av resursanvändning. NIST tar även upp fyra implementeringsmodeller. I

ena änden av spektrumet finns privata moln, ägnade för internt bruk i företag, och

på andra änden finns offentliga moln som är öppna för allmänt bruk. Mellan dessa

finns även så kallade community-moln för flera företags bruk, samt

hybridlösningar. Slutligen räknar NIST upp tre servicemodeller för molntjänster:

Program som nättjänst (SaaS), platform som nättjänst (PaaS) och Infrastruktur

som nättjänst (IaaS). Termerna beskriver vilken nivå av abstraktion som tjänsten

har. Med SaaS använder slutanvändaren ett färdigt program som körs på

programuthyrarens servrar, medan PaaS låter kunden hyra servrar för att köra sina

egna applikationer.

Molntjänster har flera fördelar jämfört med körning lokalt. Resurser på molnet är

tillgängliga närsomhelst varifrån som helst i världen. Kapitalkostnaderna är lägre

eftersom ingen fysisk hårdvara behöver införskaffas och resurserna kan snabbare

läggas till eller tas bort enligt behov. Företag behöver inte heller ha samma nivå av

sakkunskap för att komma i gång med serverinstallationer. De två mest

framträdande orsakerna till oro hos användare som flyttar sina program till molnet

är säkerheten och integriteten av deras data [8]. Säkerheten som molntjänster

erbjuder kan dock i vissa fall överskrida den av ett företags lokala hårdvara, och

leverantörerna av molntjänster erbjuder sina specifika tjänstenivåavtal (SLA).

9.3 Migrering till Molnet

För att hjälpa kunder med att migrera sina program till molnet har

tjänsteleverantörer såsom Amazon och Microsoft skapat sina egna

migreringsmodeller [13] [14]. Fastän modellerna till en viss grad är skräddarsydda

för specifika molntjänster, innehåller de oftast ändå följande steg: utvärdering,

planering, utförande, validering och underhåll. I utvärderingsfasen utförs affärs-

och teknikanalyser samt en uppskattning av arbetsbördan. Vid planeringen väljs en

migrationsstrategi, vilka enligt e-boken ”Migrating to AWS: Best Practices and

Strategies” av Stephen Orban kan delas in i sex kategorier [14]. Med ”lyft och

62

flytta”-strategin migreras IT-systemet utan några stora ändringar, medan

refaktorisering innebär omstrukturering av hela programmet så att det bättre ska

passa molnet. En blandning mellan dessa två är ”lyft, knåpa och flytta”. Kunden

kan även välja att köpa en färdig tjänst som motsvarar hens existerande program.

De två sista strategierna berör fall där ingen migration utförs eftersom programmet

antingen är för gammalt, eller så fungerar det bättre då det körs lokalt. Då strategin

valts utförs själva migreringen. Därefter kan validering och optimering göras

kontinuerligt för att förbättra resultaten. Då programmet körs på molnet kräver det

slutligen någon form av styrning och övervakning.

Molnmigreringsmodellen Cloudstep introducerades av Patricia V. Beserra et al. år

2012 [15]. Cloudstep är ägnad för att hjälpa applikationsutvecklare och

projektledare med att fatta lämpliga beslut angående moln. Med hjälp av att skapa

olika profiler kan de viktigaste aspekterna av organisationen, applikationen och

molntjänsten identifieras. Genom att iterativt följa Cloudstep-modellen ska

användare bättre få en bild av om molntjänsten passar deras applikationer.

9.4 Systemintegration

I och med att företag växer producerar de även mer data. Informationen sparas ofta

lokalt eller på moln, i en kombination av olika format. Det har blivit fördelaktigt

för program och företag att dela på denna information. Data från olika källor är i

många fall oförenliga med varandra, och måste i sådana fall behandlas på något sätt

innan de kan kombineras. Detta är kärnan av systemintegration. I boken ”Principles

of Data Integration” definierar AnHai Doan et al. systemintegration noggrannare

genom dess mål, att ”erbjuda enhetlig tillgång till en uppsättning autonoma och

heterogena datakällor (övers.)” [18]. Autonomi avser att de administrativa

rättigheterna till källorna kan variera, medan heterogenitet syftar på att datakällorna

skiljer sig från varandra. En vanlig form av systemintegration är ETL, hämtning,

konvertering och lagring (eng. extract, transform, load). Vid hämtning verifieras

informationen, som sedan exporteras till ett s.k. uppställningsområde där den

konverteras enligt vissa formler. Då informationen lagras i slutsystemet kan

ytterligare validitetsgranskningar ännu utföras. Man brukar skilja mellan satsvis

bearbetning och realtidsintegration. Satsvisa bearbetningar är asynkrona och

överför data enligt en förutbestämd tidtabell, där termen sats betecknar den stora

datamängden som bearbetas. Löpande bearbetning används i fall där gränssnitt

väntar på att transaktionen ska slutföras i alla inblandade system innan den avslutas,

exempelvis vid kreditkortsbetalningar.

63

Ett populärt sätt att få tillgång till uppgifter från olika tjänster är genom ett API, ett

applikationsprogrammeringsgränssnitt som tjänsteleverantören skapat. Genom

API:er kan företag på ett reglerat sätt tillhandahålla data och tjänster åt andra

användare, utan att de behöver förstå den underliggande strukturen. Begäran till

webb-API:er görs oftast med hjälp av HTTP-förfrågningar. Det vanligaste mönstret

för att skapa API:er är REST (Representational State Transfer), som introducerades

av Roy Felding år 2000 [28]. Data från ett API skickas ofta tillbaka i form av JSON

(Javascript Object Notation) eller XML (Extensible Markup Language).

9.5 Utförande och Implementation

De första stegen i Cloudstep-beslutsprocessen är att definiera organisationens

profil samt granska om det finns några begränsningar i migreringen. Orsaken till

att Aveso undersöker en migrering till molnet är för att modernisera dess

applikationer och således locka nya kunder. Avesos personal är bekanta med

Azure-plattformen, och företaget begränsas inte av några lagar om den fysiska

platsen av datalagring.

Som följande skapas en profil av applikationen, Aveso Integration Framework

(AvIF). AvIF-gränssnittet läser XML-filer satsvis från en förutbestämd mapp.

Informationen behandlas och skickas därefter till ett ERP-system som befinner sig

på samma värddator. AvIF-tjänster kontrolleras med hjälp av ett separat gränssnitt,

AvIF Manager, och noggranna inställningar såsom adresser för indata görs i en

skild konfigurationsfil. Eftersom AvIF-applikationer installeras på kunders servrar,

kommer administratörer endast åt dom med hjälp av fjärrskrivbord. AvIF-

applikationer kodade i C#, och de kontaktar ERP-system med hjälp av PL/SQL-

operationer.

Vid skapandet av profilen för molntjänsteleverantören granskas Logic Apps,

Azures integrationsorienterade PaaS. Tjänster i Logic Apps skapas med hjälp av

visuella arbetsflöden bestående av en trigger, följt av en serie steg innehållande

processer eller händelser. Dessa händelser kan vara antingen inbyggda, till exempel

beräkningar och hantering av variabler, eller så kan de vara connectors som är

anslutna till externa tjänster, såsom Outlook. För projektet utnyttjas en trigger som

är ansluten till en katalog och startar programmet då en ny fil upptäcks. Hantering

av data sker nästan helt via inbyggda funktioner, och information skickas till ERP-

systemet via REST API-förfrågningar. Kostnaden för Logic Apps påverkas av

vilken prisplan som väljs. I vår fallstudie betalas tjänsten enligt användning, vilket

estimeras blir 10€/månad. Azures SLA lovar en tillgänglighet på 99,9 %, samt

erbjuder Microsoft flera säkerhetstjänster som kan användas utöver de inbyggda.

64

Då profilerna för applikationen och molntjänsteleverantören jämförs är det

tydligt att den största begränsningen berör kommunikation: HTTP-förfrågningar i

Logic Apps stöder inte självsignerade certifikat, som används av Avesos testserver.

För att kringgå detta används en proxyserver, denna gång skapad med Azure

Functions. Användningen av en mellanserver kan leda till ekonomiska

begränsningar, men i detta fall fortsätter vi processen. Ifall det fortfarande finns

begränsningar, ska andra molntjänster undersökas enligt Cloudstep. I vår

fallstudie är detta redundant, eftersom det specifikt är Azure som undersöks. Därför

modifierades steget en aning, och endast alternativa lösningar inuti Azure

undersöks. En migreringsstrategi väljs också, vilket i Avesos fall är återköp.

I nästa steg ska ett småskaligt pilotprojekt utföras för att kontrollera att

molntjänsten fungerar som förväntat. Cirka hälften av AvIF-applikationen

återskapades med Azure Logic Apps och Functions, och alla dess väsentliga

funktioner överfördes framgångsrikt. Det slutliga arbetsflödet innehöll 37

händelser, och dess månadskostnad estimerades till 136€ (10€ utan proxyserver).

9.6 Analys och diskussion

Efter pilotprojektet kan nästa iteration av projektet planeras. Utgående från

processen som skapades i Logic Apps är det uppenbart att hanteringen av

information fungerar bättre inuti Azure Functions. Därför är planen för nästa

iteration att övergå till en mera Functions-baserad lösning. Den tydligaste positiva

aspekten med Logic Apps var dess visuella verktyg för att skapa arbetsflöden.

Jämfört med utveckling av applikationer i exempelvis C# så behövs knappt någon

kodkunskap alls med Azure, och Microsoft erbjuder flera mallar för att komma i

gång. Dock krävs det många steg för att utföra till synes enkla beräkningar, vilket

gör att traditionell kod är mer koncis och lättläslig för större projekt. Cloudstep

stödde analysprocessen genom framställningen av profiler som kunde jämföras för

att direkt upptäcka begränsningar. Dessutom var det lättare att skapa ett testprojekt

då applikationens väsentliga funktioner var etablerade. Dessvärre uppvisar

Cloudstep svagheter då modellen appliceras på en modern molntjänst. Skapandet

av profiler är tidskrävande, och flera begränsningar blev uppenbara först efter flera

iterationer. Detta beror delvis på en brist av tydlig dokumentation av Azures

funktioner, samt avsaknaden av testande i ett tidigt skede av Cloudstep-processen.

65

9.7 Avslutning

I denna avhandling har en migrering till molnet undersökts med hjälp av Cloudstep-

beslutsprocessen. Lämpligheten av Cloudstep analyserades även då det tillämpas

på en modern molntjänst såsom Microsoft Azure. Beslutsprocessen följdes, varefter

ett småskaligt projekt utvecklades till Azure Logic Apps. Efter en utvärdering av

testprojektet blev det tydligt att ett större fokus på Azure Functions skulle gynna

projektet, eftersom C#-koden från den ursprungliga applikationen då delvis kunde

återanvändas. Svåra datahanteringsoperationer kräver flera steg i Logic Apps-

arbetsflöden och gör hela processen svårläslig.

Profilerna som skapades för Cloudstep hjälpte migreringen, men beslutsprocessen

kunde uppdateras för att bättre passa nya molntjänster. Små testprojekt borde

skapas direkt för att upptäcka begränsningar och undersökandet av andra

molntjänster kunde ersättas med alternativa lösningar inom samma plattform. I

framtiden kunde skräddarsydda Cloudstep-beslutsprocesser skapas för specifika

molntjänster, men tjänsteleverantörer kunde även förbättra sina egna

analysprocesser.

66

References

[1] Gartner, Gartner Forecasts Worldwide Public Cloud End-User

Spending to Grow 23% in 2021, Gartner.com, 21-Apr-2021. [Online].

Available: https://www.gartner.com/en/newsroom/press-

releases/2021-04-21-gartner-forecasts-worldwide-public-cloud-end-

user-spending-to-grow-23-percent-in-2021 [Accessed: 25-May-2021]

[2] T. Grance and P. Mell, The NIST Definition of Cloud

Computing, Computer Security Division, NIST, Gaithersburg, Sep-

2011. [Online]. Available:

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-

145.pdf [Accessed 25-May-2021]

[3] S. Vennam, Cloud Computing, IBM.com, 18-Aug-2020. [Online].

Available: https://www.ibm.com/cloud/learn/cloud-computing

[Accessed 25-May-2021]

[4] K. Chandrasekaran, 2015. Essentials of cloud computing (1st edition).

Boca Raton: CRC Press.

https://abo.finna.fi/Record/abo_electronic_aa.9913542526305972

[5] Microsoft, What is a private cloud? [Online]. Available:

https://azure.microsoft.com/en-us/overview/what-is-a-private-cloud/

[Accessed 26-May-2021]

[6] Y. Duan, G. Fu, N. Zhou, X. Sun, N. C. Narendra and B. Hu, Everything

as a Service (XaaS) on the Cloud: Origins, Current and Future Trends,

2015 IEEE 8th International Conference on Cloud Computing, 2015,

pp. 621-628

 https://ieeexplore.ieee.org/document/7214098

[7]

Gartner, Gartner Forecasts Worldwide Public Cloud End-User

Spending to Grow 18% in 2021, Gartner.com, 17-Nov-2020. [Online].

Available: https://www.gartner.com/en/newsroom/press-

releases/2020-11-17-gartner-forecasts-worldwide-public-cloud-end-

user-spending-to-grow-18-percent-in-2021 [Accessed 27-May-2021]

[8]

S. Murugesan & I. Borislava, Encyclopedia of cloud computing. 2016,

Chichester, West Sussex, United Kingdom; Hoboken, NJ: Wiley.

https://abo.finna.fi/Record/abo_electronic_aa.9913459025005972

[9]

Microsoft, Azure. [Online]. Available: https://azure.microsoft.com/

[Accessed 3-Dec-2021]

https://www.gartner.com/en/newsroom/press-releases/2021-04-21-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-23-percent-in-2021
https://www.gartner.com/en/newsroom/press-releases/2021-04-21-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-23-percent-in-2021
https://www.gartner.com/en/newsroom/press-releases/2021-04-21-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-23-percent-in-2021
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://www.ibm.com/cloud/learn/cloud-computing
https://abo.finna.fi/Record/abo_electronic_aa.9913542526305972
https://azure.microsoft.com/en-us/overview/what-is-a-private-cloud/
https://ieeexplore.ieee.org/document/7214098
https://www.gartner.com/en/newsroom/press-releases/2020-11-17-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-18-percent-in-2021
https://www.gartner.com/en/newsroom/press-releases/2020-11-17-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-18-percent-in-2021
https://www.gartner.com/en/newsroom/press-releases/2020-11-17-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-18-percent-in-2021
https://abo.finna.fi/Record/abo_electronic_aa.9913459025005972
https://azure.microsoft.com/

67

[10]

Janakiram M.S.V., A Look Back At Ten Years Of Microsoft Azure,

Forbes, 3-Feb-2020. [Online]. Available:

https://www.forbes.com/sites/janakirammsv/2020/02/03/a-look-back-

at-ten-years-of-microsoft-azure/?sh=7a1363254929 [Accessed 27-

May-2021]

[11]

Talend Knowledge Center, What is a Legacy System? [Online]

Available: https://www.talend.com/resources/what-is-legacy-system/

[Accessed 27-May-2021]

[12]

A. Dapre, Microsoft Azure at Sibos 2018 – Intelligent Banking,

Microsoft Industry Blogs. [Online]. Available:

https://cloudblogs.microsoft.com/industry-blog/financial-

services/2018/10/16/microsoft-azure-at-sibos-2018-intelligent-banking

[Accessed 27-May-2021]

[13]

Microsoft, Cloud Migration Simplified, 18-May-2020. [Online].

Available: https://azure.microsoft.com/en-us/resources/cloud-

migration-simplified/ [Accessed 27-May-2021]

[14]

S. Orban (based on blog series by), Migrating to AWS: Best Practices

and Strategies, Amazon Web Services. [Online]

https://d1.awsstatic.com/Migration/migrating-to-aws-ebook.pdf

[15]

P. V. Beserra, A. Camara, R. Ximenes, A. B. Albuquerque and N. C.

Mendonça, Cloudstep: A step-by-step decision process to support

legacy application migration to the cloud, 2012 IEEE 6th International

Workshop on the Maintenance and Evolution of Service-Oriented and

Cloud-Based Systems (MESOCA), 2012, pp. 7-16

https://ieeexplore.ieee.org/document/6392602

[16]

A. S. Roy, How does facebook handle the 4+ petabyte of data generated

per day? Cambridge Analytica - facebook data scandal, Medium.com,

16-Sep-2020, [Online]. Available:

https://medium.com/@srank2000/how-facebook-handles-the-4-

petabyte-of-data-generated-per-day-ab86877956f4 [Accessed 27-May-

2021]

[17]

Oracle, What is Big Data? [Online]. Available:

https://www.oracle.com/big-data/what-is-big-data/ [Accessed 27-May-

2021]

[18]

A. Doan, A. Halevy, & Z. G. Ives, 2012. Principles of data integration.

(1st edition). Waltham, Mass.: Morgan Kaufmann.

https://abo.finna.fi/Record/abo_electronic_aa.9913437576105972

https://www.forbes.com/sites/janakirammsv/2020/02/03/a-look-back-at-ten-years-of-microsoft-azure/?sh=7a1363254929
https://www.forbes.com/sites/janakirammsv/2020/02/03/a-look-back-at-ten-years-of-microsoft-azure/?sh=7a1363254929
https://www.talend.com/resources/what-is-legacy-system/
https://cloudblogs.microsoft.com/industry-blog/financial-services/2018/10/16/microsoft-azure-at-sibos-2018-intelligent-banking
https://cloudblogs.microsoft.com/industry-blog/financial-services/2018/10/16/microsoft-azure-at-sibos-2018-intelligent-banking
https://azure.microsoft.com/en-us/resources/cloud-migration-simplified/
https://azure.microsoft.com/en-us/resources/cloud-migration-simplified/
https://d1.awsstatic.com/Migration/migrating-to-aws-ebook.pdf
https://ieeexplore.ieee.org/document/6392602
https://medium.com/@srank2000/how-facebook-handles-the-4-petabyte-of-data-generated-per-day-ab86877956f4
https://medium.com/@srank2000/how-facebook-handles-the-4-petabyte-of-data-generated-per-day-ab86877956f4
https://www.oracle.com/big-data/what-is-big-data/
https://abo.finna.fi/Record/abo_electronic_aa.9913437576105972

68

[19]

Latt, An overview of Data Lake concepts and architecture on AWS and

Azure, FAUN, 13-Sep-2020. [Online]. Available:

https://faun.pub/an-overview-of-data-lake-concepts-and-architectures-

on-aws-and-azure-f485ed5110e2 [Accessed 27-May-2021]

[20]

J. Kutay, ETL vs ELT: Key Differences and Latest Trends. Striim Blog,

5-Mar-2021. [Online]. Available: https://www.striim.com/etl-vs-elt-2/

[Accessed 3-Dec-2021]

[21]

R. Sherman & C. Imhoff, 2015. Business intelligence guidebook: From

data integration to analytics. 1st edition. Waltham, Massachusetts:

Morgan Kaufmann.

https://abo.finna.fi/Record/abo_electronic_aa.9913431336005972

[22]

A. Reeve, 2013. Managing data in motion: Data integration best

practice techniques and technologies. 1st edition. Waltham, Mass.:

Morgan Kaufmann.

https://abo.finna.fi/Record/abo_electronic_aa.9913435685705972

[23]

R. F. v. d. Lans, 2012. Data virtualization for business intelligence

architectures: Revolutionizing data integration for data warehouses.

1st edition. Amsterdam; Boston: Elsevier/MK.

https://abo.finna.fi/Record/abo_electronic_aa.9913439498705972

[24]

M. Reddy, 2011. API design for C++. 1st edition. Boston:

Elsevier/Morgan Kaufmann.

https://abo.finna.fi/Record/abo_electronic_aa.9913448889905972

[25]

D. Jacobson, G. Brail and D. Woods. APIs: A Strategy Guide, Dec-

2011. Sebastopol, CA: O’Reilly.

https://books.google.fi/books?id=pLN7BxMTg7IC

[26]

M. Medjaoui, E. Wilde, R. Mitra, M. Amundsen, Continuous API

Management: Making the Right Decisions in an Evolving Landscape,

14-Nov-2018. Sebastopol. CA. O’Reilly.

https://books.google.fi/books?id=P9B5DwAAQBAJ

[27]

A. Macoveiciuc, Beginner’s Guide to APIs, Protocols and Formats.

29-Apr-2020. [Online]. Available:

https://frontend-digest.com/beginners-guide-to-apis-protocols-and-

data-formats-f80cf7f30425 [Accessed 3-Dec-2021]

[28]

R. T. Fielding. Architectural Styles and the Design of Network-based

Software Architectures. PhD Dissertation, Information and Computer

Science. University of California, Irvine, 2000

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

[29]

What is REST, Restfulapi.net, Updated 19-Oct-2021.

 [Online]. Available: https://restfulapi.net/ [Accessed 3-Dec-2021]

https://faun.pub/an-overview-of-data-lake-concepts-and-architectures-on-aws-and-azure-f485ed5110e2
https://faun.pub/an-overview-of-data-lake-concepts-and-architectures-on-aws-and-azure-f485ed5110e2
https://www.striim.com/etl-vs-elt-2/
https://abo.finna.fi/Record/abo_electronic_aa.9913431336005972
https://abo.finna.fi/Record/abo_electronic_aa.9913435685705972
https://abo.finna.fi/Record/abo_electronic_aa.9913439498705972
https://abo.finna.fi/Record/abo_electronic_aa.9913448889905972
https://books.google.fi/books?id=pLN7BxMTg7IC
https://books.google.fi/books?id=P9B5DwAAQBAJ
https://frontend-digest.com/beginners-guide-to-apis-protocols-and-data-formats-f80cf7f30425
https://frontend-digest.com/beginners-guide-to-apis-protocols-and-data-formats-f80cf7f30425
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://restfulapi.net/

69

[30]

Swaggerhub, swagger.io. [Online]. Available:

https://swagger.io/tools/swaggerhub/ [Accessed 3-Dec-2021]

[31]

JSON vs XML, Restfulapi.net, Updated 27-Sep-2021. [Online].

Available: https://restfulapi.net/json-vs-xml/ [Accessed 3-Dec-2021]

[32]

B. Cooksey, An Introduction to APIs, Chapter 3: Data Formats.

Zapier, 22-Apr-2014. [Online]. Available:

https://zapier.com/learn/apis/chapter-3-data-formats/ [Accessed 3-

Dec-2021]

[33]

About IFS, Ifs.com. [Online]. Available:

https://www.ifs.com/company/about-ifs/ [Accessed 3-Dec-2021]

[34]

J. Fancey, New Logic Apps runtime, performance and developer

improvements. Microsoft Tech Community, 21-Sep-2020. [Online].

Available: https://techcommunity.microsoft.com/t5/azure-developer-

community-blog/new-logic-apps-runtime-performance-and-developer-

improvements/ba-p/1645335 [Accessed 3-Dec-2021]

[35]

Microsoft Docs, What is Azure Logic Apps?, Updated 26-Oct.2021.

[Online]. Available: https://docs.microsoft.com/en-us/azure/logic-

apps/logic-apps-overview [Accessed 3-Dec-2021]

[36]

Microsoft, Azure Logic Apps, Azure. [Online]. Available:

https://azure.microsoft.com/en-us/services/logic-apps/#overview

[Accessed 3-Dec-2021]

[37]

Microsoft, Logic Apps pricing, Azure. [Online]. Available:

https://azure.microsoft.com/en-us/pricing/details/logic-apps/

[Accessed 3-Dec-2021]

[38]

Microsoft, Azure functions pricing, Azure. [Online]. Available:

https://azure.microsoft.com/en-gb/pricing/details/functions [Accessed

3-Dec-2021]

[39] Microsoft Docs, Azure Infrastructure Security, Microsoft

Documentation, 11-Nov-2021. [Online]. Available:

https://docs.microsoft.com/en-

us/azure/security/fundamentals/infrastructure [Accessed 3-Dec-2021]

[40] HiQ, Frends [Online]. Available: https://frends.com/ [Accessed 3-Dec-

2021]

https://swagger.io/tools/swaggerhub/
https://restfulapi.net/json-vs-xml/
https://zapier.com/learn/apis/chapter-3-data-formats/
https://www.ifs.com/company/about-ifs/
https://techcommunity.microsoft.com/t5/azure-developer-community-blog/new-logic-apps-runtime-performance-and-developer-improvements/ba-p/1645335
https://techcommunity.microsoft.com/t5/azure-developer-community-blog/new-logic-apps-runtime-performance-and-developer-improvements/ba-p/1645335
https://techcommunity.microsoft.com/t5/azure-developer-community-blog/new-logic-apps-runtime-performance-and-developer-improvements/ba-p/1645335
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-overview
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-overview
https://azure.microsoft.com/en-us/services/logic-apps/#overview
https://azure.microsoft.com/en-us/pricing/details/logic-apps/
https://azure.microsoft.com/en-gb/pricing/details/functions
https://docs.microsoft.com/en-us/azure/security/fundamentals/infrastructure
https://docs.microsoft.com/en-us/azure/security/fundamentals/infrastructure
https://frends.com/

70

Appendix

Appendix A: OpenAPI specification for PATCH-call in IFS ERP. The specification

contains API calls with example responses. Attributes and formats of the response can be

seen in the ‘Models’ box (bottom right). OpenAPI file is displayed using SwaggerHub

[30]

71

Appendix B: Mapping table for AvIF integration (reduced to only include relevant

information for pilot project).

XML file field Constraints Modifications IFS field
<item_code> Mandatory field.

Part no

<item_ver>
<item_create_
date>

Create_date Man
datory field

Form revison text using
following logic:
Rev. <item_ver>
(<item_create_date>)
Where item_ver default is 1
and item_create_date is
date where time has been
removed

Part Revision
Revision_text

<item_type> Mandatory field Determines what headers
are created in IFS.
Uses mapping table

Not brought
into IFS

<item_group> Mandatory field.
Header group (5
first characters)
must exist in IFS.

From 2 part groups.

Part group 1:
• First 5 chars
• All letters from start
• After that, max 2

numbers
• Example: AB12 (From

AB1234)

Part group 2:
• 5 first characters

Inventory
Part
Prime_comm
odity (header
group 1)
Second_com
modity (
header
group 2)

<item_status> Must be
ACCEPTED.

<item_magnitu
de>

Mandatory field . Convert all characters to
lowercase. Change:
• Mm => m

• Kpl => pcs

Part Catalog
Unit_code

Inventory Part
Unit_meas

<item_desc1><
item_desc2>

Item_desc1 Mand
atory field .

Desc1 + desc2 separated
with whitespace

Part Catalog /
Inventory Part
/ Purchase
Part
description

<mass>

Part catalog
Weight_net

<drawing_numb
er>

Inventory
part
Type_designa
tion

<length>
<width>

Form combined value:
L=<length> x W=<width>

Inventory Part
Dim_quality

72

Appendix C: Full code for part catalog PATCH API call using Azure Function App

public static class PartCatalogPatch
 {
 [FunctionName("PartCatalogPatch")]
 public static async Task<IActionResult> Run(
 [HttpTrigger(AuthorizationLevel.Anonymous, "patch", Route = null)] HttpRequest req,
 ILogger log)
 {
 ApiClass.InitializeClient();

 var reader = new StreamReader(req.Body);
 reader.BaseStream.Seek(0, SeekOrigin.Begin);
 var rawJson = reader.ReadToEnd();

 PartCatalog part = JsonConvert.DeserializeObject<PartCatalog>(rawJson);

 bool success = ApiCalls.UpdatePartCatalog(part.PartNo, rawJson, log).Result;

 return new OkObjectResult(success ? "Success" : "Failed");
 }
 }

public static void InitializeClient()
 {
 //unsafe!
 var handler = new HttpClientHandler()
 {
 ServerCertificateCustomValidationCallback = HttpClientHandler.DangerousAcceptAnyServerCertificateValidator
 };

 ApiClient = new HttpClient(handler);
 ApiClient.DefaultRequestHeaders.Accept.Clear();
 ApiClient.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue("application/json"));
 ApiClient.BaseAddress = new Uri(Environment.GetEnvironmentVariable("BaseUrl", EnvironmentVariableTarget.Process));

 string basicAuth = Environment.GetEnvironmentVariable("BasicUser", EnvironmentVariableTarget.Process) + ":" +
Environment.GetEnvironmentVariable("BasicPassword", EnvironmentVariableTarget.Process);
 var byteArray = Encoding.ASCII.GetBytes(basicAuth);
 ApiClient.DefaultRequestHeaders.Authorization = new System.Net.Http.Headers.AuthenticationHeaderValue("Basic",
Convert.ToBase64String(byteArray));

 }

public static async Task<bool> UpdatePartCatalog(string partNo, string partJson, ILogger log)
 {
 string url = "PartHandling.svc/PartCatalogSet(PartNo='" + partNo + "')";
 try
 {
 ServicePointManager.SecurityProtocol = SecurityProtocolType.Tls12;
 var content = new StringContent(partJson.ToString(), Encoding.UTF8, "application/json");
 ApiClass.ApiClient.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue("application/json"));

 using (HttpResponseMessage response = await ApiClass.ApiClient.PatchAsync(ApiClass.ApiClient.BaseAddress + url, content))
 {

 if (response.IsSuccessStatusCode)
 {
 return true;
 }

 else
 {
 Console.WriteLine("Error");
 throw new Exception(response.ReasonPhrase);
 }
 }
 }

 catch (Exception e)
 {
 if (e.Source != null)
 Console.WriteLine("Exception {0} source: {1}, {2}", e.InnerException, e.Message, e.HelpLink);
 throw;
 }
 }

