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Abstract 

Many companies are working on autonomous systems, such as autonomous 

vehicles and autonomous vessels, as the solution to reduce human errors that 

can result in huge losses. Over the past decade, various machine learning 

techniques were implemented for controlling autonomous systems. Due to the 

safety-critical nature of autonomous systems, it is important to ensure software 

safety along with the safety of the physical system of an autonomous system. In 

this paper, a systematic literature review method is used to analyse the various 

aspects of software safety in an autonomous system. Specifically, this paper 

assesses the existing techniques, such as software development guidelines, 

system design and architecture, machine learning techniques, and formal 

verification methods, to ensure software safety in autonomous systems and 

summarizes the challenges referred to in the literature concerning software 

safety of autonomous systems. The results presented in this paper are relevant 

to the researchers seeking better methods to ensure software safety in 

autonomous systems. 

Keywords: Systematic literature review; Autonomous system; Reinforcement 

learning; Q-learning; Software safety; Autonomous vehicles; Machine learning; 

Software architecture; Software design; System architecture. 
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1. Introduction 
An autonomous system is referred to as an automated system that will operate 

itself in response to external conditions and without any human intervention. The 

requirements for a system to be autonomous are sensing the environment and 

keeping the record of the state, perceiving, and understanding the data sources, 

determining the response to the environment, and acting only when it is safe to 

do so. The application of autonomous systems was limited to industrial settings 

for many years but in recent years, autonomous systems have gradually become 

involved in people’s everyday life as a means of transportation or entertainment. 

Approximately 94% of road accidents are caused by human error [17]. While 

designing a vehicle in an automotive domain, the development of dependable 

motion control systems has a key role. Before the last two decades, motion 

control systems such as steering and braking systems were dependent on 

mechanical components and operated independently of one another. However, 

in recent decades, motion control systems are developed using electronics and 

software such as power steering, crash mitigation braking, and adaptive cruise 

control. Under some circumstances, such advanced features operate 

independently of drivers, and multiple motion control systems may activate 

simultaneously based on the actions taken by other features.  

Many kinds of autonomous controls were used in various modes of transportation 

for many decades. The first autopilot in an aircraft was developed nearly a 

century ago. Similarly, autopilots for ships were developed after those for 

aircrafts. Since then, the level of automation in various modes of transportation 

has been developed dramatically and changed the man-machine relationship. 

Driverless trains were also developed nearly half a century ago. In 1905, a global 

association of engineers and related technical experts in the aerospace, 

automotive, and commercial-vehicle industries was inaugurated which is known 

as the Society of Automotive Engineers (SAE) International. Depending on 

human assistance, it has defined a taxonomy with detailed definitions for six 

levels of automation for autonomous vehicles (AV) as shown in Table 1. 
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Level Definition 

0 No Driving Automation 

1 Driver Assistance 

2 Partial Driving Automation 

3 Conditional Driving Automation 

4 High Driving Automation 

5 Fully Driving Automation 

Table 1. SAE levels Table 1. SAE levels of automation [53] 

At level 0, a driver is fully responsible for controlling the vehicle, whereas vehicle 

systems are limited to providing warnings and momentary assistance. Similarly, 

at level 1, the driver cooperates with the vehicle system to increase driving 

performance. At level 2, the vehicle system is more responsible for controlling 

the vehicle, although the driver should be in an alert position to intervene 

whenever needed. The attention of the driver is less strictly required in level 3 

than in level 2. The vehicles included in level 3 have limited capability to control 

and perceive through sensors. The vehicles that are classified into level 4 are 

considered highly automated vehicles. These vehicles are operated in 

predefined modes and can perform all tasks including safety-critical ones, 

without any need for human assistance, if only the required conditions are met. 

the level 5 vehicles are fully driven by the vehicle system in all conditions and 

without any human intervention [16]. 

Along with the gradual development of autonomous systems, advanced 

technology such as enhanced sensor systems, high computational power, 

software design paradigms, artificial intelligence (AI), and machine learning (ML) 

were developed that helped to make the autonomous systems more significant 

[46]. All of these are related to the software directly or indirectly. Autonomous 

systems are also known as cyber-physical systems because they integrate 

sensing, computation, control, and networking into physical objects, connecting 

them to the internet and to each other autonomous systems are gradually 

integrating with people’s lives, it has become critical to research and develop 

effective quality assurance methods to prevent loss as early as possible. Hence, 

it is very important to ensure the software safety of autonomous systems.  

In general, data-driven software development processes, complying with safety 

standards (ISO 26262 and IEC 61508), and applying automation to design, 

verification, and validation are considered as building blocks to develop safe 
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software for autonomous systems. A secure development process of software is 

essential to keep the external interference out. This can be achieved by following 

good software developing practices, such as doing continuous testing to remove 

the security vulnerabilities, analysing the risks and hazards, and keeping the 

control over build/release environment to prevent an external attack. Also, using 

various tools to design and validate the software may help to increase software 

safety. In addition, it is important to follow safety standards like ISO 26262 and 

IEC 61508 in autonomous systems as they were developed by experts and 

ensure the overall safety of autonomous systems.  

In this paper, unmanned aerial vehicles (UAV and drones), autonomous vehicles, 

and vessels are overall termed autonomous systems. Both partial and fully 

autonomous systems are included in this work. The methods to ensure software 

safety in autonomous systems and their importance are the main motivation of 

the study. The results are presented in this paper as a Systematic Literature 

Review (SLR) of the existing methodologies and tools used to support the study.  

The rest of the paper is organized as follows: Chapter 2 describes the research 

methodology which includes research questions and other contexts of study along 

with a general classification of the papers resulting from the literature search. 

Chapter 3 presents the results of the literature review on existing methodologies. 

Chapter 4 analyses and discusses more specific SLR results. Chapter 5 

concludes the theme of the paper with general remarks. 

2. Research Methodology 
This survey adopts the guidelines for SLR in software engineering from 

Kitchenham and Charters, 2007 and Kitchenham et al., 2010. Following the 

guidelines, this paper is presented as a foundation for the researchers and 

practitioners seeking hints related to the study.  

2.1. Research Questions 

The aim of this SLR is to analyse the methods to ensure software safety in 

autonomous systems. To meet the proposed objectives of the study, the 

research questions are defined as follows. 
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RQ1: Are there any guidelines to ensure software safety in autonomous 

vehicles? What kind of guidelines are available? 

The main aim of RQ1 is to find out if there are any guidelines and standards 

available to create safe software for the autonomous system. If so, the main 

concern will be whether they are developed by the experts or a relevant 

organization and how they address the solution to the topic of study. 

RQ2: What is the role of system design and architecture in autonomous 

systems? 

This question is created to answer the queries related to the software 

development process and software architecture in an autonomous system. An 

inappropriate design and architecture may lead the system to fail. Also, there 

might be various software components to be considered during the development 

for its robustness. Hence, RQ2 is important. 

RQ3: Evaluate available ML approaches for software safety of autonomous 

systems. 

Various modelling techniques, such as machine learning and artificial 

intelligence, are implemented in various forms on autonomous systems. The 

goal here is to evaluate the most effective techniques used for the software 

safety of autonomous systems. 

RQ4: Are there any frameworks or tools available to ensure software safety of 

autonomous systems? If so, what kind of frameworks are available? 

The core objective of this research question is to determine the framework tools 

available to produce a quality software and report them. 

RQ5: How does verification and validation of software help in software safety? 

Verification and validation (VV) of software helps to develop quality software by 

mitigating risks and chances of failure. VV also evaluates the weakness of 

software and prevents the build/release from unauthorized access. Thus, RQ5 

is questioned to evaluate the existing VV methods. 
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RQ6: Are there any other approaches that improve a safety critical system? 

The goal of this question is to research and evaluate the other approaches that 

help to improve software safety. An autonomous system has been a hot topic for 

the last few decades. Several methods and approaches have gradually been 

developed to enhance the autonomous system. Therefore, RQ6 is meant to 

determine the other approaches relevant to the study. 

2.2. Search Process 

A comprehensive search for primary studies was done online through some 

digital libraries: IEEE Xplore, Mendeley, SpringerLink, ACM Digital Library, 

Elsevier ScienceDirect, and Google Scholar. Only the studies written in English 

were considered. Google search was also used to gather some vital information. 

The search keywords are very important when doing an online search in digital 

libraries to retrieve high-quality results and coverage. For the search, the 

following search keywords were used: ‘software safety’, ‘standards’, ‘software 

architecture’, ‘Q learning’, ‘autonomous system’, and ‘reinforcement learning’. To 

retrieve the quality result related to the study and using the search keywords, the 

search strings were formulated as follows: 

A. ‘Software safety’ AND ‘autonomous system' 

B. ‘Software safety’ AND ‘standards’ 

C. ‘Software safety’ AND ‘software architecture’ 

D. ‘Q learning’ AND ‘autonomous system’ 

E. ‘Reinforcement learning’ AND ‘autonomous system’ 

Using the strings above, 96 papers were collected from digital databases (Step 

1 in figure 1). After screening through the papers briefly based on title, abstract, 

and introduction, about 33 papers are found to be irrelevant to the study of 

interest.  

2.3. Inclusion and Exclusion 

Furthermore, inclusion and exclusion criteria were applied to refine the studies. 

As shown in figure 1 (Step 3), the criteria were applied to the chosen 63 papers 

for refinement, and the number of studies to be considered dropped to 51. The 

papers that describe the existing software safety approach in autonomous 

systems, methods to ensure software safety, and compliance with software 
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safety standards are defined as inclusion criteria. The study that describes the 

safety of autonomous systems in terms of hardware or physical body only, written 

in different languages other than English, incomplete or duplicated studies, 

tutorials, and editorials are defined as exclusion criteria. 

 

Figure 1. Overview of the selection of primary studies 

 

2.4. Quality Assessment 

The resourcefulness or confidence of the research papers is evaluated using the 

quality assessment (QA) questions. The questionaries are mainly aimed to 

evaluate the relevance and significance of the studies. The QA questions are 

listed below. 

QA1. Is the research objective being properly elucidated?  

QA2. Is the proposed method clearly defined? 
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QA3. Does the paper define findings and results properly? 

QA4. Are the limitations of this study explicitly discussed? 

Based on the QA questions, a quality score is allotted for each study. The grading 

of a study is done as follows. 

• 1, if the study answered the question satisfactorily 

• 0.5, if the study answered the question partly 

• 0, if the study was not able to answer the question 

The result of the QA is shown in Table 2. 

Study Author QA1 QA2 QA3 QA4 Total 

Score 

S1 Zuo et al. (2020) 1 1 1 0 3 

S2 Okuyama et al. (2018) 1 1 1 0 3 

S3 Lee et al. (2017) 1 1 0.5 0 2.5 

S4 Beine (2010) 1 1 0 0 2 

S5 Strauss and Sahin (2008) 1 1 1 0.5 3.5 

S6 Wang et al. (2017) 1 0.5 0.5 0 2 

S7 Mallozzi (2017) 1 1 0 0 2 

S8 Kiran et al. (2021) 1 1 0.5 1 3.5 

S9 Wang and Chan (2017) 1 1 0 0 2 

S10 Vierhauser et al. (2018) 1 0.5 0 0.5 2 

S11 Deshmukh et al. (2019) 1 1 1 0 3 

S12 Pendleton et al. (2017) 1 1 1 0 3 

S13 Sward (2005) 1 1 0 0 2 

S14 Afzal (2018) 1 1 0 0 2 

S15 Fulton and Platzer (2018) 1 1 1 0 3 

S16 Rajabli et al. (2020) 1 1 1 1 4 

S17 Culley et al. (2020) 1 0.5 0.5 0.5 2.5 

S18 Furst (2019) 0.5 0.5 0.5 0 1.5 

S19 McDermid et al. (2019) 1 0.5 0.5 1 3 

S20 Hardin (2021) 1 1 0.5 0 2.5 

S21 Alberri et al. (2018) 1 1 1 0 3 

S22 Aniculaesei et al. (2018) 1 1 0 1 3 

S23 Beri and Mishra (2019) 1 1 1 0 3 

S24 Lyins and Zahra (2020) 1 1 0.5 0 2.5 

S25 Wesel and Goodloe (2017) 1 1 0.5 1 3.5 

S26 Zhang et al. (2020) 1 0.5 0.5 0 2 

S27 Gambi et al. (2019) 1 1 0.5 0 2.5 

S28 Fehlmann and Kranich 

(2017) 

1 1 0.5 0 2.5 
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S29 Koopman and Wagner 

(2016) 

1 0.5 0 1 2.5 

S30 Tahir and Alexander (2020) 1 1 0.5 0 2.5 

S31 Meltz and Guterman (2019) 1 1 0 0 2 

S32 Jha et al. (2019) 1 1 1 0 3 

S33 Natella et al. (2012) 1 1 0.5 0.5 3 

S34 Kuutti et al. (2019) 1 1 0.5 0 2.5 

S35 Debouk et al. (2011) 1 1 0.5 0 2.5 

S36 Zhang and Li (2020) 1 1 0.5 0 2.5 

S37 Kim et al. (2017) 1 1 0 0 2 

S38 Bhat et al. (2018) 1 1 0 0 2 

S39 Gustavsson (2016) 1 1 0 0 2 

S40 MISRA (2001a) 1 1 0 0 2 

S41 MISRA (2001b) 1 1 0 0 2 

S42 MISRA (2001c) 1 1 0 0 2 

S43 MISRA (2001d) 1 1 1 0 3 

S44 Vuori (2011) 1 1 1 0.5 3.5 

S45 Salay et al. (2017) 1 1 0.5 0 2.5 

S46 Liu et al. (2020) 1 0.5 0.5 1 3 

S47 Ebert and Weyrich (2019) 0.5 1 0 0.5 2 

S48 Lera et al. (2016) 1 1 0.5 0 2.5 

S49 Liu et al. (2018) 1 1 0.5 0 2.5 

S50 Madan et al. (2016) 1 0.5 0.5 0 2 

S51 Whalen and Heimdahl (1999) 1 1 0.5 0 2.5 

 

Table 2. Quality Assessment of the studies 

Table 2 shows that most of the studies have scored 2 or more in terms of quality 

analysis. Only one has scored less than 2 ([S18]) while study [S16] has scored 

4 out of 4 in context to its quality.  

2.5. Data Extraction 

This stage aims to extract the appropriate information from the selected papers 

accurately and without bias. The extracted information should follow the study 

quality criteria and should also be able to answer the research questions defined 

in the protocol of this SLR. From each of the studies, bibliographic information 

on studies was extracted along with various information such as methods to 

develop safety-critical software, underlying software safety standards for 

autonomous systems, and tools available for ensuring software safety. 
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Publication Source Type Number 

The Motor Industry Software Reliability Association 
(MISRA) 

Book 4 

National Aeronautics and Space Administration (NASA) Technical 
Memorandum 

1 

IEEE Journal 9 

Elsevier Journal 1 

Agile Development of Safety-Critical Software Journal 1 

Society of Automotive Engineers (SAE) Journal 2 

Journal of Defense Modeling and Simulation: 
Applications, Methodology, Technology 

Journal 1 

CSEE Journal of Power and Energy Systems Journal 1 

Multidisciplinary Digital Publishing Institute (MDPI) Journal  1 

SAE International Journal of Transportation Safety Journal  1 

International Conference on Intelligent Autonomous 
Systems (ICoIAS) 

Conference 1 

Internation Conference on Ubiquitous Robots and 
Ambient Intelligence (URAI) 

Conference 1 

International Conference on System of Systems 
Engineering 

Conference 1 

Global Conference on Signal and Information 
Processing (GlobalSIP) 

Conference  1 

International Conference on Software Engineering 
Companion (ICSE-C) 

Conference 4 

International Conference on Intelligent Transporation 
Systems 

Conference 1 

International Conference on Computer-Aided Design 
(ICCAD) 

Conference 1 

IEEE Networking, Sensing and Control Conference 1 

European Software Engineering Conference and 
Symposium on the Foundation of Software 
(ESEC7FSE) 

Conference 1 

AAAI Conference on Artificial Intelligence Conference 1 

International Symposium on Communication Systems, 
Networks and Digital Signal Processing (CSNDSP) 

Conference  1 

International Systems Conference (SysCon) Conference 1 

International Conference on Vehicular Electronics and 
Safety (ICVES) 

Conference 1 

International Conference on Trends in Electronics and 
Informatics (ICOEI) 

Conference 1 

Security and Privacy Workshops (SPW) Conference 1 

International Workshop on Software Measurement 
(IWSM) 

Conference 1 

International Conference on Software Testing, 
Verification and Validation 

Conference 1 

International conference on Artificial Intelligence 
Testing (AITest) 

Conference 1 

International Conference on Intelligent Data 
Engineering and Automated Learning (IDEAL) 

Conference 1 
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International System Safety Society Conference Conference 1 

International Conference on Dependable Systems and 
Networks 

Conference 1 

XVII Workshop en Agentes Fisicos Conference 1 

Workshop on Cyber-Physical Systems Security and 
Privacy (CPS-SPC) 

Conference 1 

International Conference on Automated Software 

Engineering 

Conference 1 

International Workshop on Software Engineering for AI 
in Autonomous Systems 

Workshop 1 

CEUR Workshop  Workshop 1 

 

Table 3. Distribution of studies according to the publication venue 

Table 3 shows the number of publications found for each venue: book, technical 

memorandum, journals, conferences, and workshops. The study collection 

consists of one book, one technical memorandum, 17 journals, 27 conference 

papers and two workshop articles with the earliest article from year 1999 and the 

latest from 2021. 

2.6. Data Synthesis 

This section includes the further evaluation of the selected studies. The selected 

studies are categorized according to the topics addressed by the studies. Table 

4 shows the categorization of studies based on their essence. It is worth 

mentioning that there are some overlaps in the topic coverage of those 

classification. However, the main purpose of classification is to provide general 

overview on the papers and the categories will be described later in Section 3. 

Topics Studies 

Guidelines [S4], [S40], [S41], [S42], [S43], [S45] 

System architecture 
and design 

[S10], [S12], [S17], [S18], [S21], [S22], [S23], [S35], [S38], 
[S44], [S48], [S49], [S50] 

Machine Learning [S1], [S2], [S3], [S5], [S6], [S7], [S8], [S9], [S11], [S24], 
[S26], [S34] 

Safety assurance 
frameworks 

[S19], [S51] 

Formal Methods [S13], [S14], [S15], [S16], [S20], [S27], [S28], [S30], [S31], 
[S32], [S33], [S36], [S37], [S39], [S47] 

Challenges [S25], [S29], [S46] 

 

Table 4. Categorization of studies 
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In table 4, the studies related to various machine learning approaches such as 

reinforcement learning, deep neural network, Q-learning are classified into the 

category “Machine Learning” while “Guidelines” includes the studies related to 

safety standards of vehicles and general ideas to keep the software safe from 

external threats. Similarly, the studies that describe the formal methods to create 

safe software and methods to verify and validate the quality of software are 

categorized under “Formal Methods”.  

3. Methods to ensure software safety 

In this chapter, various ways to ensure the software safety of an autonomous 

system are overviewed. The guidelines and standards developed by various 

organizations are taken as a reference for developing safe autonomous systems. 

Similarly, autonomous system design, machine learning techniques, safety 

assurance frameworks, and formal methods illustrated by various authors are 

assessed as a systematic literature review with the purpose of gathering relevant 

information that might be vital for the subject-related researchers. 

Several papers describe various approaches and techniques to make an 

autonomous system safe. The essence of the papers is concluded under several 

headings in the following sections. 

3.1 Safety standards and guidelines to ensure safety 

Many guidelines and safety standards have been developed for the safety of 

autonomous vehicles concerning the development of safety-critical software and 

functional safety of the autonomous systems. The functionality safety standard 

ISO 26262 and automotive industrial standard IEC 61508 are discussed in this 

section along with model-based reference workflow as guidelines that help to 

follow safety standard ISO 26262. In addition, a consortium was established in 

the early 1990s, in response to the UK Safety-Critical Systems Research 

Programme to focus on coding security standards which are known as The Motor 

Industry Software Reliability Association (MISRA). At present, a set of rules 

developed by the association acts as guidelines in the automotive industry. Some 

of the relevant reports produced by MISRA are covered in this chapter.  
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3.1.1 ISO and IEC standards 

The study done by Beine [S4] illustrates the model-based software development 

to shorten the software development cycles while ensuring efficient 

implementation and conforming to relevant safety standards such as IEC 61508 

and ISO 26262. IEC 61508 is a generic industry standard that helped to derive 

other industry-specific standards for process industry (IEC 61511), nuclear 

power plants (IEC 61513) and machinery (IEC 61513). Similarly, ISO 26262 is a 

widely followed standard for the development of safety-critical E/E 

(Electrical/Electronic) systems and requirements applicable to the automotive 

industry to safeguard the systems from failures [4]. ISO 26262 mainly sets a rule 

for functional safety of the road vehicles using the Hazard Analysis and Risk 

Assessment (HARA) method to identify and remove the hazards in the system. 

The potential hazards can be known or unknown. The known behaviour/ hazards 

can be removed by doing requirements-based testing, whereas unknown 

potential hazards can be addressed with scenario-based testing. Scenario-

based testing refers to converting driving scenarios into test cases to reduce the 

risk while validating the behaviour of an autonomous system. ISO 26262 are 

divided into 10 parts. The 6th part of the standard (ISO 26262-6) defines the V-

model and is focused on the safety-critical software development cycle which 

recommends the use of designs and coding guidelines for modelling as well as 

programming languages [45]. 

 

Figure 2: V-model in ISO 26262-6 [16] 
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In the V-model, as shown in Figure 2, the left side represents the waterfall model 

while the right side represents the incremental verification and validation process 

applied to the waterfall model. ISO 26262 also defines the risk classification 

scheme for a subsystem in an automotive system which is known as Automotive 

Safety Integrity Level (ASIL). The scheme represents the degree of accuracy 

required, such as testing techniques and documentation types to reduce the risk 

of the subsystem. The highest risk is represented by ASIL D, whereas ASIL A 

represents the lowest risk [45]. 

In contrast to non-safety critical software development and code-based 

development, all the additional requirements including specific requirements in 

the relevant safety standards must be met when developing safety-critical 

software. In such conditions, a reference workflow can provide the guidance to 

follow the safety requirements of ISO 26262 or IEC 61508 standard in developing 

software up to and including ASIL D or SIL 3 respectively. Model-based 

development and automatic code generation have played a significant role in the 

software development processes in recent years. These methods have been 

deployed successfully in various automotive and aerospace industries. These 

methods have also improved the software development life cycle by reducing the 

development times, improving the quality of the product due to more precision, 

and early verification and validation by means of simulation. The best practices 

and experience from the real-world projects are considered in terms of software 

safety and a reference workflow for the development of safety-critical software 

has been prepared for various established toolchains such as MATLAB, 

Simulink, Stateflow, and TargetLink. Such model-based development includes 

automatic code generation and model-based testing methods [4]. 

 

Figure 3: An overview of model-based reference workflow [4] 
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In Figure 3, an overview of model-based reference workflow is shown which 

consists of general elements of the processes. The figure shows that the 

requirements are designed and implemented in an executable model, which then 

is translated into code using the code generation method. The stage from 

requirements to model requires model verification which is done by model 

simulation and requirement-based testing. Similarly, the code generated from the 

model is verified by back-to-back testing, directly comparing the intended 

functional behaviour of the model and code. The key element of this workflow is 

the verification of automatically generated code against the model [4]. 

3.1.2 MISRA guidelines 

The MISRA consortium was formed with a mission to aid the automotive industry 

in the creation and application of a safe and reliable software in a vehicle. The 

consortium provides detailed guidelines for software lifecycle to ensure software 

safety which includes project planning, integrity, requirements specification, 

design, programming, testing, and product support. Furthermore, the consortium 

focuses on several factors in software development such as human factors, 

quality assurance, documentation, and team management to enhance the 

software quality [40].  

In the study [S41], the MISRA consortium has reported the role of software in the 

design of control systems in terms of theory, design, and practical 

considerations. The study defines the control theory and its role in the 

development of safe and reliable software. In fact, control theory is a 

mathematical description of the behaviour of dynamic systems that varies with 

time and is typically applied to feedback systems, where a proportion of output 

is fed as input to the system. The report has also emphasized automatic code 

generation after a system is designed and modelled. However, the code 

generated can be optimized or adjusted further based on the requirements [41]. 

In the study [S42], MISRA has documented the software metrics and attributes 

which help to measure the quality of the software. Software process metrics help 

to improve the development process by providing information about its 

performance. Such information or data assists in highlighting the areas of 

inefficiency or error-prone areas of the process and the ultimate quality of the 
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software being produced. The basic metrics suggested by the study are the 

estimated duration of each task, actual effort spent on tasks and the number of 

defects detected. The study also suggests that software reliability can be 

achieved by improving the design strategies, such as defensive programming, 

diversity, or redundancy of the software. Defensive programming allows the 

software to take specific actions in case some failure occurs. Likewise, the 

diversity of the software removes some risks that are common causes for 

failures. Similarly, software redundancy allows another version of the software to 

continue the operation if a version of the software becomes corrupt. In addition, 

it is also reported that the testability of the system is essential. A software system 

and its software component should be designed in such a way that the functions 

can be fully tested to validate their requirements [42]. 

Moreover, the study [S42] has also defined a maturity index as a metric to specify 

the degree of functional change incorporated into a version of a software system. 

In fact, this metric is useful to quantify the readiness of software and is calculated 

as below. 

Maturity index= (Mt−(Fa+Fc+Fd))/Mt 

where,   Mt = number of software functions in current delivery 

Fa = number of additional modules 

Fc = number of changed modules 

Fd = number of deleted modules 

The formula above indicates that the maturity applies to all existing software 

components used in the software system and to any software tools used in the 

specification, development, integration, test, and maintenance of the system. 

The study [S43] is also a report of the MISRA consortium regarding the 

verification and validation of the software subsystems. The report suggests that 

verification and validation activities should be carried out as soon as a 

component is ready to prevent unnecessary costs. However, the depth and 

preciseness of the verification and validation activities will depend on the ASIL 

of the system. The report provides the guidelines on software validation and 
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verification and the personnel responsible for the tasks. Besides these, the report 

also focuses on the importance of software requirements analysis prior to the 

software architecture design. The objective of software requirement analysis is 

to ensure that the system acts as intended and is verifiable after design. It is also 

essential for a designed system to be compatible with the targeted hardware and 

conformance to the standards [43]. 

3.2 System architecture and design 

A huge number of autonomous systems have been made and demonstrated 

since the late 20th century. The autonomous systems are developed as 

unmanned aerial vehicles, unmanned ground vehicles, or unmanned water 

vehicles. Such systems are developed for delivering goods, performing 

surveillance, conducting search and rescue, and supporting hobbyist activities. 

Enhanced sensor systems, high computational power devices, and machine 

learning techniques have been a part of the software design paradigm of 

autonomous systems. A failure in such systems or a cyber threat could lead to 

fatal accidents or significant damages to the environment. Hence, system and 

software safety in autonomous systems along with the cost-effective solution has 

been a hot topic in the recent years. Many organizations and research teams 

have invested a tremendous amount of time and budget in the design and system 

architecture of autonomous systems. This chapter covers some of the research 

papers relevant to the system design and architecture of autonomous systems. 

3.2.1 System design strategies 

In the study [S10], Vierhauser et al. (2018) have demonstrated an approach for 

interlocking safety cases of unmanned aerial vehicles in the airspace of urban 

environments for safe use of unmanned aerial systems. The purpose of the 

research was to define the safety mechanism of autonomous systems at both 

infrastructure and the application level. Thus, the authors have divided the safety 

assurance cases (SAC) into two parts that can be effectively interlocked: 

Infrastructure-level SAC (iSAC) and unmanned aerial system-level SAC (uSAC) 

for unmanned aerial systems associated with it [10]. Each of the SAC is defined 

with interlock points where potentially untrusted uSAC can interface with trusted 

and assured iSAC to provide static or runtime checkable constraints. When each 

unmanned aerial system approaches the controlled airspace, runtime monitoring 
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of unmanned aerial vehicles is created dynamically. The iSAC is created with 

specific assumptions on SAC that help in interlocking with unmanned aerial 

systems and for this, interlock points are established between unmanned aerial 

systems’ specific assumptions in iSAC and claims that uSAC meets the 

assumptions. The assumptions are categorized into three groups: @entry, 

@monitor, and @usac. The first assumption denotes the monitorable property of 

unmanned aerial systems once it enters space. The @monitor denotes the 

property of unmanned aerial systems that are monitored continuously whilst in 

controlled space. Similarly, @usac denotes the assumptions that are not covered 

fully under monitorable properties. Such an approach has been proposed by the 

authors for assuring safe use of unmanned aerial systems in urban 

environments, but dynamic analysis of @usac arguments is still left open for 

discussion by authors [10]. 

An autonomous vehicle is developed using an array of enhanced sensors and a 

localization algorithm is applied to create a link between the sensors [18]. An 

object recognition algorithm is used in an autonomous vehicle to identify the 

objects within its boundaries. Similarly, a path-planning algorithm is applied to 

follow a track and a mapping algorithm is applied to record the data [17]. Hence, 

the core competencies of an autonomous vehicle software system can be 

classified into three groups: perception, planning, and control. 

 

Figure 4: A typical autonomous vehicle system overview, highlighting core 

competencies [12] 
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Perception is defined as an ability of an autonomous system to gather relevant 

information from the environment. It is further divided into environmental 

perception and localization, as shown in Figure 4. Environmental perception is 

referred to as perceiving the contextual environment while localization is referred 

to as the capability to determine its position with respect to the environment. 

Planning is a process of making decisions to achieve goals. Similarly, control is 

defined as the ability of autonomous systems to execute the plans as directed 

by higher level processes [12]. 

In the study [S35], Debouk et al. (2011) have proposed software design 

strategies considering factors relevant to the software safety of autonomous 

systems. Such safety factors could be potential unpredicted behaviour, 

availability of autonomous systems, and driver attentiveness. The authors have 

designed a fail-safe / fail-silent control unit to monitor and analyse the safety 

factors and hence, ensure fault handling. The fail-safe / fail-silent control unit acts 

as a building block to construct a fail-operational unit implementing the needed 

autonomous driving functionality. A fail-safe / fail-silent control unit itself is a 

hardware component. However, it contributes to the software approach for 

detecting faults in the system, as shown in Figure 5. 

 

Figure 5: Software Strategy for Fail-safe/ Fail-silent Control Unit [35] 

As shown in Figure 5, level 1 and level 2 run on the primary control unit. Level 1 

defines the control application that provides the primary functionality of the 

system. Level 2 consists of diagnostic software that monitors the unexpected 

behaviour of the level 1 application. Level 3 software is dedicated to detecting 



   
 

19 
 

random hardware failures of both control units by performing diagnostic cross-

checks between the two control units [35]. 

In a similar way, the study [S21] introduces a generic hierarchal Robotic 

Operating System (ROS)-based architecture for autonomous systems that is 

capable of exchanging data among inter-connected multi-robotic heterogeneous 

systems. The introduced architecture consists of three layers, as shown in Figure 

6. 

 

Figure 6: Block diagram describing software architecture and packages [21] 

In Figure 6, the lower-level controller gathers data and forwards it to a higher-

level controller for complex computations. The intermediate-level acts as a 

medium to transfer data from lower-level to higher-level. The authors assure that 

the proposed architecture was validated in the form of experiments on an 

autonomous mobile robot, autonomous vehicle, and autonomous quadcopter, 

and the results of the experiment have proven to be acceptable for more complex 

autonomous system applications too [21]. 

3.2.2 Software development process 

In addition to all these, a software development cycle has a vital role in 

developing safety-critical software. It is important for a product to adapt to the 

changing requirements during the process and yet deliver the best value to 

customers and developers earlier. Hence, the agile software development 

process was developed and Vuori [S44] has analysed the agile principles in his 
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paper “Agile Development of Safety-Critical Software” and provides guidance on 

how an organization can switch to the agile environment from traditional software 

development lifecycle models. Prior to defining an agile process, he has also 

analysed the requirements for a safety-critical software development process as 

follows [44]. 

• Knowledge of risk: During the process, risks and hazards should be 

analysed and shared with the whole team for better understanding. The 

process also requires a thorough analysis of the software’s actual usage. 

• Quality: Expertise and professionalism is highly required to develop high-

quality software. All abstraction levels of the safety-critical software should 

maintain a high level of quality assurance. 

• Control: A safety-critical software development process needs good 

teamwork and a better understanding of tasks and objectives. The 

process might be complex and team collaboration can make it simple and 

clear. 

• Analysis: In a safety-critical software development process, safety 

assessment should be carried out and documented accordingly. The 

changes in a system should also be documented so that they can be 

retracted if needed.  

• Time and resources: A safety-critical software development process will 

succeed only if there is enough time and resources to carry out the tasks 

properly. All the development practices should follow the safety standards 

and should be verified and validated as soon as implemented or changes 

occurs. 

• Auditability: The process must be auditable during and after execution. 

An agile software development process consists of principles, project models, 

software development lifecycle and software engineering techniques, and 

practices. The principle is described as values and policies that stakeholders 

behold. The project model is described as a project planning and execution 

where software is designed and developed using a specific software 

development lifecycle and using various software engineering techniques and 

practices. In the agile development lifecycle, each phase is done iteratively which 
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helps to deliver a better product. The workflow of an agile software development 

process generally consists of five steps: story, coding, running program, 

evaluation, and design iteration [44]. 

 

Figure 7: A generic agile software development process [44] 

In Figure 7, the story represents the product requirements needed to design a 

product. Such requirements can be functional and safety requirements as 

shown in Figure 8. 

 

Figure 8: A safety-critical software development lifecycle using agile method 

[44] 
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A safety-critical software should be able to handle the unpredicted behaviour of 

the system during its operation. Thus, it is important to do failure analysis and 

other functional safety assessments during the safety-critical software 

development. Once the requirements and assessment are documented, the 

programming of the product can be started. Each implementation of the system 

is then tested and evaluated iteratively. If needed, changes are sent as feedback 

to the design. This process is done repeatedly until a complete product is ready. 

This helps to save time and cost, and yet produce robust software by removing 

all possible errors [44].  

3.2.3 Cyber security on connected autonomous systems 

During the development of autonomous systems, developers might not be able 

to consider all the situations that the system will confront whilst in operation. So, 

the system must adapt to the changes in the environment to prevent failure. For 

such cases, Aniculaesei et al. (2018) have introduced the concept of 

dependability cages in the study [S22] where unpredicted situations are captured 

and fed into the iterative development process as new development artifacts [22]. 

Similarly, cyber security is another concern that may be skipped during the 

development process. The study [S50] states that cyber risks should be identified 

and analysed although it is not feasible to deal with all the threats. Therefore, the 

study emphasizes modelling the threats using proper risk analysis tools [50]. The 

threats related to any computer system are mainly classified into three 

vulnerabilities: availability (data interruption), confidentiality (data interception), 

and integrity (data modification). An attacker could try to make network resources 

of an autonomous system unavailable, which is also known as a denial-of-service 

attack. The attacker could also change the behaviour of the autonomous systems 

by intercepting and modifying the instructions as shown in Figure 9. Similarly, 

system and users’ data could be captured by an unauthorized person or 

organization [48]. For this reason, untrusted information or input from untrusted 

sensors should be blocked from reaching the subsequent software component 

and language-level information flow control helps to ensure the safety-critical 

operations without explicit verifications and endorsement [49]. 
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Figure 9: Conceptual model of the security attack 

Furthermore, autonomous systems are designed to adapt to a dynamic 

environment. The systems must be able to execute appropriate actions 

depending on the external changes. Also, there could be a possibility to insert a 

new software component while the system is running through a connected 

network. Hence, there is a high risk of a malicious attacks on such cyber-physical 

systems which are considered safe and security-critical software systems. Thus, 

the study [S23] introduces a novel approach of using slack space of software 

components, for authentication of components to safely integrate with an 

autonomous system. This approach is designed to prevent the integration of 

tampered components into the system. According to the authors of the study 

[S23], traditional hash verification methods and graph-based state modelling 

approaches for the security of software components are not ample for large 

autonomous systems. The study has suggested storing a keyed hash of the 

component in its own slack space on the disk. The slack space is leftover space 

in the hard disk which is not used to store files. It is difficult for hackers or 

adversaries to attack slack space, as it requires administrative privileges. The 

authors have used a cryptographic hashing algorithm called HMAC to avoid hash 

collision attacks and such algorithms help to generate new hashes for the same 

file by changing the key. In addition, a randomized offset location technique is 
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used to store HMAC value in the slack space as an advanced feature in the 

presented approach [23]. 

Nowadays, autonomous vehicles can also communicate with each other or the 

infrastructure around them. This has been possible with the use of the latest 

communication technologies like dedicated short-range communications 

(DSRC). The autonomous vehicles with such capabilities are referred to as 

connected autonomous vehicles (CAVs). Such CAVs need to be protected from 

the potential external vulnerabilities which come from the environment that they 

operate in. So, all the functional behaviour of CAVs should be validated before 

on-road testing. The study [S38] describes the tools and methodologies for 

developing a robust autonomous system. The study has introduced SysWeaver 

and SysAnalyzer as vital tools in the development cycle of a CAV. SysWeaver is 

a model-based design, integration, and analysis framework for embedded real-

time systems. It generates infrastructure and middleware code that binds all the 

software components together. Likewise, SysAnalyzer analyses the schedule of 

various components and ensures the timeliness of software components 

executed in a real-time computing environment. It can also assign and deploy 

software backups to ensure safety in presence of faults [38]. 

3.3. Machine learning methods  

In autonomous systems, the systems must decide autonomously to react to a 

dynamic environment and such an environment is not precisely known during the 

development cycle. There might be various unforeseeable events that the 

system must deal with while in operation. The task to predict all the scenarios 

while in operation, is difficult during the development process. At the same time, 

for a safety-critical system, maintaining the safety requirements is also important 

along with system adaptations. Hence, many kinds of research have been done 

on various machine learning algorithms to employ them for the safety of 

autonomous systems and some of them are assessed in this chapter.  

3.3.1 Reinforcement learning 

The study [S1] presents a reinforcement learning approach with value function 

approximation and feature learning for autonomous decision-making of 

autonomous vehicles on highways. In this paper, the driving decision-making 
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process was modelled as a Markov decision process (MDP). The study [S1] also 

distinguishes the multi-objective approximate policy iteration (MO-API) approach 

from the multi-objective reinforcement learning (MORL) approach using data-

driven feature representation for value and policy approximation to gain better 

learning efficiency of the autonomous system. MDP is considered as a standard 

for formalizing sequential decision-making problems using reinforcement 

learning (RL). MDP follows a Markov property where an agent depends only on 

the current state for the decision process, not on the full history of states and 

actions [26].  

 

Figure 10. An overview of Markov decision process [26] 

Figure 10 illustrates a Markov decision process where “a0, a1” represents agents, 

“s0, s1” represents states, and “r0, r1” represents where a0 depends on s0 to 

receive reward r0. Similarly, a1 depends only on s1 to receive reward r1, and so 

on.  

In automation industry practice, there are usually many objectives that need to 

be optimized. It is difficult to optimize each of the objectives simultaneously. 

Thus, the MORL technique was developed to address the sequential decision-

making problems with multiple objectives by learning from the experiences. 

However, due to the uncertainty and complexity of the dynamic environment, it 

is a challenging task for an autonomous system to find an optimal decision. Thus, 

an optimal policy for MDP is created after many iterations. This process is known 

as approximate policy iteration (API) [1]. 

Zuo et al. [S1] have also discussed other decision-making approaches such as 

fuzzy logic approach, probabilistic model approach, and supervised learning 

approach along with their limitation compared to the reinforcement learning 

approach. RL is a machine learning technique where an agent receives feedback 
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for every action that it does in an interactive environment by the trial-and-error 

method. In such a technique, correct actions are rewarded and over time, the 

agent learns to take the action with cumulative reward [1]. 

 

Figure 11: Reinforcement learning 

As shown in Figure 11, a maximum reward is sought for an action (a) at a given 

state (s) and defined as action-value function Q (s, a). This function is known as 

Q-learning which is a variation of the reinforcement learning algorithm. The “Q” 

in Q-learning stands for quality and that defines the usefulness of a given action 

in gaining the maximum total reward. However, in real time, there can be many 

states and actions, and it is impossible to deal with them individually. Hence, an 

approximate Q-learning is applied using function approximators like a neural 

network, linear combinations of features, and decision tree [3], [5]. 

3.3.2 Deep Reinforcement learning 

The traditional RL represents state-action-reward values in tabular form and 

such tabular representation can only cope with a simple environment where the 

number of states and actions are small. There might be a non-deterministic 

environment that is composed of huge numbers of states and actions. In real-

world applications, it may lead to an issue due to memory or computational 

constraints. This problem in literature is referred to as “the curse of 

dimensionality”. Thus, to overcome such a situation, RL is combined with a deep 

neural network (DNN) to form deep reinforcement learning (DRL). The 

approximate value functions of traditional RL are represented as a 

parameterized functional form with a weight vector in DRL [2], [9], [26].  
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In the study [S6], the authors have proposed an approach for autonomous 

navigation of autonomous aerial vehicles in a large-scale complex unknown 

environment using the MDP concept and DRL algorithm. Using a simulation 

technique, the approach shows that the sensory information of the local 

environment and GPS signal helps to navigate the path from the starting position 

to the target position. The authors have suggested that such an approach for the 

autonomous vehicle does not need any path planning or map construction to 

follow [6].  

In the study [S7], Mallozzi has proposed an approach for delegating part of the 

decision-making process on an autonomous system to reinforcement learning 

techniques while still maintaining the system’s invariants. The main components 

of the proposed approach are shown in Figure 12. 

 

 

Figure 12: An overview of approach proposed by Mallozzi [S7] 

Perception and execution are the components that interact with the environment 

through sensors and actuators. The sensors collect the raw data which are 

represented as perception. The action to the environment is defined as 

execution. The world model component in the proposed approach consists of 

information from both the external environment and the internal state of the 

system. It helps to set goals and maintain invariants of the system. The decision-

making component acts based on the observations from perception and goals 
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set by the world model. The action generated by the decision-making component 

is not pre-set but learned from the feedback sent by the monitoring and training 

component. Likewise, the monitoring and training component monitors the 

actions taken by the decision-making component to preserve the system’s 

invariants and trains the reinforcement learning algorithm by sending feedback 

for every action taken by the decision-making component. It also forwards 

appropriate action generated by the algorithm to execution [7]. 

Similarly, the study [S8] presents a survey on the DRL algorithm and its 

implementation on autonomous driving decision-making processes. The study 

also discusses the role of simulators in training agents, methods to validate and 

test along with real-world challenges. Various machine learning methods, such 

as value-based methods, policy-based methods, actor-critic methods, model-

based and on/off-policy methods, are also overviewed in brief. In addition, the 

authors have focused on multi-agent reinforcement learning (MARL) techniques 

which have a high potential for high-level decision-making between groups of 

autonomous vehicles, as well as providing new opportunities for testing 

autonomous driving policies [8]. 

Deep reinforcement learning has been employed in many safety-critical systems 

like autonomous vehicles. According to Deshmukh et al. [S11], implementation 

of DRL itself does not ensure safe system behaviours. Hence, they have 

proposed a modified DRL approach to guarantee the system behaviours as on 

the safety requirements. A verification-in-the-loop RL mechanism to learn DNN 

controllers has been presented in the study [S11] using several examples. 

3.3.3 Taint analysis 

For an autonomous system, it is mandatory to have a performance guarantee, 

and to establish a performance guarantee, a formal verification must be done. 

Many software designers may lack the mathematical skillset to verify formally. 

Even if the software designers have the skill set, it is not enough for formal 

verification due to the uncertainty of the environment while in operation. 

Therefore, the authors of study [S24] have proposed automated monitoring and 

repairing of the autonomous robot software. A taint analysis and reinforcement 

learning (TARL) approach are proposed in the study. Taint analysis is an analysis 
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technique of a program that is implemented in compiler optimization and security 

analysis. The taint analysis starts with the storage location of a program for a 

potential attack which is known as a sink. A user input location is considered as 

a taint source. The taint analysis method is used by the authors to automatically 

extract the data flow sequence from the input topic to publish a topic, instrument 

the information to determine the software behaviour and ultimately repair the 

software in case of failure [24]. 

3.3.4 Use of software safety cages to train RL system 

Another way to ensure the software safety of an autonomous system is to limit 

the control output based on the dynamic environment. The implementation of a 

software safety cage helps to improve the safety of an autonomous system by 

limiting outputs to a safe operational envelope. Such software safety cages do 

not interrupt the controllers’ actions and degrade the overall performance of the 

systems. Instead, it removes all the unpredicted actions of the autonomous 

systems outside the safety cage and increases the confidence in the safety of 

autonomous vehicles. In addition, all interruptions by the software safety cages 

can be used for training deep reinforcement learning and generating robust 

learned policies [34]. Such safety cages for the safety and reliability of 

autonomous systems are proposed in the study [S34]. 

3.4. Safety assurance frameworks  

Autonomous systems have a great deal of potential to offer to society. The 

number of autonomous systems has been increasing rapidly in recent years and 

extensive research is conducted to enhance the field further. However, an 

autonomous system might come across various challenges due to its dynamic 

behaviour. Many advanced technologies, such as machine learning and artificial 

intelligence, are applied to address the problems in autonomous systems but 

there is still much room for improvement. The studies [S19] and [S51] have 

outlined some challenges and methods to ensure the safety assurance of 

autonomous systems. 

The study [S19] proposes a new framework for the safety assurance of 

autonomous systems in contrast to the challenges of safety assurance of 

autonomous systems. The study uses the machine learning technique to provide 
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the safety case for a dynamic system that updates dynamically according to the 

system behaviour. The term assurance in the study is defined as a system’s 

confidence or capability to ensure safety. There can be various risks and hazards 

associated with an autonomous system. It is essential to identify hazards, safety 

risks associated and design the autonomous system to make it acceptably safe. 

Hence, McDermid et al. [S19] proposed a framework to provide a basis for 

assurance and regulation of autonomous systems that use machine learning or 

artificial intelligence in their development. 

As shown in Figure 13, the framework has four main conceptually distinct 

components, although they are linked to each other. 

 

Figure 13: An overview of proposed safety assurance framework [S19] 

The four main components are:  

• Real world 

• World as imagined 

• World as observed 

• Safety case 

The “real world” component consists of autonomous systems in their operational 

environment. The “world as imagined” consists of designs and simulation 

models, and the results of safety analysis based on the models created. 

Similarly, the “world as observed” consists of operational data produced by the 

autonomous systems, such as images produced by the sensors, and the results 

of machine learning analysis of the data. Finally, a safety case is an initial 

reflection of the “world as imagined” which later is updated to the “world as 
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observed” and reduces the gap between the safety case and reality. The main 

challenge of the safety analysis is shown in Figure 13 as an inherited gap 

between “real world” and the “world as imagined”. The gap includes the 

assumptions about the system or environment, scoping the objects, preciseness, 

and accuracy of the models used, limitation of the training data, and the inability 

of the model to adapt to the environment due to “real world” complexity. Similarly, 

the “real world” differs from the “world as observed”. The gap includes sensing 

abilities, algorithmic limitations, failure conditions, limitations in human abilities, 

and resource limitations.  

Autonomous systems that use machine learning or artificial intelligence gather a 

tremendous amount of data. These data are useful to understand the behaviour 

of the system and thus, to validate or refine the safety analyses in accordance 

with the system behaviour. In this way, the initial safety case referred to as the 

“world as imagined” would be updated to a dynamic safety case which is referred 

to as the “world as observed”. Therefore, the framework helps to improve the 

safety analysis based on the “world as observed" and to improve the data 

collection and machine learning analysis by providing feedback. Besides these, 

a safety case also needs to provide arguments and proof of training and testing 

data coverage in the operational design domain (ODD), from a safety perspective 

[19]. 

In the study [S51], Whalen and Heimdahl [S51] have described the role of 

automatic code generation in safety-critical systems. The study also outlines the 

requirements of such code generation to obtain a high level of confidence in the 

correctness of the translation process. The authors also describe a translator for 

a state-based modelling language called RSML (Root System Markup 

Language) which largely meets these requirements. 

The possible reasons for flaws in safety-critical systems could be incorrect, 

incomplete, or ambiguous software system specifications. Formal specification 

languages can help to remove ambiguity to some extent. However, designing 

and developing a software product from formal specifications can be time-

consuming and error-prone. Thus, the automatic code generation method was 

developed to provide consistency in behaviour of the production code in the 
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software development life cycle and be cost-effective. For safety-critical 

software, the code produced by an automatic code generator should have a high 

level of confidence and for this, the study has defined a set of requirements for 

creating a code generator as follows [51]: 

• Requirement 1: The source and target languages must have formally well-

defined syntax and semantics. 

• Requirement 2: The translation between a specification expressed in a 

source language and a program expressed in a target language must be 

formal and proven to maintain the meaning of the specification. 

• Requirement 3: The implementation of the translator must be verified to 

confirm that it correctly implements the translation. 

• Requirement 4. The implementation of the translator must be rigorously 

tested and treated as high-assurance software. 

• Requirement 5. The generated code must be well structured, well 

documented, and easily traceable to the original specification. 

The generated code must be vivid, well documented, and retraceable to the 

original specifications so that a third-party tool for testing and inspections can 

verify the correctness of the code with respect to the formal model. 

 

3.5. Formal methods 

Many autonomous systems have been developed. However, the development of 

reliable software for autonomous systems continues to be challenged. The 

reliability of such safety-critical systems has been the foremost requirement of 

autonomous systems. Therefore, formal methods are used in recent safety-

critical software developments to eliminate the ambiguousness and yet follow the 

required specifications. Such formal methods include testing, verification and 

validation of the software, and fault injection. The formal methods provide a high 

degree of confidence in safe system operation, if the verified model matches the 

real implementation of the system. The sixteen study papers that demonstrate 

the formal method techniques are included in this section. 

The study [S13] highlights the importance of reliable software or high-integrity 

software in autonomous systems. The study has also emphasized on SPARK 



   
 

33 
 

programming language to develop high integrity software. According to Sward 

[S13], SPARK programming language helps to develop software with proof of 

correctness. In other words, the software developed using SPARK proves the 

implementation of requirements correctly. The author has used the formal 

method techniques offered by SPARK in his application to enumerate a flight 

plan for an autonomous system during reconnaissance [13]. Similarly, the study 

[S14] proposes techniques for quality assurance automation in automation 

systems. The proposed technique in the study [S14] generates test suites for the 

developed system and automates the fault localization along with the root cause 

of failures. In addition, the author has also proposed an evaluation of automated 

program repairing tools on autonomous systems [14]. 

In addition, the study [S15] presents an approach of assimilating formal 

verification results into safe reinforcement learning systems ensuring safety 

guarantees. In the paper, Fulton and Platzer [S15] have mentioned that the 

reinforcement learning method itself does not guarantee safe operations. Hence, 

they have introduced a technique called Justified Speculative Control (JSC) for 

combining formally verified models with reinforcement learning to transfer proofs 

of safety to learned policies. 

The study [S16] is a systematic literature review paper on software verification 

and validation of safe autonomous cars. The paper, in general, defines safety 

certifications, and assesses the safe operation of autonomous systems including 

techniques to ensure software safety. Furthermore, the authors have also 

discussed the challenges of machine learning techniques in the development of 

safety-critical software. According to the paper, real-life test scenarios rarely 

produce robust software and thus simulation environments are considered as a 

viable solution to test the application under different conditions and 

environments. A tool called AsFAULT has been developed to automatically 

generate virtual tests for systematic testing of self-driving car software. The tool 

uses a search-based procedural content generation and is demonstrated by 

testing the lane-keeping functionality of an autonomous car software. The 

automatically generated virtual tests by AsFAULT trigger the behaviours of an 

autonomous system which, in return, helps to identify the safety-critical bugs and 

environmental conditions [27]. Likewise, the study [S16] also mentions a 
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simulation framework called MOBATSim that integrates fault injection and 

simulation together. The advantage of MOBATSim over other simulation tools is 

that it supports the fault injection method to verify whether the safety 

requirements are violated in the simulation [16]. 

3.5.1 Fault injection 

The phenomenon of injecting faults into a system to assess its behaviour and to 

measure its efficiency of fault tolerance mechanism is known as fault injection. 

This technique is recommended by safety standards for the automotive society 

like ISO 26262. The technique of introducing faults in software is commonly 

knowns as software fault injection (SFI). In SFI, faults are injected into software 

by changing a small part of code and creating a different version of the program 

where each version has one injected software fault. This technique resembles 

the mutation testing technique but has different objectives. Mutation testing is 

done to identify an adequate test suite, while SFI is done to evaluate the system 

behaviour and validate fault-handling mechanisms at runtime. Mutation testing 

is mainly done during software development and SFI is a post-development 

event [33]. The study [S32] introduces a machine learning-based fault injection 

tool called DriveFI, which can detect the situations and faults that are most likely 

to impact the safety of autonomous vehicles. 

3.5.2 Software testing and verification 

An autonomous vehicle is an integration of various complex systems that 

encounters an unlimited number of unpredicted environments. Thus, it is 

essential to reduce all the possible hazards that might come across due to the 

dynamic environment. It is very challenging to verify and validate the system 

against all the possible hazards. However, researchers have been actively 

involved in verifying and validating autonomous systems. Various software 

testing methods like coverage-based testing, mutation testing, and functionality-

based testing are used to test the developed software. In coverage-based 

testing, all the possible inputs are coverage criteria that are used for testing 

purposes. The possible inputs can be categorized into three coverage criteria: 

scenario coverage, situation coverage, and requirement coverage [30]. 
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• Scenario coverage: Scenario coverage includes a set of linear evolution 

from one scene to another, such as lane change, following another 

vehicle, change in speed, and so on. 

• Situation coverage: Situation coverage includes all the situations that can 

occur inside or outside the system and are tested with unexpected or 

expected situations. 

• Requirement coverage: Such coverage includes a set of identified 

requirements that the system must meet. 

Functionality-based testing of an autonomous vehicle comprises three classes: 

sensing, decision, and action functionalities. The sensor data received from the 

environment is considered as input to decision functionality and several 

decisions can lead to actions. In functionality-based testing, the scenarios can 

be broken down into various operational components which can be tested 

individually [47]. 

An autonomous vehicle or a cyber-physical system may encounter another 

unknown cyber-physical system and wants to connect to each other. The 

behaviours of the systems are barely predictable. Thus, autonomous real-time 

testing of the safety-critical systems is required to prevent any harmful action by 

the autonomous system. The study [S28] demonstrates an example of the 

Internet of Things (IoT) in relation to autonomous real-time testing. The authors 

have used combinatory the logic approach in the original test model to 

automatically extend it to a larger model based on the existing testing 

experiences. The combinatory logic approach is based on combinatory algebra 

and provides significant test coverage in cyber-physical systems [28]. 

Similarly, the study [S36] reviews the testing and verification techniques of neural 

network-based safety-critical software. The paper, in fact, is a review of 

approaches and tools used for testing and verification. According to the authors 

of the study [S36], formal verification of neural networks-based systems is 

usually presented as models and then model checkers, such as Boolean 

satisfiability (SAT) solvers, are applied to verify the safety property of the system. 

Formal verification approaches in software engineering are highly demanding, 

and also have scalability issues [36]. 
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3.5.3 Simulation for verification 

As discussed earlier, autonomous systems software can act in an unpredicted 

way depending on the environment. The complexity in autonomous systems is 

increasing while accommodating the users’ various needs. Thus, it is more 

challenging to test the correctness of all features of the system in a real 

environment. Therefore, study [S37] suggests testing autonomous vehicle 

software in a virtual prototyping environment or in a simulator. In the paper, the 

authors have also presented an approach for automatic test case generation 

based on test criteria. The virtual prototyping of software can be tested at an 

early stage of development without integrating the software in a real vehicle. The 

test criteria should be defined based on environmental factors affecting the 

perception accuracy, the geometric roadway designs, and the behavioural 

aspects of the dynamic object in order to obtain a convincing result from virtual 

prototype testing [37].  

Likewise, the study [S39] presents several verification activities during the 

development of fully autonomous heavy vehicles, including guidelines for 

verification of the decision-making process and their impact on the safety of the 

system. According to the author, formal verification methods guarantee some of 

the expected behaviour of the system, while testing and reviewing the system 

remain as dominant verification techniques due to the complexity of the system 

and cannot guarantee the correct implementation of the requirements in the 

system. Usually, the performance of testing is based on test coverage and does 

not cover the location of errors. In addition, an autonomous vehicle should be 

able to drive safely through all the situations that might come across and for this, 

a higher level of decision-making strategy is required. Due to the dynamic nature 

of the environment around autonomous vehicles, it is very challenging to define 

the expected behaviour or requirements of the system [39]. In addition, high-level 

data structures and complex algorithms are implemented in autonomous 

systems that support hardware/software co-design approaches. The study [S20] 

presents results of various experiments based on hardware/software co-designs 

which are formally verified and validated via simulation to determine safety and 

security factors for critical systems [20]. 
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The simulation technique is used to verify the algorithms used in autonomous 

systems. However, detailed information about simulation techniques is not vivid 

in many cases. Therefore, using a test-case study of unmanned ground vehicles, 

the paper [S31] introduces a verification methodology based on statistical testing 

of autonomous vehicles’ safety-related functionality in simulated scenarios. The 

study also serves as a discussion topic on the use of simulation tests for 

functional safety verification of autonomous vehicles. The methodology defined 

in the study is based on Statistical Scenarios testing using the Monte Carlo 

method in a simulated environment to reduce logistical complexity. The use of 

the Monte Carlo method helps to avoid statistical bias as a result of human 

presumption in the experiment [31]. 

4. Discussion 

The systematic literature review performed in this paper has featured the 

methods to ensure software safety of critical autonomous systems. This paper 

has highlighted various aspects relevant to the safety of critical systems, such 

as system and architecture design of autonomous systems, machine learning 

techniques, safety standards and guidelines to ensure software safety, safety 

assurance frameworks, and formal methods. Many researchers have involved 

themselves in the field of autonomous systems and many of them have created 

a starting point on various topics related to the software safety of autonomous 

systems. Using machine learning and artificial intelligence, the field of 

autonomous vehicles has been revolutionized, but there is still much room for 

improvement. Besides these, the design and architecture of autonomous 

systems have advanced considerably. Six research questions have been defined 

to explore the methods to ensure software safety of autonomous systems: 

• RQ1: Are there any guidelines to ensure software safety in autonomous 

vehicles? What kind of guidelines are available? 

The international functionality safety standard ISO 26262 and industrial 

standard IEC 61508 has been discussed along with the MISRA guidelines 

and model-based reference workflow to produce a safe and reliable 

software. 
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• RQ2: What is the role of system design and architecture in autonomous 

systems? 

Various system design strategies, software development processes and 

cyber security on connected autonomous systems were analysed to 

prevent the system failure and huge losses. 

• RQ3: Evaluate available ML approaches for software safety of 

autonomous systems. 

Several machine learning techniques, such as RL, DRL, MORL, and 

MARL have been implemented on modern autonomous systems to adapt 

with the dynamic environment. In addition, use of taint analysis and safety 

cages to support the machine learning techniques have been evaluated. 

• RQ4: Are there any frameworks or tools available to ensure software 

safety of autonomous systems? If so, what kind of frameworks are 

available? 

A safety assurance framework has been illustrated to ensure software 

safety of safety-critical systems. The importance of automatic code 

generation has also been emphasized in reducing risks and hazards 

associated to an autonomous system. 

• RQ5: How does verification and validation of software help in software 

safety? 

A software is verified and validated against the required specification, and 

the required specifications are listed by the project team, only after proper 

research on system’s use cases. This method ensures that the product 

satisfies the requirements. For a safety-critical system, safety is the main 

requirement. hence, the verification and validation approaches ensure the 

software safety. 

• RQ6: Are there any other approaches that improve a safety critical 

system? 

The other approaches, such as fault injection and simulation techniques 

has helped to improve the quality of safety-critical systems. 

Autonomous systems are facing new challenges because of dynamic nature of 

the environment. The technology used and standards developed do not seem to 

be good enough for new challenges. One of the challenges in an autonomous 
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system is the standardization of safety issues. Even a small change in an 

autonomous system may cause failure in the system. Thus, machine learning 

techniques may create instability in terms of the performance of the system. Also, 

the automotive functional safety standard of ISO 26262 was created before the 

emergence of artificial intelligence and hence, it can be concluded that ISO 

26262 does not address the integration of artificial intelligence in autonomous 

vehicles. However, the machine learning models used in autonomous systems 

learn from a huge amount of data and store the model in a complex set of 

features combination. Therefore, it is infeasible to test autonomous systems 

thoroughly enough to ensure safety [29], [46].  

A generic “V” software development model shown in Figure 2 has been 

considered as a development reference model in MISRA guidelines, which is 

also a basis for ISO 26262. However, fully autonomous systems face new 

challenges in mapping the technical aspects of the system to the V model. In 

addition, fully autonomous systems must be able to handle faults, malfunctions, 

and exceptional specified conditions.  Hence, this has raised significant 

complexity and controllability challenges in fully autonomous systems [29]. 

An autonomous vehicle consists of various types of sensors, such as LiDARs, 

radars, GPS, and IR sensors. It is very important for a system to synchronize the 

data taken by several sensors so that they can react to external changes and 

adapt accordingly. The handling of sensor data taken in different frequencies and 

timestamp accuracy impacts an autonomous system’s performance. Another 

challenge is the data itself collected by the sensors. The data might not reflect 

the real scenario in case of disturbances. Also, the failure of the sensors might 

provide false data. Similarly, algorithm failure is another challenge, and such 

failure may occur due to extreme disturbances. All these failures might result in 

environmental catastrophes. Besides these, bad weather conditions, unforeseen 

road works, and emergency situations, such as road collapse, brake failure and 

tire blowout are possible threats to the safety of autonomous systems as 

manoeuvring the system is independent of human drivers [46].  

With the rapid development of advanced computing technology, the existing 

cryptographic techniques cannot ensure data protection and secure connection 
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between the cyber-physically connected systems. Along with the development 

of new sensors, devices, infrastructures, and applications, the risk of attack in 

connected autonomous vehicles has grown too. Thus, top-notch security can be 

a topic for discussion in cyber-physical systems or connected autonomous 

systems. A connected autonomous system consists of powerful computing 

components including rich sensors. Thus, power management would be another 

challenge in such systems [46]. Formal methods are seen as a viable option to 

achieve completeness in the testing approach, but they do not fit well into 

complex systems, as they rely on sensors’ accuracy and perception algorithms. 

However, implementation of safety cages, as well as monitor and actuator 

approaches, have been vital to offset the incompleteness in verification 

processes [16]. A monitor/actuator architecture is commonly used to handle a 

high-ASIL autonomy function.  

 

 

Figure 14: Monitor/actuator pair conceptual diagram [29] 

As shown in Figure 14, in monitor/actuator architecture, the primary functions are 

performed by an actuator and the monitor validates the behaviour of the actuator. 

In a case where the actuator misbehaves, the monitor shuts down the system, 

resulting in a fail-silent system. In other words, the system shuts down if there is 

a fault. The use of two modules: monitor and actuator in such architecture are 

planned to prevent a misbehaving actuator from sending hazardous commands 

[29]. 

Furthermore, the verification of various aspects of a reinforcement learning 

algorithm can be divided into offline verification and online verification. The 

mapping of states to actions and action sequences can be verified offline by 

underlying the model of the system. However, in model-free algorithms, the 

model could be learned next to the value function. Since the model is in the form 
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of a Markov decision process (MDP), the requirements can be verified in some 

probabilistic temporal logic specifications. Using arbitrary data, the algorithms 

are verified theoretically and offline to ensure their behaviours. However, the 

attributes that cannot be verified offline are verified at runtime, although the 

runtime verification is not always feasible due to limitations in computation 

resources. At runtime verification, verifying the entire specification is not feasible. 

Thus, only the required aspects are verified at runtime [25]. 

5. Conclusion 

This paper is a systematic literature review of methods to ensure software safety 

of autonomous systems. It includes relevant studies that were conducted since 

early 2000 until now. No specific technique exists that will build a robust and safe 

autonomous system alone, although there are various techniques that contribute 

towards the software safety of autonomous systems. Modern autonomous 

systems are designed to adapt the external changes in the environment. Many 

ways to verify and validate the model exist. However, the positive result from the 

verification of the system cannot guarantee the safety of the autonomous system. 

With the boom of new technologies and devices, new challenges are rising. The 

challenges regarding various aspects of autonomous systems are to be 

examined thoroughly to reduce the gap between simulation and the real 

environment. 

This thesis has elaborated existing international functionality safety standard ISO 

26262 and industrial standard IEC 61508 about the safety of autonomous 

systems. The guidelines to ensure software safety in the automotive domain are 

presented by MISRA reports. Additionally, various autonomous system designs 

and software architectures, as well as safety assurance frameworks that 

contribute towards the safety of the autonomous system, are observed. The 

application of reinforcement learning combined with deep neural networks in 

autonomous systems seems to be promising, because in using machine learning 

techniques, the system will learn to adapt to the dynamic environment with the 

help of data collected from various sensors. These can be verified using a 

diverse approach like formal verification and fault injection to some extent. 

Nevertheless, the usage of machine learning does not provide full confidence in 
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the system and is inadequate to ensure the safety of fully autonomous systems 

in all operating conditions. However, safety/dependability cages, as well as 

monitor/actuator approaches, can compensate for the incompleteness in 

verification processes. 

Overall, the title of this thesis itself emphasizes the importance of software safety 

in autonomous systems. The topic “autonomous systems” has been a hot topic 

in recent years. There are still many aspects of autonomous systems to explore 

to build them with full confidence. This paper can serve as a starting point for the 

researchers and engineers who are working in safety-critical domains. 
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