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Abstract 

The human TRPV4 receptor is an intriguing target for drug development. Currently, there 

are no commercially available medicines targeting TRPV4. The goal for this thesis was to 

discover novel TRPV4 antagonists for the treatment of inflammation and pain. The 

experiments were performed using various computer-aided drug design methods.  

A comparative model of the human TRPV4 was built by using the experimentally solved 

western clawed frog TRPV4 structure as the template structure.  

Various methods were used for locating the putative antagonist binding site in human 

TRPV4. A cavity, corresponding to the antagonist binding site discovered in TRPV1 and 

TRPV5, called the vanilloid binding site, was selected for the docking studies.  

The Enamine Ion Channel molecule library was used for virtual screening. The molecule 

library was docked into the putative binding cavity and binding free energy calculations 

were performed for the best ranked ligands from both methods. The ten best ranking 

molecules were submitted for 300-ns molecular dynamics simulations to analyze the 

stability of their binding interactions at the receptor binding pocket. 

The same library was screened also using a pharmacophore model that was based on the 

structures of two known TRPV4 inhibitors, GSK205 and HC-067047.  

Pharmacokinetic and toxicity properties of the ligands with the best binding qualities from 

the molecular dynamics simulations and the top-ranked hits from the pharmacophore-

based screening were evaluated with SwissADME and ProTox II.   

The ligands Z1213735368, Z1157726398 and Z221487176 from the docking study and the 

ligands Z443243482 and Z1728742868 from the pharmacophore study were chosen for 

further biological evaluation via our collaborators, to determine if the ligands act as human 

TRPV4 antagonists and if they reduce pain and inflammation in the body.  

Keywords: Transient receptor potential vanilloid 4, TRPV4, CADD, virtual screening, 

molecular dynamics simulations, pharmacophore modeling. 
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1. Introduction 

Many receptors of the transient receptor potential (TRP) channel family are targets of 

interest for drug development research. This project focuses on the transient receptor 

potential vanilloid 4 (TRPV4) receptor and its role in mediating pain and inflammation. 

Especially GlaxoSmithKline has strived to develop TRPV4 antagonists, but currently the 

molecules have not passed the clinical study phases. The aim of this thesis work was to find 

novel TRPV4 antagonists using a range of computer-aided drug design (CADD) methods. 

The selected ligands will then be purchased and sent to our collaborators for further 

evaluation. 

With CADD, the aim is to determine ligands that are protein specific and are bound with 

high affinity. The interaction between the ligand and the protein must be energetically 

favored (Henrich et al., 2010). CADD methods are divided into structure-based drug design 

(SBDD) and ligand-based drug design (LBDD) methods (Yu & Mackerell, 2017). The thesis 

applies methods from both groups.  

SBDD methods are used when the structure of the target, for example, a protein is known. 

It would be especially important to have access to the experimentally solved structures of 

membrane proteins since the group stands for most of the drug target proteins 

(Arinaminpathy, Khurana, Engelman, & Gerstein, 2009). However, it is generally 

demanding to determine crystal structures of membrane proteins, and thus, non-

membrane proteins are often easier to work with. Nonetheless, based on available related 

structures, models of membrane proteins can be built by comparative (homology) 

modeling. 

Virtual screening and docking approaches used in this thesis belong to the SBDD 

approaches as do the molecular dynamics (MD) simulations and the methods used for 

locating the putative binding site(s). Well known examples of medicines discovered with 

structure-based drug design methods include the HIV medicines raltitrexed and 

amprenavir and the osteoarthritis and rheumatoid arthritis medicine flurbiprofen (Batool, 

Ahmad, & Choi, 2019). 

LBDD methods are used when the structure of the target protein or the binding site is 

unknown. Instead, the important features of known ligands are identified and then used 
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to build or identify new putative ligands (Yu & Mackerell, 2017). The LBDD method used in 

this thesis is the pharmacophore modeling approach. 

It is essential to examine the ADMET (absorption, distribution, metabolism, excretion and 

toxicity) properties of a drug candidate. By predicting the ADMET properties in an early 

drug discovery phase, the drug candidate failure, related to pharmacokinetic properties in 

the later phases of drug discovery, is reduced drastically (Daina, Michielin, & Zoete, 2017). 

In this thesis, the ADMET properties of the most promising virtual hit compounds are 

predicted by using two online tools.   
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2. Literature review 

2.1 TRP channels, pain and inflammation 

TRP channels work as ion channels in the body. In mammals, the protein family is arranged 

into six subfamilies: ankyrin (TRPA), canonical (TRPC), melastatin (TRPM), mucoliptin 

(TRPML), polycyctin (TRPP) and vanilloid (TRPV). In total, 33 TRP proteins have been 

identified in mammals (Nikolaev et al., 2019). This thesis concentrates on one specific TRP 

channel, the TRPV4 channel. TRPV4 is one of the six channels that belong to the TRPV 

subfamily (Baylie & Brayden, 2011).  

The TRP channels link the nervous system with the environment. Various TRP channels 

convert stimuli that could be caused by mechanical, chemical (both innate and external) or 

thermal irritation into electrical signals. This is an important initial step in achieving the 

feeling of pain or hot and cold (Wang & Woolf, 2005).  

The sensitivity towards pain is increased after tissue injury or inflammation. This leads to 

less contact with the damaged area, so that the damage can be healed with minimal 

distraction. TRP receptors in the nociceptor terminals increase the sensitivity towards pain 

after inflammation (Wang & Woolf, 2005).  

Many TRP receptors have been a source of interest for drug design. The proteins are not 

only involved in mediating pain or inflammation, but in many diverse processes in the body. 

Thus, it is challenging to design medicines that target TRP receptors, due to the adverse 

effects that can occur when the receptor is activated or blocked at the wrong site in the 

body (Kaneko & Szallasi, 2014). TRPV1 is the most studied TRP receptor as it is considered 

an interesting target in the drug development community (Samanta, Hughes, & 

Moiseenkova, 2018). 

It has been discovered that pain can also be mediated by more than one TRP receptor at a 

certain system or site. TRPV4 and TRPA1 are located at the same places in the body. For 

example, they both mediate temporo-mandibular joint (TMJ) pain, pancreas pain and 

inflammation and pain of the large intestine. It appears that both TRPA1 and TRPV4 are 

also involved in osteoarthritis (Kanju et al., 2016). 
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2.2 The TRPV4 channel 

2.2.1 The role of the channel 

TRPV4 receptors can be activated directly by warm temperature (27–35°C), by changes in 

osmolarity and by external and internal chemical stimulation (Grace, Bonvini, Belvisi, & 

McIntyre, 2017).   

TRPV4 receptors play an important role as mechanosensors and in signaling and sensing 

pain. The receptors can be found in afferent (sensory) neurons in the spinal ganglion and 

in the trigeminal ganglion (Kanju et al., 2016). Poole et al. (2013) found protease-activated 

receptor 2 (PAR-2), which is a significant actor in mediating pain and inflammation, to 

activate TRPV4 through a mechanism that is not yet fully understood. The complicated 

mechanism is believed also to include mediators such as arachidonic acid, phospholipase 

A2, epoxyeicosatrienoic acid and an unknown tyrosine kinase. This is one example of 

indirect activation of the receptor. In mice, TRPV4 has been identified to be a part of 

channeling pain caused by UVB radiation (Moore et al., 2013). 

Besides being a pain mediator, TRPV4 is also involved with various respiratory diseases 

such as asthma, chronic obstructive pulmonary disease (COPD) and cough. The ATP levels 

have been discovered to be elevated in these conditions and it has been suggested that 

TRPV4 plays a role in the cascade which leads to ATP being released (Grace et al., 2017). 

In addition, TRPV4 activation is involved with conditions such as pulmonary oedema, brain 

oedema, itch (caused by serotonin) and colitis. TRPV4 is expressed in cells at the epithelia 

and the endothelia and in the gastrointestinal tract tissues (Grace et al., 2017).  

2.2.2 The structure of TRPV4 

The human TRPV4 receptor is a homotetramer and every subunit of the human protein is 

built up from 871 amino acids (White et al., 2016). Both the N-terminal and the C-terminal 

of the protein are located at the intracellular region. The three-dimensional (3D) TRPV4 

structure of the western clawed frog (Xenopus tropicalis) has been solved with cryo-

electron microscopy (cryo-EM) to a resolution of 3.8 Å (Protein Data Bank (PDB) ID 6BBJ) 

(Fig. 1) and since the sequence identity between the human and the frog TRPV4 is 78% 

(Deng et al., 2018), one would also expect the structure to be similar between these two 
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proteins. The domains the frog model shows are, starting at the N-terminal end, first comes 

ankyrin repeat domain (ARD), which includes six ankyrin repeats (Deng et al., 2018). 

Ankyrin repeats are important for the protein function, and they are often engaged in 

protein-protein interactions. One ankyrin repeat is composed of 33 residues and the 

residues form two alpha helices which are connected by one loop (White et al., 2016). Next 

comes the linker domain which is a three-stranded beta sheet that includes two beta 

strands from the N-terminal and one beta strand from the C-terminal region. A helix-turn-

helix motif and an alpha helix called the pre-S1 helix are situated in the intracellular region. 

These are also parts of the linker domain. The S1-S4 domain and the pore domain are 

transmembrane domains. The S1-S4 domain is built out of four alpha helices and the loops 

that connect them. The pore domain is built out of two bigger alpha helices, S5 and S6, and 

one smaller alpha helix called the pore helix. The composition of the S1-S4 domain and the 

pore domain are domain-swapped in the structure (Fig. 2), which signifies that the S1-S4 

domain from one subunit interacts with a pore domain from another subunit. A TRP 

domain is found between the intracellular and the transmembrane area (Deng et al., 2018). 

The TRP domain amino acid sequence is conserved amidst the TRPV proteins. The TRP 

domain in TRPV1 has been proposed to be important for channel activity and channel 

stabilization (García-Sanz et al., 2007). Figure 3 shows the structure of one TRPV4 subunit.  

 

Figure 1. The structure of the frog TRPV4 (PDB ID 6BBJ). The four different subunits 

are colored with different colors. The two pictures show the structure from two different 

angles, left: the side view; right: the bottom view. The red lines mark the approximate 

location of the cell membrane. 
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 2.2.3 TRPV4 ion pore 

TRPV4 receptors are more permeable for ions 

that are bivalent, for example Ca2+ and Mg2+ 

ions, but in general TRPV4 is a nonselective 

channel and other non-bivalent ions may also 

permeate the ion pore. The western clawed 

frog TRPV4 does not have an upper gate at 

the selectivity filter, which all the other 

known TRPV receptors have (Deng et al., 2018). The narrowest point at the selectivity filter 

in the frog TRPV4 is 10.6 Å and defined by the residue Gly 675 (corresponds to Gly 679 in 

human TRPV4). This diameter is too wide to be working as a gate, if compared to the 

corresponding structure in TRPV1, which has a diameter of 7.6 Å in the open channel 

conformation. The closed conformation of the TRPV1 upper gate is 4.8 Å in diameter. The 

frog TRPV4 has only one lower gate in the intracellular S6 pore helix. The important residue 

for this gate was determined to be Met 714 (corresponds to Met 718 in human TRPV4). 

The side chain of Met 714 made the narrowest point of the channel only 5.3 Å wide. Thus, 

the resolved structure is not an open channel structure, as a diameter of 5.3 Å is too small 

for ions to pass. The amino acids constructing the lower gates in various TRPV receptors 

Figure 2. The domain-swapped structure. 

The different subunits are seen in different 

colors. Only the S1-S4 domains and the 

pore domains are shown, the domains are 

labeled separately for each subunit. 

Figure 3. The structure of one frog 

TRPV4 subunit. The ankyrin repeat 

domain in purple-blue and hot pink, the 

linker domain in red, S1-S4 domain and 

pore domain in cyan and TRP domain in 

green. The S1-S6 helices and pore (P) 

helix are labeled. Other than ankyrin 

repeat domain loops are seen in 

magenta. The N- and C-terminals are 

labelled.  
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are diverse, despite the fact that the amino acid sequences of S6 helices are conserved 

among the TRPV receptors (Deng et al., 2018).  

Deng et al. (2018) discovered that all the various cations bind nearly to the same place in 

the ion pore. In the study, Cs+, Ba2+ and Gd3+ were all discovered to bind near the oxygen 

of the carbonyl group in Gly 675.  The distance between the two backbone oxygen atoms 

of these glycine residues in opposite domains was found to be around 10.6 Å. This is large 

enough to fit a hydrated ion. Because TRPV4 has only one ion-binding site, the ions can 

freely move to both sides of the ion-binding site. The only exception was found with Gd3+ 

that is bound with very high affinity to TRPV4 and, therefore, blocks the ion pore.  

Densities that were believed to belong to bound lipids were also observed in the selectivity 

filter area in TRPV4. Lipids are believed to be important for the stability of the protein and 

in TRPV4 they seem to be an essential part of the selectivity filter, filling up the unoccupied 

space. If the lipid findings are true, it is a unique feature, since similar bindings in the pore 

area have not been reported in other channels in similar tetrameric proteins (Deng et al., 

2018).  

The corresponding residues of the human TRPV4 mentioned in this section were obtained 

by multiple sequence alignment of various TRPV4 proteins (see section 4.1). 

2.2.4 Mutations in the TRPV4 protein 

Mutations in the TRPV4 amino acid sequence cause both disability and fatality (Fig. 4). 

Mutations in TRPV4 are found, for example, in the ankyrin repeat domain at the finger 3 

loop. Another location is the S4-S5 linker and at the residues forming contacts with the TRP 

helix. Some mutations are found in the S5-S6 pore domain or in other areas that could 

affect the gating properties. Many mutations are found in the outer edges of the 

intracellular N-terminal domains of the channel. Mutations that cause a certain disease are 

usually found in one or a couple of the above-mentioned locations. This makes TRPV4 a 

possible target for illness-specific medicine development (Deng et al., 2018).   
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2.3 3D structures and drug design 

Widely known problems with the drug 

development industry are not only the 

time consuming and extremely costly 

development steps, but also the fact that 

many promising drug candidates fail in the 

clinical trials after many years of 

development. By solving 3D structures of 

important target proteins and further by 

locating possible binding sites in the 

proteins, the scientists are making drug 

design faster, cheaper, and more accurate 

in finding specific drug candidates (Batool 

et al., 2019). 

When there is no experimentally solved 3D 

structure of the target protein available, 

comparative modeling is one of the 

commonly used methods for building a 

theoretical model structure. The method 

can be used when the sequence identity 

between the protein used as the template 

structure and the protein to be modeled is 

generally greater than 40% (Batool et al., 

2019). 

Three previous studies that describe the putative structure of the human TRPV4 have used 

the cryo-EM rat TRPV1 model as a template structure. The sequence identity between 

these two proteins is 41% (Berna-Erro et al., 2017, Garcia-Elias et al., 2015; Teng, Loukin, 

Anishkin, & Kung, 2015).  

A human TRPV4 homology model by Cao et al. (2018) used rat TRPV2 as a template 

structure for almost the whole human TRPV4 sequence. An exception was a short C-

Figure 4. The known TRPV4 mutations. 

The figure is visualizing one chain in pale 

cyan. The areas colored with hot pink 

cause skeletal dysplasia, green areas 

cause peripheral neuropathy, and the 

purple-blue areas cause 

osteoarthropathy. The figure was modified 

from the figure in the study from Deng et 

al. (2018). 
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terminal part, which is less conserved in evolution. This part was modeled with several 

servers used for structure prediction. The overall sequence identity between rat TRPV2 and 

human TRPV4 is 37.8% (own alignment with Clustal Omega; Sievers et al., 2011).  

2.4 Locating TRPV4 antagonist binding site(s) 

To be able to find molecules that would inhibit human TRPV4 it was necessary to determine 

at least one possible antagonist binding site. During the experimental phases of this thesis, 

there were no antagonist binding sites of TRPV4 described in the literature.  

One study describes the binding site for 5’,6’-epoxyeicosatrienoic acid (5’,6’-EET), which is 

a natural TRPV4 agonist (Berna-Erro et al., 2017). The study applied comparative homology 

modeling (with human TRPV1 as the template structure), molecular docking and MD 

simulations, microscale thermophoresis (MST), intracellular calcium imagining and 

electrophysiological techniques as research methods. The binding site was predicted to be 

in a pocket formed by the S1-S4 helices and their linkers. Important residues for binding 

were determined to be Lys 535, Phe 549, Gln 550, Tyr 591 and Arg 594. The study found 

these to be conserved residues. The residue Lys 535 was discovered to be critical for 5’,6’-

epoxyeicosatrienoic acid binding; when the lysine residue was mutated to alanine, the 

binding interaction was lost according to the MST analysis and the channel activation by 

the natural agonist (but not by heat or GSK1016790A agonist).  

A binding site for intracellular ATP has been located at the ARD, residues from both finger 

1 and finger 2 are involved in the binding (Li, Kao, & Chang, 2020). ATP sensitizes the TRPV4 

receptor (Phelps, Wang, Choo, & Gaudet, 2010). 

The Cryo-EM and nanodisc structure of the rat TRPV1 with bound antagonist capsazepine 

(Gao, Cao, Julius, & Cheng, 2016) and cryo-EM structure of rabbit TRPV5 with bound 

antagonist econazole (Hughes et al., 2018) (Fig. 5) are currently the only available 

experimentally solved TRPV structures with bound antagonists. These structures were 

used to visually compare the binding sites with the human TRPV4 model. The ligands are 

bound in a cavity that is located at a corresponding site in these two proteins. The site is 

called the vanilloid binding site (VBS). In TRPV1, the VBS is located between the S3 and S4 

helices and the S4-S5 linker from one subunit and the S6 helix from an adjacent subunit. 
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Vanilloids are a group of molecules that bind into TRPV1 and act as agonists of the protein. 

The activation of TRPV1 by a vanilloid compound leads to pain sensation in the body. An 

example of a vanilloid compound is capsaicin. The antagonists of TRPV1 also bind into the 

VBS (Gao et al., 2016).  

Gao et al. (2016) discovered that crucial residues for agonist (resiniferatoxin) binding in rat 

TRPV1 were Tyr 511, Ser 512, Leu 515, Val 518, Met 547, Thr 550, Arg 557, Ile 573 and Leu 

669 from an adjacent subunit. These residues could form hydrophobic interactions or 

hydrogen bonds with the agonist.  Based on a multiple sequence alignment (see section 

5.2), the corresponding residues in human TRPV4 are Ser 548, Phe 549, Leu 552, Ile 555, 

Leu 584, Met 587, Arg 594, Leu 610 and Leu 705. Phe 549 and Arg 594 were also found to 

be important residues at the TRPV4 agonist binding site (Berna-Erro et al., 2017). These 

residues could give some direction when distinguishing if the ligand is an agonist or 

antagonist. Gao et al. (2016) showed that the agonist resiniferatoxin and antagonist 

capsazepine bind into the same location, but capsazepine did not interact with the residues 

Figure 5. A) Structure of rat TRPV1 with bound capsazepine (red) (PDB ID 5IS0). B) 

Structure of rabbit TRPV5 with bound econazole (blue) (PDB ID 6B5V). The smaller 

figures visualize the protein shapes from different angles and the larger figures visualize 

the vanilloid binding site. The different subunits are colored in different colors. The black 

circles indicate the locations of the ligands.  
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Arg 557 and Glu 570. Crucial residues for antagonist binding were not presented in the 

study. 

Hughes et al. (2018) discovered that the crucial residue for econazole binding in rabbit 

TRPV5 was Phe 425. The corresponding residue in human TRPV4 (obtained with multiple 

sequence alignment, see section 5.2) was Phe 549 (it was also found to be an important 

residue at the TRPV4 agonist binding site; Berna-Erro et al., 2017). 

Computational tools for detecting binding pockets can also be used. Finding the most 

probable binding pocket in such a big protein can be challenging, since the number of 

possible cavities can be large. Computational tools calculate, for example, interaction 

energies between the target protein and such functional groups that are known to be 

important for drug binding (Batool et al., 2019), thus recognizing druggable binding sites. 

A druggable binding site is also hydrophobic, adequate in size (not too small) and not too 

shallow (Halgren, 2008).  

Some clues for a binding site can also be found by examining the amino acid sequence. It 

has been discovered that tryptophan is located more frequently in ligand binding sites than 

in other parts of the protein. Also, charged residues act more often as catalytic residues 

compared to hydrophobic or polar residues (Henrich et al., 2010). 

2.5 Examples of TRPV4 antagonists  

Some known TRPV4 antagonists (Fig. 6) are for example ruthenium red, RN-1734 (Vincent 

et al., 2009) and HC-067047 (Zhang et al., 2015). GlaxoSmithKline has developed many 

TRPV4 antagonists, and they have started clinical trials with at least one of their molecules, 

GSK2798745. There are at least three clinical studies involving GSK2798745. A phase II 

clinical study evaluating the effect and safety of GSK2798745 when treating pulmonary 

edema has been successfully finished (Goyal et al., 2019; ClinicalTrials.gov, 2021a). A phase 

I clinical study assessing the safety, pharmacodynamics, tolerability and 

pharmacodynamics of GSK2798745 when treating diabetic macular edema is ongoing 

(ClinicalTrials.gov, 2021b). A phase II clinical study, evaluating the effect and side effects 

when treating chronic cough with GSK2798745 was aborted due to the lack of efficacy 

(Ludbrook et al., 2019; ClinicalTrials.gov, 2021c). Kanju et al. (2016) reported two 
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derivatives of GSK205, another TRPV4 antagonist, to act as TRPV4/TRPA1 dual inhibitors. 

The molecules reduced trigeminal pain provoked by formalin.  

 2.6 Virtual screening by 

molecular docking  

There are many powerful 

computational tools 

available for virtual 

screening of molecular 

libraries and for MD 

simulations of proteins 

and protein-ligand 

complexes.  

A common approach for 

structure-based virtual 

screening is molecular 

docking. By using energy 

scoring functions and 

search algorithms, the 

aim is that the molecular 

docking method predicts 

accurately the native binding mode of the ligand in the binding cavity. There are still 

challenges to overcome with the docking methods, for example the flexibility of the target 

protein and the ligands can contribute to bias in the prediction results (Guedes, de 

Magalhães, & Dardenne, 2014).   

Glide (Friesner et al., 2006) is a commonly utilized docking software used for virtual 

screening. Three modes of docking and scoring functions can be used with Glide: virtual 

high-throughput screening (vHTS), standard precision (SP) and currently the most 

optimized function, the extra precision (XP) docking mode. The aim with these scoring 

functions is to calculate the estimated binding affinity for a ligand and a protein. vHTS 

Figure 6. The structures of some known TRPV4 

antagonists. A) GSK205, B) GSK2798745, C) HC-067047 

and D) RN-1754. The structures were obtained from 

ChemSpider (http://www.chemspider.com/). 
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generates the roughest estimate and is thus the fastest, SP mode being the second fastest 

and XP the most accurate and slowest. 

The scoring function for XP Glide is the sum of van der Waals interaction energies, Coulomb 

interaction energies and factors that both support and prevent ligand binding. XP Glide 

finds the best pose by dividing the ligand in portions and then, one portion at the time, 

finding the best pose and avoiding penalties by repositioning the different structural 

moieties of the ligand. Although the XP Glide is superior compared to the other Glide 

scoring functions, it still has its limitations, especially in distinguishing the compounds that 

are active from the compounds that are inactive (Friesner et al., 2006). 

GOLD (Verdonk et al., 2003) is another common commercial docking software used for 

virtual screening. GOLD applies fitting points when docking the ligand into the binding 

cavity. A genetic algorithm (GA) is employed when GOLD examines potential binding 

modes. The GA performs modification and optimization of various ligand parameters such 

as the geometries of the ring structures.   

2.6.1 Binding free energy estimation and MD simulations 

Since the scoring functions of docking programs are fast and not so accurate, more 

accurate methods are used for re-ranking the top candidates and for studying the stability 

of the docked complexes. 

MD-based molecular mechanics-generalized Born surface area (MM-GBSA) method is used 

to calculate the binding free energy of ligand-protein complexes. MM-GBSA is useful when 

the aim is to rank ligands according to the relative binding affinity instead of trying to 

calculate the absolute binding affinity between a protein and a ligand. The binding free 

energy is calculated from the changes in molecular mechanics energy in the gas phase, the 

free energy of the solvation and the conformational entropy at the time of binding. Tingjun, 

Junmei, Youyong and Wei (2011) investigated with a set of ligands and proteins if the 

length of the MD simulation was critical for the MM-GBSA calculations. The investigated 

simulation lengths varied from 400 – 4800 ps. They discovered that longer simulation times 

do not necessary mean more accurate results. Instead, the study emphasized the 

importance of using a good force field. A force field is used for calculating the predicted 
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force for every atom in the system, in other words, it predicts the potential energy of the 

simulation system (Bowers et al., 2006).  

MM-GBSA calculations can be performed with for example Prime (Jacobson et al., 2004). 

The default solvation model in Prime is the VSGB 2.0 and according to Li et al. (2011) the 

solvation model is valid for SBDD. The force fields available are the OPLS_2005 (Kaminski, 

Friesner, & Jorgensen, 2001) or the OPLS3e (Roos et al., 2019). The output from the Prime 

MM-GBSA calculations gives properties such as the Coulomb energy, Van der Waals energy 

and Generalized Born electrostatic solvation energy. Prime binding energy (DG bind) is 

calculated according to the equation below (Prime 4.0 User Manual, 2015): 

 

MD simulations are also inherently suitable for studying the time-dependent movements 

(dynamics) of a protein, or the movements and interactions of a protein with one or 

multiple bound ligands. When performing a MD simulation, a solvation box surrounding 

the protein or protein-ligand complex is first added to the simulation system. Water is 

commonly used as the solvent. A suitable algorithm and a force field is required for the 

simulation. Newton’s second law is applied for portraying the particle movements. The 

analysis of the simulation is performed using the trajectories that include the simulation 

information (for example atomic coordinates and energies) saved at set time steps during 

the simulation. For now, simulation times longer than milliseconds are still challenging to 

execute because of the requirement of extremely powerful computers. However, the 

computational advancements are increasing the capacity continuously (Salo-Ahen et al., 

2021). 

In drug design, the stability of ligand binding is frequently studied by MD simulations. When 

performing MD simulations with membrane proteins, it is crucial to add the membrane 

with the lipids to the system. If the membrane is not added, there can be important 

interactions between the protein and the lipids that are not identified (Arinaminpathy et 

al., 2009).  

The MD simulations in this thesis were performed with Desmond (Bowers et al., 2006). 

Desmond is developed by D. E. Shaw Research and the purpose of the software is to 



15 
 

execute fast MD simulations of biomolecular systems (D E Shaw Research, 2021). Other 

examples of commonly used MD simulation software are AMBER (Case et al., 2018) and 

GROMACS (Abraham et al., 2015).  

2.7 Pharmacophore-based virtual screening 

A pharmacophore includes the key structural properties that a ligand must possess to be 

able to bind into a specific binding site (Blass, 2015). With ligand-based pharmacophore 

modeling the properties of known ligands that are important for protein-ligand binding can 

be specified. The pharmacophore model can be used for finding new ligands with similar 

activity but different scaffold, compared to known compounds. Pharmacophore modeling 

could also give indirect information on the properties a favorable binding site should have 

and could be used to facilitate the identification of putative binding sites. An example of a 

medicine discovered with pharmacophore modeling is the tuberculosis medicine isoniazid 

(Batool et al, 2019). 

PHASE (Dixon et al., 2006) as implemented in Maestro was used in this thesis for 

pharmacophore modeling and ligand screening. The algorithm in PHASE determines first 

the ligand alignments and then identifies the pharmacophores. The created 

pharmacophores are ranked with the scoring function PhaseHypoScore (Phase, 2021). In 

PHASE, the pharmacophore model can be built by using one or multiple ligands. The ligands 

can be active or inactive. The pharmacophore model indicates the spatial locations of the 

included features. These are hydrogen bond acceptors and donors, aromatic rings, 

hydrophobes and the positive and negative ionizable features. The directionalities of the 

features are presented where relevant. In addition, it is possible to add other desired 

features to the created pharmacophore. This is performed by adding the SMARTS patterns 

of the desired features to the pharmacophore (Dixon et al., 2006). 

2.8 Properties of druggable ligands and ADMET prediction 

The “Lipinski’s rule of five” is a classic guideline when creating and discovering new ligands. 

According to the rule, an orally active drug candidate should have a molecular weight of 

maximum 500 Daltons, Log P should be equal or less than 5 and the molecule should have 

equal or less than 10 hydrogen bond acceptors and 5 hydrogen bond donors (Lipinski, 

Lombardo, Dominy, & Freeney, 1997).  
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Prediction of the pharmacokinetic and toxicologic properties of drug candidates gives 

information about how the molecule would behave in the body. It is important to 

determine the ADMET properties of the molecule as soon as possible in the drug 

development process.  

Water solubility is important for parenteral and orally administered medicines. A molecule 

with good water solubility also requires less effort, when preparing the pharmaceutical 

formulation, compared to less soluble molecules (Daina et al., 2017). This correlates with 

the “Lipinski’s rule of five” which states that the ideal lipophilicity value (log P) for a good 

drug candidate should be low (Lipinski et al., 1997).  

In drug discovery, it is important to know which cytochrome P450 (CYP) isoforms are 

inhibited or induced by a new drug candidate or if the molecule interacts with the P-

glycoprotein (P-gp). This leads to a better understanding of the possible interactions and 

adverse effects that may occur because of the interaction (Daina et al., 2017).  

Toxicity assessments for chemicals are critical in the pharmaceutical industry (Banerjee, 

Eckert, Schrey, & Preissner, 2018). Since the amount of chemicals exposed to humans, 

animals and the environment increases, it is important to evaluate the toxicity profile for 

both single chemicals and chemical mixtures. The in silico toxicity prediction methods 

complete the in vivo methods. With toxicity prediction, the cost, time and need of animal 

testing are decreased.  

Important predictions for toxicity include the lethal dose 50 (LD50) value. It is also of 

interest to predict if the drug candidate is hepatotoxic, cardiotoxic or cytotoxic, acts as a 

carcinogen or induces mutagenicity (Banerjee et al., 2018).     
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3. Aims 

The main aim for this thesis work was to identify novel putative TRPV4 antagonists for the 

treatment of pain and inflammation. The specific aims were as follows: 

- To build a comparative model of human TRPV4 and test the stability of the model with 

molecular simulations. 

- To locate antagonist binding site(s) in human TRPV4 by using structural data, information 

from literature and by computational methods. 

- To identify putative TRPV4 antagonists by vHTS of a molecule library using molecular 

docking with the docking programs GOLD and Glide.  

- To test the best ranked ligands for their binding stability at TRPV4 with MD simulations. 

- To create a pharmacophore model of known TRPV4 inhibitors and carry out a 

pharmacophore-based virtual screening of a molecular library with the program PHASE.  

- To perform in silico ADMET prediction with SwissADME and ProTox II for the best scoring 

ligands from both the docking and the pharmacophore-based virtual screening results. 

- To choose the virtual hits with the best qualities to be sent to our collaborators for further 

activity testing. 
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4. Material and methods 

4.1 Building a stable comparative model of human TRPV4  

The 3D structure of the human TRPV4 receptor has not yet been solved experimentally. 

Therefore, to be able to build a 3D model of the protein using comparative modeling, a 

homologous template structure was needed. The TRPV4 structure of the western clawed 

frog (Xenopus tropicalis) was used as a template structure, since it had been solved with 

cryo-EM to a resolution of 3.8 Å. As mentioned before, the reported amino acid sequence 

identity was 78% between the human and frog TRPV4 receptor (Deng et al., 2018).  

The amino acid sequences of both human and the western clawed frog TRPV4 were 

downloaded from the UniProt Knowledgebase (https://www.uniprot.org/) and the 

western clawed frog TRPV4 3D structure was downloaded from the PDB database (Berman 

et al., 2000, rcsb.org) (PDB ID 6BBJ). The frog cryo-EM structure contains the residues 144 

to 784 (Deng et al., 2018) from each subunit. A few loop structures were not experimentally 

modeled. These included the large extracellular loop, and a couple of small intracellular 

loops. The experimentally solved structure was used as a template to model the 

corresponding residues of the human TRPV4 sequence. A multiple sequence alignment of 

TRPV4 proteins from different organisms was performed to learn which residues 

correspond in the two structures. The sequences used were the human TRPV4 (Uniprot ID 

Q9HBA0), mouse TRPV4 (Uniprot ID Q9EPK8), rat TRPV4 (Uniprot ID Q9ERZ8), chicken 

TRPV4 (Uniprot ID A0A1D5PXA5), two western clawed frog TRPV4 sequences (Uniprot ID 

F7BWY7 and F6YG73) and the rhesus macaque TRPV4 (Uniprot ID A0A1D5R8Y1). The 

sequences were downloaded on April 12, 2018. 

The software MODELLER (Šali & Blundell, 1993) was used for homology modeling. The 

residues 148 – 788 from each chain of the human TRPV4 sequence were modeled. Ten 

alternative 3D models were created and the best model with the most negative DOPE score 

(Shen & Sali, 2006) was chosen for further studies. In addition, Ramachandran Plot of the 

model, which shows the stereochemical properties of the structure (Batool et al., 2019), 

was examined and the model was visually inspected with PyMOL (DeLano, 2002).  

To investigate the stability of the model, MD simulations were performed with Desmond 

(Bowers et al., 2006). Since the TRPV4 is a membrane protein, the initial step was to set up 
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the membrane with Desmond System Builder. The residues used to set up the membrane 

were the residues 470 – 492, 506 – 636 and 665 – 719 in all four subunits, these residues 

correspond to the S1 – S6 helices without the extracellular loops (Fig. 7A) and are the 

transmembrane parts of the protein (Deng et al., 2018). The solvent model was set to TIP3P 

(Jorgensen, Chandrasekhar & Madura, 1983). The periodic boundary conditions were used; 

the simulation box shape was orthorhombic; the box size calculation method was buffer 

and the distances around the solute were 10 Å x 10 Å x 10 Å. The box volume was 3613897 

Å³ and the force field used was OPLS3e (Roos et al., 2019). The system was neutralized 

with 20 Cl- ions since the charge of the protein was +20. NaCl was added to the system 

with a physiological concentration of 0.15 M.  

The model system (Fig. 7B) was then uploaded to the Desmond Molecular Dynamics tool. 

The total simulation time was 300 ns, but due to technical limitations, the simulations had 

to be run in 100-ns parts. During the simulation from 0 to 100 ns the trajectory was 

recorded every 100 ps, from 100 to 200 ns every 200 ps and from 200 ns to 300 ns every 

300 ps. The approximate number of frames was 1000. The ensemble class was NPT, 

temperature 300 K and pressure 1.01325 bar. The model system was relaxed before the 

simulation.  

Figure 7. A) The cell membrane is visualized as the area between the red rectangles. 

B) The simulation system with the solvent box, the membrane is seen in grey. The figures 

were prepared with Maestro. 
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Before merging the three 100 ns trajectories, the files had to be reduced in size. This was 

done by decreasing the number of frames. Each trajectory initially had 1001 frames. Only 

every tenth frame was saved and so the remaining trajectory file had 101 frames. The three 

trajectory files were merged, and the final trajectory had 303 frames.  

The trajectories of the simulation were visualized with the Desmond trajectory panel as 

implemented in Maestro. A video of the simulation was also prepared with the same tool.  

The protein root mean square deviation (RMSD) and the root mean square fluctuation 

(RMSF) plots of the MD simulation were analyzed to see if the protein remained stable 

during the simulation.  

Pictures of the protein were prepared with PyMOL (DeLano, 2002). Also, throughout the 

thesis, pictures were prepared with PyMOL, if not stated otherwise.  

4.2 Locating the putative antagonist binding site 

Putative antagonist binding pockets were located by using the available literature and the 

TRPV structural data in the PDB, but also with computational tools such as ConSurf 

(Ashkenazy et al., 2016), SiteMap (Halgren, 2009) and Clustal Omega (Sievers et al., 2011). 

Since the binding sites are often conserved in evolution (Henrich et al., 2010), ConSurf 

server (Ashkenazy et al., 2016) aims to find the parts of the (model) structure or sequence 

that are resembling known ligand binding sites in other proteins and the residues that are 

important for protein function. Chain A of the TRPV4 model was evaluated. All the 149 

sequences approved for the multiple sequence alignment had the sequence identity 

percentage between 35 and 95% compared to the human TRPV4 sequence.  

A search in the PDB database (Berman et al., 2000, rcsb.org) was performed to be able to 

investigate the experimentally solved 3D structures of other TRPV proteins with bound 

antagonists. These structures were used to visually compare the binding sites with the 

pockets found in the human TRPV4 model. The structures previously mentioned were 

used; the rat TRPV1 with the bound antagonist capsazepine, the resolution of the structure 

is 3.43 Å (PDB ID 5IS0) and the rabbit TRPV5 with the bound antagonist econazole, the 

resolution of the structure is 4.80 Å (PDB ID 6B5V). The structures were aligned with the 
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human TRPV4 model in PyMOL (DeLano, 2002). The purpose was to see if cavities could be 

seen in the corresponding sites in the protein model.  

Multiple sequence alignment of all six subtypes of TRPV proteins was performed with 

Clustal Omega (Sievers et al., 2011) to be able to locate the conserved residues. All but 

human TRPV4 have experimentally solved 3D structures. The human TRPV4 (Uniprot 

Q9HBA0), rat TRPV1 (Uniprot O35433), rabbit TRPV2 (Uniprot G1SNM3), human TRPV3 

(Uniprot Q8NET8), rabbit TRPV5 (Uniprot Q9XSM3) and human TRPV6 (Uniprot Q9H1D0) 

were used.  

The locations of tryptophan and charged residues were identified in the human TRPV4 

model to determine if the results would support the putative vanilloid binding site.  

SiteMap (Halgren, 2009) as implemented in Maestro was used to locate putative binding 

cavities. It was particularly interesting to see if SiteMap would recognize the cavity that 

corresponds to the rat TRPV1 and rabbit TRPV5 antagonist binding cavity. The scoring 

functions in SiteMap yield important information regarding the cavity’s theoretical 

suitability for drug binding. SiteMap uses so called site points for identifying potential 

binding cavities. An algorithm is used to recognize site points that are most likely involved 

in favorable binding interactions. SiteMap then connects multiple site points, and these 

points form a putative binding site (Halgren, 2007). The default settings in SiteMap were 

used; at least 15 site points were required per reported site.  

4.3 Virtual screening by molecular docking 

4.3.1 With Glide 

Once the putative binding pocket was selected, a virtual screening with the docking 

program Glide (Friesner et al., 2006), as implemented in Maestro, was performed by 

docking a compound library downloaded from Enamine (https://enamine.net/) to the 

selected binding site. The library was called the Ion Channel Library and it contained 36 800 

molecules. The molecules were not prefiltered before docking since the compounds had 

been selected specifically for ion channels. The molecules were prepared for docking with 

the LigPrep tool of Maestro (LigPrep, Schrödinger, LLC, New York, NY, 2020). Force field 

OPLS3e was used and Epik (Epik, Schrödinger, LLC, New York, NY, 2021) was used for 

predicting the side chain protonation states. Other settings were left as default; at most 32 
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stereoisomers were created per ligand. Ligand preparation yielded 172 217 ligands in total, 

this includes the stereoisomers and tautomers generated for the library compounds. Seven 

structures were dropped in the preparation process.  

The human TRPV4 model was prepared for docking with the Protein Preparation Wizard in 

Maestro (Sastry, Adzhigirey, Day, Annabhimoju, & Sherman, 2013). The protein was pre-

processed with the default options; the hydrogens were added and possible disulfide 

bonds were created. The hydrogen-bond network was optimized at pH 7.0 and a restrained 

minimization in the OPLS3e force field was first run for only the hydrogens and then for the 

heavy atoms using the convergence criteria of RMSD 0.30 Å. 

The docking site was defined with Glide’s Receptor Grid Generation tool. The center of the 

grid was determined to be located at the coordinates X=154.79, Y=147.11 and Z=166.45. 

The length of the ligand was set to be less or equally 18 Å. The binding site residues with 

thiol or hydroxyl groups were allowed to be rotatable; for example, Ser 548, Tyr 553, Tyr 

556, Ser 557 and Tyr 591 in A chain and Tyr 628, Thr 701 and Thr 706 in C chain.  

The library of the prepared ligands was then screened using the Virtual Screening Workflow 

tool in Maestro. With this tool, it is convenient to setup the whole docking pipeline as one 

job. It is also possible to include ligand preparation and filtering in the pipeline when 

necessary. The first screening was executed with the robust vHTS mode. Roughly the best 

10% of the compounds were selected for the next screening step. Then the docking was 

executed again with these selected compounds using the SP mode and again roughly the 

best 10% of the compounds were chosen for the next screening step. The last screening 

round that was executed with the XP docking mode yielded the best 10 % of the 

compounds (approximately 170 compounds).  

Molecules that had the Glide XP score lower than -9 kcal/mol were chosen for the 

Prime/MM-GBSA binding free energy calculations. The MM-GBSA score suggests the 

affinity between the ligand and the protein; the lower the score, the stronger the affinity. 

The top compounds were ranked according to their predicted binding free energy. 

Protein-ligand interaction analysis was visually performed with PyMOL (DeLano, 2002). 
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4.3.2 With GOLD 

Two rounds of virtual screening with the Enamine Ion Channel library were performed with 

the docking program GOLD (Jones, Willett, Glen, Leach, & Taylor, 1997). The binding site 

center was defined with the same coordinates previously used with Glide docking. The 

docking site around the center was set to 18 Å x 18 Å x 18 Å. The scoring function CHEMPLP 

was used. The first screening had the genetic algorithm (GA) setting at 10%, which can be 

used for screening large libraries. This screening mode is the fastest, but also the least 

accurate. At most five poses were produced per ligand per docking run. The first screening 

was set to save the 500 best-ranking molecules. The binding mode of these 500 molecules 

was visually inspected and the molecules that were docked into the right cavity were 

selected. The selected 184 molecules were then redocked using the GA setting 100%, the 

“Default” mode. This mode performs a much more accurate screening; the software tries 

to find the most favorable pose for every ligand (Cambridge Crystallographic Data Centre, 

2019). The screening was set to save the 50 best ranking molecules, according to the GOLD 

fitness score. The higher the GOLD fitness score, the higher the ranking.  

MM-GBSA binding free energy calculations were then performed for the 50 best ranked 

molecules with Prime/MM-GBSA method of Maestro. The estimated free energies of 

binding from MM-GBSA helped re-score the poses and compare the results from GOLD and 

Glide. 

4.4 Evaluation of the ligand-protein complex stability 

Protein-ligand complexes with the best MM-GBSA scores from both GOLD and Glide 

screenings were visually analyzed and 10 complexes with structurally differing ligands were 

chosen as the most promising candidates for the MD analysis. The water box and 

membrane were first set up for the protein-ligand complexes with Desmond’s System 

builder. These 10 protein-ligand complexes were then submitted for 300-ns MD simulation 

each with Desmond (Bowers et al., 2006) as implemented in Maestro. The goal was to find 

the protein-ligand complexes that would remain stable during the simulation, thus 

supporting the possible good binding affinity. The parameters used for both the System 

builder and MD in Desmond were the same as used in the simulation of the protein model 
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alone. The box volume altered slightly between the complexes as did the amount of Cl- 

atoms used to neutralize the charge of the simulation systems.  

A reference simulation with complex 1 was performed without the lipid membrane. The 

purpose of the simulation was to compare the results with the complex 1 simulation that 

includes the membrane and to conclude whether the lipid membrane affects the results. 

The RMSD and protein-ligand interactions plots were inspected from the reference 

simulation. Simulation parameters were otherwise the same. 

4.5 Analysis of the MD simulations 

The trajectories of the simulations were visualized with the Desmond trajectory panel as 

implemented in Maestro. Videos of the simulations were also prepared with the same tool.  

Based on the stability of the complexes, as evaluated with the energy, RMSD/RMSF plots 

and the protein-ligand interaction plots, ligands with the best scores and features were 

chosen for ADMET prediction. 

4.6 ADMET prediction 

ADMET properties were predicted with two online tools. ADME properties with 

SwissADME (Daina et al., 2017) and toxicity with ProTox II (Banerjee et al., 2018). The tools 

give a large amount of information, but for this thesis the most interesting predictions from 

ProTox II were the LD50 value, the toxicity class, and the predictions if the compound would 

act as a hepatotoxic, immunotoxic, mutagenic, carcinogenic or cytotoxic agent. 

From SwissADME the most interesting predicted values were: if the molecule (i) is 

absorbed from the gastrointestinal (GI) tract, (ii) can permeate the blood-brain-barrier 

(BBB), (iii) acts as a P-glycoprotein (P-gp) substrate, (iv) acts as an inhibitor for various CYP 

enzymes and (v) how well the molecule can permeate the skin. SwissADME also predicts 

the synthetic accessibility, meaning how easy or difficult the molecule is to synthesize 

(Daina etl al., 2017). However, this is not so relevant for this project since the molecules 

can be purchased from the EnamineStore website. 

Solubilities of the Enamine compounds were obtained from the EnamineStore website 

(https://www.enaminestore.com/). These predicted values were also compared with the 

SwissADME predictions. SwissADME predicts the solubility with three different 

https://www.enaminestore.com/
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approaches. In this thesis the two topological methods were observed. The first method is 

the ESOL method by Delaney (2004). This method uses nine parameters related to the 

structure of the ligand to predict the solubility. These parameters include molecular 

weight, the number of hydrogen bond acceptors and donors, clogP, and the number of 

rotatable bonds. The second method by Ali et al. (2012) applies quantitative structure–

property relationships (QSPR) calculations in the predictions. 

A chart of the complete workflow for the docking project is visualized in Figure 8. 

4.7 Pharmacophore-based 

virtual screening  

Pharmacophore modeling 

of two known human 

TRPV4 antagonists was 

used to identify new 

antagonist candidates.  

PHASE (Dixon et al., 2006) 

as implemented in 

Maestro was used for 

pharmacophore modeling. 

The TRPV4 antagonists 

GSK205 and HC-067047 

were used as the known 

active molecules for the 

model building. GSK205 is 

frequently used as a tool 

compound when designing 

new TRPV4 antagonists 

(Kanju et al., 2016). HC-

067047 has been found to reduce pain caused by, for example, inflammation and 

neuropathy (Dias et al., 2019). The ligands were preprocessed with LigPrep. Since the two 

ligands were not aligned, the “Find best alignment and common features” method was 

Figure 8. The workflow for the docking project. At the end 

of the virtual screening process, less than 5 of the best 

scoring ligands were chosen for biological testing. 
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used. The hypothesis criterion was set as follows: the hypothesis shall match at least 50% 

of the active molecules, the number of features in the hypothesis shall range between 4 

and 7 and the amount would preferably be at least 5. The criterion for the hypothesis 

difference was set to 0.50. The Phase Hypo Score was chosen as the scoring function. 

Additionally, the number of hydrogen acceptors was set to range from 0 to 9 and the 

number of hydrogen donors set to range from 0 to 4.  

The resulting pharmacophore hypothesis was used for the PHASE ligand screening. The 

default settings in PHASE were used and the number of hits to report was set to 150. The 

output conformers were minimized.  

As previously in the docking project, ADMET predictions were performed with the 

SwissADME and ProTox II tools for the best ranked hits. 

To evaluate if the two known antagonists bind to the same vanilloid binding pocket, they 

were docked at that site in the TRPV4 model, and the binding free energies of the 

complexes were calculated.  
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5. Results 

5.1 The human TRPV4 model 

The DOPE score for the chosen human TRPV4 model was -319982.78125. The 

Ramachandran plot (Fig. 9) for the model showed 93.4% of the residues in most favored 

regions, 6.3% in additional allowed regions, 0.2% in generously allowed regions and 0.2% 

in disallowed regions. The residues in the disallowed regions were Ser 189 in A chain (Ser 

42 in the plot), Tyr 657 in B chain (Tyr 1151 in the plot), Thr 656 in C chain (Thr 1791 in the 

plot) and Ser 758 in D chain (Ser 2534 in the plot). These residues were all located in flexible 

loop structures and were therefore not considered affecting the overall fold of the protein 

or the binding pocket studied in this work. The residues in the generously allowed regions 

were also located in flexible loop areas. These were Arg 775 in B chain (Arg 1269 in the 

plot), Asn 228 (Asn 2004 in the plot), Cys 652 (Cys 2428 in the plot) and Arg 774 (Arg 2550 

in the plot) in D chain. Of these residues, Cys 652, Thr 656 and Tyr 657 were located at the 

extracellular loops that had not been solved in the frog TRPV4 cryo-EM structure. All other 

residues mentioned had the corresponding residues in the template structure. The 

Ramachandran Plot for the frog TRPV4 cryo-EM structure had no residues in the generously 

allowed and disallowed regions.    

When visually analyzing the protein with PyMOL, the model appeared highly similar to the 

template (Fig. 10). Aligning the human TRPV4 model with the frog TRPV4 structure in 

PyMOL (Fig. 11) the root mean square deviation (RMSD) value was 0.649 Å. This is a good 

fit considering a perfect fit would have the value 0. 2136 C-alpha atoms from each protein 

were aligned and 296 C-alpha atoms were rejected from the alignment. 

The results from the MD simulation revealed that the protein remained stable during the 

simulation and did not undergo any big conformational changes. The RMSD plot of the 

simulation is visualized in Figure 12A. The plot indicates that the protein reached the 

equilibrium state at around 160 ns and after that the fluctuation of the protein remained 

at around 4.3 Å. Fluctuations of this size indicate that the protein is moving in a “normal” 

manner. If the difference in the values of the fluctuation is high, it often implies that the 

protein is going through changes in its structure, for example unfolding. Also, if the RMSD 

value is not flattened at the end of the simulation, it signifies that the duration of the 

simulation is too short, and that the system has not stabilized. 
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Figure 9. The Ramachandran plot for the chosen human TRPV4 model. The red areas 

are allowed regions and the bright yellow areas are additionally allowed regions. The 

pale-yellow areas are generously allowed regions and the white areas are disallowed 

regions. The triangles are glycine residues. As glycine does not have a side chain, it can 

be located at the disallowed region. 

Figure 10. The human TRPV4 model obtained from homology modeling. Figures A and 

B show the protein from different angles. All four subunits are colored differently.  
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The RMSF plot visualizes how local parts of the protein alter during the simulation. Loop 

structures and N- and C-terminal ends are the structures which usually peak on RMSF plots. 

Alpha helices and beta strands should not peak since secondary structures are stiffer than 

unstructured sections of the protein.  

The protein RMSF plot is presented in figure 12B. The four tallest peaks represent the large 

extracellular loop structures, and the other taller peaks represent the beginnings and ends 

of the four subunits. The A subunit starts at residue 1, subunit B begins at residue 642, 

subunit C begins at residue 1283 and subunit D begins at residue 1924. A peak can be seen 

in all subunit terminals.  

 

Figure 11. The aligned human TRPV4 model and the frog TRPV4 cryo-EM structure 

(PDB ID 6BBJ). The human protein can be seen in magenta and the frog protein in cyan. 

Figure A shows all four subunits and figure B shows one subunit from a different angle.  
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 Figure 12. Stability of human TRPV4 model during a 300-ns MD simulation. A) RMSD 

during the simulation. The x-axis shows the simulation time and the y-axis shows the 

protein RMSD value; B) RMSF during the simulation. The x-axis shows the residue 

number and y-axis shows the RMSF value. Note, that the residue number 1 in the plot 

corresponds to the residue number 148 because the plot does not show the original N- 

or C-terminal of the human TRPV4 since these parts were not modeled. The white areas 

show the unstructured sections, the light red areas show the alpha helical sections, and 

the light blue areas show the beta strand sections of the protein. 
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5.2 The putative antagonist binding site  

The results from ConSurf can be seen in 

Figure 13. The alpha helices S4, S5, S6 and 

the TRP domain are mostly very 

conserved, and the ARD is both highly 

conserved and non-conserved. Helices S2 

and S3 seem to have most of non-

conserved residues in TRPV4 when the 

loops are excluded. Especially helices S1 

and S2 have non-conserved residues facing 

outwards from the protein center but the 

residues facing inwards are at least 

somewhat conserved. The putative 

vanilloid binding site in the TRPV4 protein 

is built up from both highly and less 

conserved parts. 

There are eleven tryptophan residues in 

one human TRPV4 chain/subunit. They 

occupy the positions 122, 409, 463, 586, 

733, 737, 776, 785, 788, 822 and 864. 

Residues 122, 822 and 864 were not 

included in the human TRPV4 model. 

According to the model, residues 409 and 776 are located at the three-stranded beta sheet 

structure and residues 785 and 788 at the loop that follows the C-terminal end beta strand. 

Residue 463 is located at the Pre-S1 helix. Residue 586 is located at the S2 helix and this 

residue is found at the vanilloid binding site. Residues 733 and 736 are located at the TRP 

domain. Figure 14 visualizes the locations of the tryptophan residues and the charged 

residues (histidine, aspartate, glutamate, arginine, and lysine) on one subunit of the human 

TRPV4 model. 

Figure 13. Results from ConSurf, chain A 

from the human TRPV4 model was 

evaluated.  The dark purple indicates very 

conserved parts, and the dark turquoise 

shows the non-conserved areas. 
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The results from the multiple sequence 

alignment of the various TRPV proteins 

yielded 96 identical residues and 179 

similar residues. The least conserved areas 

were located at the terminal ends of the 

chains. The vanilloid binding pocket area 

was discovered to contain many 

conserved residues. Figure 15 presents the 

multiple sequence alignment for the 

vanilloid binding pocket in TRPV proteins 

and Figure 16 visualizes the location of the 

conserved residues in the human TRPV4 

model.   

As expected, SiteMap located many 

cavities, one reason being the large size of 

the protein. SiteMap also identified the 

cavity that corresponds to the rat TRPV1 

and rabbit TRPV5 VBS cavity. The 

properties of the cavity were explored 

further. The pocket map shows the shape 

of the cavity and the hydrogen-bond 

acceptor and donor regions, as well as the 

hydrophobic regions. The map indicated 

that the binding pocket is mostly hydrophobic with small hydrogen-bond donor areas at 

the edges of the binding pocket (Fig. 17). SiteMap also calculates the different scores of 

the cavity properties. These scores are meant to aid in locating the cavities that are large 

enough for binding and have the properties a druggable binding site usually needs. The 

scores also help to locate the best cavities in a protein, especially in situations when the 

binding site is not known, and when the protein investigated is large. SiteScore considers 

various calculations such as the size of the cavity, how enclosed the cavity is and the 

Figure 14. One subunit of human TRPV4 

in green, the tryptophan residues are 

shown in magenta and the cyan colored are 

charged residues (histidine, aspartate, 

glutamate, arginine and lysine). 
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hydrophilicity of the cavity. When SiteScore is over 1, the site is considered as a very   

potential target (Halgren, 2009). The druggability score (Dscore) is calculated similarly as 

SiteScore, but the hydrophobicity score is taken more into account in Dscore. Dscore 

separates the druggable cavities from cavities that are suited less or not at all for drug 

binding (Halgren, 2009). When Halgren (2009) calculated the Dscore value for several 

known binding sites in known proteins, the average value for druggable binding sites was 

1.108. The SiteScore for the modeled human TRPV4 cavity was 1.271 and Dscore 1.400. 

These values indicate that the cavity is suitable for ligand binding, but also for drug binding. 

This site was also the best ranked site, of 30 different sites evaluated with SiteScore. 

 

 

 

 

 

Figure 15. Multiple sequence alignment of the vanilloid binding area of TRPV proteins. 

The identical residues can be seen in dark grey, and the similar residues in two shapes 

of lighter grey. The multiple sequence alignment was performed with Clustal Omega. 
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Figure 17. The VBS as identified with SiteMap. Map color code: yellow represents the 

hydrophobic regions, blue represents the hydrogen-bond donor regions and the white 

spheres represent the site points. A) the pocket map for the binding cavity; B) the pocket 

map inside the protein, two protein subunits are colored with orange and red. The figures 

were prepared with Maestro.  

Figure 16. The conserved residues in human TRPV4 according to the TRPV protein 

alignment. Residues 502 – 724 from one subunit are shown, the residues correspond 

to S2 through S6. The protein is shown in green; the red area shows the location of the 

evolutionary identical residues and yellow area shows the locations of the similar 

residues.  
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5.3 Virtual screening 

5.3.1 With Glide and GOLD 

Twenty-eight molecules from the Glide docking and 50 molecules from the GOLD screening 

were included in the Prime MM-GBSA calculations. The results of the Glide and GOLD 

docking and Prime MM-GBSA calculations can be seen in Tables 1 and 2, respectively. Eight 

best scoring ligands from both docking groups were selected. The tables show the Enamine 

ID, MM-GBSA score, XP score or GOLD fitness score, molecular weight, calculated log P, the 

water solubility as log S and the number of hydrogen bond donors (HBD) of the eight best 

ranked molecules. In both Glide and GOLD docking groups, the ligand that had the best 

MM-GBSA score also had the best Glide XP score or GOLD fitness score. The table also lists 

which ligands were selected for the MD simulations. The criteria for the selection are 

described in section 5.3.3. The docked ligands are visualized in Figures 18 and 19. 

Superimposed figures of all the best scoring ligands without showing the pockets are also 

presented (Fig. 18I and 19I). The MM-GBSA values are in general higher in the GOLD 

docking group compared to the Glide docking group. 

 

 

Enamine ID MW 

(g/mol) 

CLogP Log S HBD XP score MM-GBSA Selected 

Z1053001754 480.6 4.838 -6.464 2 -9.889 -65.87 ✓ 

Z118339292 401.5 2.615 -6.362 2 -9.690 -52.68  

Z1436055452 370.4 2.586 -4.487 2 -9.377 -54.73  

Z169988240 471.6 4.891 -6.23 2 -9.783 -63.77 ✓ 

Z31055919 382.4 4.208 -7.21 1 -9.160 -54.26 ✓ 

Z18691736 450.5 4.029 -6.09 1 -9.090 -53.21  

Z1213735368 429.4 4.613 -6.56 2 -9.491 -56.91 ✓ 

Z32325702 376.4 4.407 -6.25 1 -9.062 -53.69  

 

 

Table 1. Molecular properties and docking scores for the eight best scoring ligands in 

the Glide docking group 
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Enamine ID MW 

(g/mol) 

CLog P Log S HBD GOLD 

fitness 

MM-

GBSA 

Selected 

Z30995330 375.5 2.884 -3.486 0 82.083 -61.80 ✓ 

Z146317224 397.5 4.447 -5.197 1 80.400 -59.74  

Z1624971550 490.0 5.652 -6.7 1 75.060 -60.95  

Z229153032 457.6 4.506 -5.5 2 76.829 -63.45 ✓ 

Z1157726398 501.6 3.357 -7.04 1 77.728 -61.29 ✓ 

Z29940381 466.5 5.699 -7.85 2 83.858 -70.22 ✓ 

Z51867077 470.9 3.238 -6.891 1 82.111 -67.91 ✓ 

Z221487176 448.9 4.079 -6.067 2 82.300 -60.48 ✓ 

Table 2. Molecular properties and docking scores for the eight best scoring ligands in 

the GOLD docking group 
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Figure 18. The docked ligands from the Glide screening. The ligands are visualized in 

hot pink and the human TRPV4 protein in various colors. A) Z1436055452, B) 

Z169988240, C) Z1053001754, D) Z31055919, E) Z1213735368, F) Z118339292, G) 

Z18691736, H) Z32325702. I) all the docked ligands superimposed and seen from side.  
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Figure 19. The docked ligands from the GOLD screening. The ligands are visualized in 

red and the human TRPV4 protein in various colors. A) Z30995330, B) Z146317224, C) 

Z229153032, D) Z1624971550, E) Z1157726398, F) Z29940381, G) Z51867077 and H) 

Z221487176. I) all the docked ligands superimposed and seen from side.  
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5.3.2 Selection of the ten most promising molecules for MD simulations 

The selection of the ten most promising antagonist candidates was made foremostly by 

comparing the MM-GBSA results from both GLIDE and GOLD screenings, but also by 

choosing structurally different molecules. Four molecules from the GLIDE screening and six 

molecules from the GOLD screening were selected.  

The 2D structures of the selected molecules from the GLIDE screening are visualized in 

Figure 20 and from the GOLD screening in Figure 21. The protein and molecule complexes 

were renamed by giving each complex a number between 1 and 10. The protein and 

molecules from the GLIDE screening were renamed as following; Z1053001754 = 1, 

Z1213735368 = 2, Z169988240 = 3, Z31055919 = 4 and the protein and molecules from 

GOLD screening were renamed as following; Z30995330 = 5, Z229153032 = 6, Z1157726398 

= 7, Z29940381 = 8, Z51867077 = 9, Z221487176 = 10. 

Figure 20. 2D structures of the selected molecules from the GLIDE screening. The 

ligands represented are following; 1 = Z1053001754, 2 = Z1213735368, 3 = 

Z169988240 and 4 = Z31055919. The pictures were obtained from the Desmond 

simulation output file.  
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5.4 Molecular dynamics simulations 

5.4.1 RMSF analysis 

The MD simulation RMSF plots of the protein-ligand complexes are presented in Figure 22 

(complexes 1 to 4), Figure 23 (complexes 5 to 8) and Figure 24 (complexes 9 to 10). All plots 

displayed similar patterns, but the protein fluctuation patterns were not identical between 

the different protein-ligand complexes. The largest peaks were mostly observed in the 

extracellular loop regions and at the subunit N- and C-terminals. In addition, larger peaks 

could be observed in other unstructured loop regions in complexes 1 and 8. In general, 

Figure 21. 2D structures of the selected molecules from the GOLD screening. The 

ligands represented are following; 5 = Z30995330, 6 = Z229153032, 7 = Z1157726398, 

8 = Z29940381, 9 = Z51867077 and 10 = Z221487176. The pictures were obtained from 

the Desmond simulation output file.  
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there appeared to be more fluctuation in the protein-ligand complexes when compared to 

the protein model alone.  

5.4.2 RMSD and simulation video analysis 

The RMSD plots are presented in Figure 25 (complexes 1 and 2), Figure 26 (complexes 3 

and 4), Figure 27 (complexes 5 and 6), Figure 28 (complexes 7 and 8) and Figure 29 

(complexes 9 and 10). The ligand RMSD value provides information about the stability of 

the ligand in the binding pocket. A stable ligand does not have a significantly higher RMSD 

value compared to the protein RMSD value. A considerably higher ligand RMSD value 

indicates weak or no binding interactions with the protein. In addition, the ligand migrating 

away from the binding site during the simulation is probable (Desmond 4.2 User Manual, 

2015). 

The RMSD plot for complex 1 predicted a stable protein and a quite stable binding of the 

ligand. The protein equilibrated at around 20 ns and for the rest of the simulation the 

fluctuation remained at around 5.6 Å. The ligand RMSD value kept below the protein RMSD 

value during most of the simulation and the simulation video confirmed that the ligand 

remained in the binding cavity. The simulation video visualized that the middle part of the 

ligand stayed quite fixed but the aromatic rings at the ligand ends rotated intensely. 

The RMSD plot for complex 2 revealed a stable protein and a ligand which had for most of 

the simulation a slightly higher RMSD value compared to the protein RMSD. Towards the 

end of the simulation, the RMSD values for both the ligand and the protein were quite 

similar. At the end of the simulation, the protein RMSD was still increasing, so it is possible 

that the system never equilibrated during the simulation. The simulation video showed 

that the ligand remained in the binding cavity and kept a quite similar position throughout 

the simulation 



42 
 

  

Figure 22. The RMSF plots for complexes 1-4 (labeled). Note, that the residue number 1 in the plot corresponds to the residue number 148 because 

the plot does not show the original N- or C-terminal of the human TRPV4 since these parts were not modeled. The white areas show the unstructured 

sections, the light red areas show the alpha helical sections, and the light blue areas show the beta strand sections of the protein. 
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Figure 23. The RMSF plots for complexes 5-8 (labeled). Note, that the residue number 1 in the plot corresponds to the residue number 148 because 

the plot does not show the original N- or C-terminal of the human TRPV4 since these parts were not modeled. The white areas show the unstructured 

sections, the light red areas show the alpha helical sections, and the light blue areas show the beta strand sections of the protein. 
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The RMSD plot for complex 3 predicted a stable protein, but the ligand was not very stable in the binding cavity. The ligand RMSD altered 

somewhat and the ligand RMSD value was higher than the corresponding protein RMSD value during some parts of the simulation. The 

simulation video visualized that the ligand stayed in the binding cavity, but parts of the ligand were rotating considerably. The ligand 

underwent bigger changes in its pose a few times.  

The RMSD plot for complex 4 was quite like the plot for complex 3. The ligand RMSD was somewhat larger than the protein RMSD throughout 

most of the simulation. The protein equilibrated at around 150 ns and for the rest of the simulation the fluctuation remained at around 5.4 

Å.  When comparing the simulation videos, it was noticeable that towards the end of the simulation the ligand in complex 4 was not altering 

its position as much as the ligand in complex 3. 

Figure 24. The RMSF plots for complexes 9-10 (labeled). Note, that the residue number 1 in the plot corresponds to the residue number 148 because 

the plot does not show the original N- or C-terminal of the human TRPV4 since these parts were not modeled. The white areas show the unstructured 

sections, the light red areas show the alpha helical sections, and the light blue areas show the beta strand sections of the protein. 
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The worst RMSD result was obtained with complex 5. The ligand RMSD value was 

significantly higher that the protein RMSD value throughout the simulation. The simulation 

video confirmed that the ligand did not bind into the cavity. Instead, it slid away from the 

cavity towards the extracellular parts of the protein.  

The results from complex 6 RMSD plot and video were quite like the results obtained from 

the simulation involving complex 4. Both protein and ligand stabilized towards the end of 

the simulation. Though, it is possible that the protein did not fully equilibrate during the 

simulation since the protein RMSD was still increasing at the end of the simulation. 

The simulation video of complex 7 revealed that the ligand underwent a large structural 

change at the beginning of the simulation before stabilizing. The structural change is seen 

in the RMSD plot by the big leap of the ligand RMSD value at around 90 ns. The protein 

equilibrated at around 100 ns and for the rest of the simulation the fluctuation remained 

at around 4.6 Å.   

The RMSD plot for complex 8 indicated and the simulation video confirmed that the ligand 

structure altered and moved in the binding cavity. The same applied to complex 9, but here 

the difference between the corresponding RMSD values between the protein and ligand 

were higher compared to complex 8. Thus, the ligand binding in complex 9 was less stable. 

In complex 8 the protein equilibrated at around 50 ns and in complex 9 at around 100 ns. 

The fluctuation remained at around 4.8 Å for both proteins during the rest of the 

simulation. 

The simulation video and the RMSD plot for complex 10 revealed large conformational 

changes for the ligand at 70 ns. The ligand stabilized after that. The protein was stable 

during the simulation, equilibrating at around 50 ns. The fluctuation remained at around 

5.2 Å during the rest of the simulation. 
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Figure 25. The RMSD plot for complex 1 (above) and complex 2 (below). X-axis shows 

the simulation time in ns. The RMSD fluctuation for the protein is presented in blue and 

the value seen in the left Y-axis. The RMSD fluctuation for the ligand is presented in 

magenta and the value seen in the right Y-axis. 
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Figure 26. The RMSD plot for complex 3 (above) and complex 4 (below). X-axis shows 

the simulation time in ns. The RMSD fluctuation for the protein is presented in blue and 

the value seen in the left Y-axis. The RMSD fluctuation for the ligand is presented in 

magenta and the value seen in the right Y-axis. 
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Figure 27. The RMSD plot for complex 5 (above) and complex 6 (below). X-axis shows 

the simulation time in ns. The RMSD fluctuation for the protein is presented in blue and 

the value seen in the left Y-axis. The RMSD fluctuation for the ligand is presented in 

magenta and seen the value in the right Y-axis. 
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Figure 28. The RMSD plot for complex 7 (above) and complex 8 (below). X-axis shows 

the simulation time in ns. The RMSD fluctuation for the protein is presented in blue and 

the value seen in the left Y-axis. The RMSD fluctuation for the ligand is presented in 

magenta and the value seen in the right Y-axis. 

.  
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Figure 29. The RMSD plot for complex 9 (above) and complex 10 (below). X-axis shows 

the simulation time in ns. The RMSD fluctuation for the protein is presented in blue and 

the value seen in the left Y-axis. The RMSD fluctuation for the ligand is presented in 

magenta and the value seen in the right Y-axis. 

.  



51 
 

5.4.3 Protein-ligand interactions 

The protein-ligand interaction plot presents the contacts the ligand and the protein form 

on residue level during the simulation. The value of the interactions fraction can easily be 

converted to percentage, for example the interactions fraction 0.4 equals 40%. The 

percentage gives information on how long a certain residue interacts with the ligand during 

the simulation. It is also specified if the contacts are hydrophobic or ionic, or if the binding 

partners form a hydrogen bond or a water bridge.   

The protein-ligand interaction plots for complexes 1-10 are presented in Figures 30-34. 

Majority of the contacts observed during the simulations were hydrophobic, this was 

expected since the binding pocket was hydrophobic according to the results from SiteMap. 

All 10 ligands had contacts between multiple residues, but most of the contacts were short-

lived, only about 10% or less of the simulation time. In complex 8, 28 residues interacted 

with the ligand.  

Ligands with mainly hydrophobic contacts were found in complexes 1, 3, 4, 6, 8, 9 and 10. 

Ligands in complexes 3 and 9 had both low interaction fraction values for the contacts, 

indicating low affinity. Ligands in complexes 1 and 4 formed long-term interactions with 

Phe 554 and ligands in complexes 6, 8 and 10 formed long-term interactions with Phe 674. 

Here, long-term interactions mean interactions that occur for more than 80% of the 

simulation time. If the interaction fraction value is higher than 1 (100%), then more than 

one interaction is formed between the ligand and the residue. The interaction types can 

be similar or different. Phe 674 and Phe 554 are both conserved residues. Phe 674 is an 

identically and Phe 554 is a similarly conserved residue according to the multiple sequence 

alignment (see Figure 15 in section 5.2). 

Only two complexes showed long-term hydrogen bonds between the ligand and a residue: 

ligand in complex 7 with Val 560 and ligand in complex 2 with Phe 615. The ligand in 

complex 7 further had a long-term hydrophobic interaction with Phe 525. Hydrogen bonds 

between the ligand and the protein are considered important when determining the 

ligand-protein specificity (Wade & Goodford, 1989). Val 560, Phe 615 and Phe 525 residues 

were not conserved residues according to the multiple sequence alignment (see Figure 15 

in section 5.2). These residues could possibly contribute to ligand selectivity for TRPV4. 
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Complex 5 showed all four types of interactions, but the interactions were all short-termed. 

This was expected since the molecule fluctuated away from the binding site during the 

simulation. No complexes showed long-termed water bridges or ionic contacts. None of 

the long-term contacts were formed with the corresponding VBS residues presented in 

section 2.4. The most interesting complexes were 1, 2, 7 and 10. Complexes 1 and 10 

showed the longest lasting hydrophobic contacts and complexes 2 and 7 the longest lasting 

hydrogen bond contacts.  

Since the protein-ligand interaction plots do not show when during the simulation the 

interactions occur, the plot that visualizes the simulation timeline with interactions and 

contacts were inspected for complexes 1, 2, 7 and 10. This plot also revealed if there were 

multiple contacts or interactions occurring at the same time between the ligand and one 

amino acid.  The plots are visualized in Figures 35 and 36.  

The interactions between Phe 554 and the ligand in complex 1 are not persistent and there 

are gaps during the simulation (the white area), meaning that there are no interactions 

between the ligand and the residue at that moment. In addition, there are parts where 

multiple contacts with the ligand have been formed, this is the reason why the interactions 

fraction value is over 100%.   

In complex 10 the interaction pattern between Phe 527 and the ligand is quite like the 

pattern in complex 1, except for the gaps that are shorter, meaning the ligand is in contact 

with the residue more compared to the ligand in complex 1. 

In complex 2, there are only a few gaps where the ligand and Phe 615 do not form a contact. 

Thus, the ligand forms multiple contacts with the residue during the simulation, which can 

also be seen in the interactions fraction figure.  

In complex 7, a continuous interaction (H-bond) is formed at around 80 ns between the 

ligand and Val 560. There were no multiple interactions observed. The interactions 

between the ligand and Phe 525 were more frequent in the beginning of the simulation, 

but the gaps grew larger in size and number towards the end of the simulation. 
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The locations of the important residues are visualized in Figure 37. Phe 525 is located at 

the S2 helix, Phe 554 and Val 560 are located at the S3 helix, Phe 615 is located at the S5 

helix and Phe 674 is located at the pore helix.  

 

Figure 30. Protein-ligand interaction plots for complex 1 (above) and complex 2 (below). 

Interactions are shown as fractions from the total MD simulation time (300 ns). The 

residue numbers are presented on the X-axis and the interactions fraction value is 

presented on the Y-axis. The residue numbers correspond to the correct human TRPV4 

residue numbers, the letter in front of the number (A-D) indicates the chain where the 

residues are located at. 
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Figure 31. Protein-ligand interaction plots for complex 3 (above) and complex 4 

(below). Interactions are shown as fractions from the total MD simulation time (300 

ns). The residue numbers are presented on the X-axis and the interactions fraction 

value is presented on the Y-axis. The residue numbers correspond to the correct 

human TRPV4 residue numbers, the letter in front of the number (A-D) indicates the 

chain where the residues are located at. 
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Figure 32. Protein-ligand interaction plots for complex 5 (above) and complex 6 (below). 

Interactions are shown as fractions from the total MD simulation time (300 ns). The 

residue numbers are presented on the X-axis and the interactions fraction value is 

presented on the Y-axis. The residue numbers correspond to the correct human TRPV4 

residue numbers, the letter in front of the number (A-D) indicates the chain where the 

residues are located at. 
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Figure 33. Protein-ligand interaction plots for complex 7 (above) and complex 8 (below). 

Interactions are shown as fractions from the total MD simulation time (300 ns). The residue 

numbers are presented on the X-axis and the interactions fraction value is presented on the Y-

axis. The residue numbers correspond to the correct human TRPV4 residue numbers, the letter 

in front of the number (A-D) indicates the chain where the residues are located at. 
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Figure 34. Protein-ligand interaction plots for complex 9 (above) and complex 10 

(below). Interactions are shown as fractions from the total MD simulation time (300 ns). 

The residue numbers are presented on the X-axis and the interactions fraction value is 

presented on the Y-axis. The residue numbers correspond to the correct human TRPV4 

residue numbers, the letter in front of the number (A-D) indicates the chain where the 

residues are located at. 
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Figure 35. The number of protein-ligand interactions versus the simulation time for complexes 1 and 10 (labeled). The upper plot reveals 

how many contacts or interactions the ligand forms in total with the protein during a certain simulation time and the bottom plot reveals the 

number of contacts or interactions formed by a specific amino acid during a certain simulation time. The residue numbers correspond to the 

correct human TRPV4 residue numbers, the letter in front of the number (A-D) indicates the chain where the residues are located at. 



59 
 

   Figure 36. The number of protein-ligand interactions versus the simulation time for 

complexes 2 and 7 (labeled). The upper plot reveals how many contacts or interactions 

the ligand forms in total with the protein during a certain simulation time and the bottom 

plot reveals the number of contacts or interactions formed by a specific amino acid 

during a certain simulation time. The residue numbers correspond to the correct human 

TRPV4 residue numbers, the letter in front of the number (A-D) indicates the chain where 

the residues are located at. 
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Figure 37. The locations of the residues forming the longest lasting interactions with the 

ligands. The complex numbers are labeled. The protein is seen in magenta and the 

ligands in teal. The important residues are visualized in green, and they are labeled and 

shown as sticks. Alpha helices S2 and S5 are also labeled. Val 560 and Phe 615 formed 

hydrogen bonds with the specific ligands and Phe 525, Phe 554 and Phe 674 formed 

hydrophobic contacts. 
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5.4.4 Reference simulation without the lipid membrane 

When comparing the protein-ligand RMSD plots from the two different complex 1 

simulations a clear difference could be observed. The ligand was fluctuating considerably 

more when the lipid membrane was absent, this was confirmed by the simulation video. 

The protein-ligand interaction plot indicated short-term interactions between the residues 

and the ligand, this information supports the results obtained from the RMSD plot and the 

simulation video. The longest occurring interaction was formed between Ile 697 in C chain 

and the ligand, this hydrophobic interaction was observed only during 40% of the 

simulation. As previously mentioned, complex 1 with the lipid membrane formed 

hydrophobic interactions between Phe 554 and the ligand for over 100% of the simulation 

time (more than one interaction was formed since the value was over 100%). Overall, when 

comparing the protein-ligand interaction plots, it is evident that the results differ 

enormously. Corresponding residues did not form similarly lasting interactions and the 

residues that form the longest lasting interactions are completely different in the two 

simulations. The RMSD plot and the protein-ligand interaction plot for the complex 1 

without the lipid membrane are visualized in Figure 38. 

From the differing results between the two simulations, it is evident that to get accurate 

results, it is crucial to build up a lipid membrane to the system when performing MD 

simulations with membrane proteins.  

The true difference between the results can only be achieved by performing many parallel 

simulations of the systems. 
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Figure 38. The RMSD (above) and protein-ligand interaction (bottom) plot for the 

reference simulation for complex 1 without the lipid membrane. The RMSD fluctuation 

for the protein is presented in blue and the value seen in the left Y-axis. The RMSD 

fluctuation for the ligand is presented in magenta and the value seen in the right Y-axis. 

Interactions are shown as fractions from the total MD simulation time (300 ns). The 

residue numbers are presented on the X-axis and the interactions fraction value is 

presented on the Y-axis. The residue numbers correspond to the correct human TRPV4 

residue numbers, the letter in front of the number (A-D) indicates the chain where the 

residues are located at. 
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5.5 Prediction of ADMET properties and the selection of the best molecules 

The results from the ADMET prediction are presented in Table 3. The prediction accuracy 

for the ProTox II results ranged between 54 and 68%. The toxicity class in ProTox II is 

divided into six categories and is directly connected to the LD50 value when the molecule 

is taken orally. Class 1 molecules are categorized fatal and class 6 molecules non-toxic. All 

the compounds tested in this thesis were either class 5 (may be harmful) or class 4 

(harmful). The hepatotoxicity, immunotoxicity, cytotoxicity, carcinogenicity and 

mutagenicity predictions are presented as active or inactive. If a ligand is predicted active, 

it means that the ligand is toxic whereas an inactive result predicts a non-toxic ligand. Only 

a few of the targets could be predicted with high accuracy. Immunotoxicity was predicted 

with high accuracy for all ligands, two of the ligands were predicted to be inactive and two 

were active. Mutagenicity was predicted as inactive for one ligand and cytotoxicity was 

predicted as inactive for two ligands. Hepatotoxicity and carcinogenicity could not be 

predicted with high accuracy for any ligand.  

Water solubility is presented as log S. The molecule is predicted to be highly soluble when 

the value is over 0, very soluble when the value is between 0 and -2, soluble when the value 

is between -2 and -4, moderately soluble when the value is between -4 and -6, poorly 

soluble when the value is between -6 and -10 and insoluble when the value is < -10. The 

ligands Z1213735368 and Z221487176 were predicted to be moderately soluble with both 

methods. The ligands Z1053001754 and Z1157726398 were predicted to be moderately 

soluble with the ESOL method and poorly soluble with the QSPR method.  

SwissADME predicted that all molecules would have high GI absorption. A couple of 

molecules would permeate the BBB and three molecules would function as P-gp 

substrates. Only one molecule was predicted to act as a CYP1A2 inhibitor, the rest of the 

CYP enzymes were predicted to be inhibited by all the molecules.  

The synthetic accessibility value is a score between 1 and 10, the score 1 means the 

molecule is very easy to synthesize and the score 10 means it is very difficult to synthesize. 

SwissADME predicted that all the molecules are relatively easy to synthesize.  

The skin permeation value was included because of the possibility that the administration 

route of the medicine could be transdermal. The less negative the score is, the better the 
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skin permeation. For example, a molecule with the value around -10 cm/s does not 

permeate the skin well and a molecule with the value around -5 cm/s permeates the skin 

well (SwissADME – FAQ, 2021). The molecules in this thesis were predicted to permeate 

the skin quite well. 

The ligands Z1213735368, Z1157726398 and Z221487176 were selected to be sent to our 

collaborators for further experimental evaluation. Molecules Z1213735368 and 

Z1157726398 were selected because they formed hydrogen bonds with the protein. 

Molecule Z221487176 was selected because the hydrophobic connection it formed with 

the protein was more consistent compared to the hydrophobic connection formed with 

molecule Z1053001754. The ADMET prediction results did not find any drastic differences 

between the ligands.    
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 Z1053001754 

(Complex 1) 

Z1213735368 

(Complex 2) 

Z1157726398 

(Complex 7) 

Z221487176 

(Complex 10) 

LD50 (mg/kg) 2290 2500 500 1800 

Toxicity Class 5 5 4 4 

Hepatotoxicity Inactive Inactive Inactive Inactive 

Carcinogenicity Active Inactive Active Inactive 

Immunotoxicity Inactive Active Active Inactive 

Mutagenicity Inactive Inactive Active Inactive 

Cytotoxicity Inactive Inactive Inactive Inactive 

Solubility (log S) 
ESOL/QSPR 

-5.57 / -6.20 -4.53 / -4.61 -5.62 / -6.86 -5.00 / -5.33 

GI absorption High High High High 

BBB permeant No Yes No Yes 

P-gp substrate Yes No Yes Yes 

CYP1A2 inhibitor No No No Yes 

CYP2C19 

inhibitor 

Yes Yes Yes Yes 

CYP2C9 inhibitor Yes Yes Yes Yes 

CYP2D6 inhibitor Yes Yes Yes Yes 

CYP3A4 inhibitor Yes Yes Yes Yes 

Synthetic 
accessibility 

3.78 3.72 4.41 3.53 

Skin permeation 
Log Kp (cm/s) 

-5.77 -6.58 -6.17 -6.18 

Table 3. The ADMET prediction results performed with SwissADME and ProTox II for 

the ligands in complexes 1, 2, 7 and 10. The values for hepatotoxicity, carcinogenicity, 

immunotoxicity, mutagenicity and cytotoxicity that could be predicted with minimum 70% 

accuracy are presented with bright green or red background. Values that were below 

70% but higher than 50% in accuracy are presented in light green and light red. If a 

feature is labeled “inactive” it means that the ligands is not predicted to be for example 

mutagenic and the opposite if the feature is labeled “active”. With the different colors 

from the toxicity class, GI absorption, BBB permeability, P-gp substrate and CYP 

inhibition predictions, the purpose was to make it easier to distinguish between differing 

results.  
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5.6 Pharmacophore modeling 

5.6.1 Modeling and ADMET prediction 

The resulting pharmacophore hypothesis is visualized in Figure 39. Figure 39A presents the 

aligned antagonists GSK 205 and HC-067047 and how the pharmacophore is built from 

them. Figure 39B presents only the pharmacophore hypothesis which had four features, 

the orange rings correspond to aromatic rings and the blue ball with an arrow corresponds 

to a hydrogen bond donor and its direction.  

From the PHASE screening, the screened ligands were ranked according to the PHASE 

fitness score. The fitness score has a value between -1 and 3 where 3 equals the perfect fit 

to the pharmacophore. Six ligands with the highest fitness scores were chosen. All chosen 

molecules had the fitness score over 2. The 2D structures and the pharmacophore fit for 

the chosen molecules are visualized in Figure 40.  

The hit ligands were also submitted for ADME properties prediction with SwissADME and 

for toxicity prediction with ProTox II. The results are visualized in Table 4. The prediction 

accuracy for the ProTox II results ranged between 54 and 67%. 

The ligands were 

predicted to belong to 

the toxicity classes 4 or 5 

and the LD50 values 

ranged between 350 

and 5000 mg/kg. The 

skin permeation value 

ranged between -5.79 

and -6.40 cm/s. This 

meant that the ligands 

would probably 

permeate the skin quite 

well. The ligands were 

ranked as moderately 

Figure 39. A) The pharmacophore model based on the 

aligned known TRPV4 antagonists GSK205 and HC-067047; 

B) The pharmacophore model without the ligand structures. 

The orange rings correspond to aromatic rings and the blue 

ball with an arrow to a hydrogen bond donor.  
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water soluble. The synthetic accessibility scores predicted that all the ligands are easy to 

synthesize. 

Ligands 2, 3, 4, 5 and 6 were predicted to have high GI absorption. Ligand 5 was predicted 

to function as a P-gp substrate and ligands 5 and 6 were predicted to permeate the BBB. 

All ligands worked as CYP inhibitors. However, ligands 2 and 3 were not predicted to 

inhibit CYP2D6.  

It could be predicted with high accuracy that ligands 2, 5 and 6 would not be immunotoxic, 

ligands 3 and 4 would not be mutagenic, and ligand 6 would not be cytotoxic. 

Hepatotoxicity and carcinogenicity could not be predicted with high accuracy for any of the 

ligands.  

The ligands 5 and 6 were almost identical to the structure and pharmacophore fit. The 

difference is one chlorine substituent in the structure of ligand 6. The chlorine substituent 

makes a great impact on the predicted LD50 value when comparing these two ligands. 

The ligands Z443243482 (ligand 4) and Z1728742868 (ligand 2) were chosen for further 

biological evaluation via our collaborators. Z443243482 had the highest LD50 value and 

good solubility values. Although Z1728742868 had the lowest LD50 value (350 mg/kg), it 

was not predicted to be hepatotoxic, cytotoxic, carcinogenic, mutagenic or immunotoxic. 

Immunotoxicity was the only one predicted with high accuracy. Z1728742868 was also the 

molecule that had the highest PHASE fitness score amongst the molecules that also had 

high GI absorption.   
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Figure 40. A) The 2D structures (1A-6A); B) Pharmacophore fit (1B-6B) of the chosen ligands. The ligand structures were obtained from 

the EnamineStore website (https://www.enaminestore.com/). The pharmacophore fit figures were prepared with Maestro. The Enamine IDs 

for the molecules are: 1 = Z916071674, 2 = Z1728742868, 3 = Z26551809, 4 = Z443243482, 5 = Z164852238 and 6 = Z229634356.  
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Enamine ID Z916071674 Z1728742868 Z26551809 Z443243482 Z164852238 Z229634356 

Phase Fitness 

Score 

2.148908 2.055982 2.052274 2.037829 2.028276 2.024096 

MW (g/mol) 362.4 385.4 361.4 379.5 336.3 370.8 

CLogP 4.528 3.749 3.204 3.999 3.524 4.238 

Log S -5.445 -5.575 -5.04 -5.005 -5.12 -5.83 

HBD 3 1 1 2 1 1 

LD50 (mg/kg) 1000 350 2000 5000 4000 500 

Toxicity Class 4 4 4 5 5 4 

Hepatotoxicity Active Inactive Active Inactive Active Active 

Carcinogenicity Active Inactive Active Active Active Inactive 

Immunotoxicity Active Inactive Inactive Inactive Inactive Inactive 

Mutagenicity Inactive Inactive Inactive Inactive Active Active 

Cytotoxicity Inactive Inactive Inactive Inactive Inactive Inactive 

Solubility (log S) 
ESOL/QSPR 

-4.83/-6.24 -4.52/-4.89 -4.09/         
-4.62 

-4.70/-5.17 -4.22/-4.49 -4.82/-5.14 

GI absorption Low High High High High High 

BBB permeant No No No No Yes Yes 

P-gp substrate No No No No Yes No 

CYP1A2 inh. Yes Yes Yes Yes Yes Yes 

CYP2C19 inh. Yes Yes Yes Yes Yes Yes 

CYP2C9 inh. Yes Yes Yes Yes Yes Yes 

CYP2D6 inh. Yes No No Yes Yes Yes 

CYP3A4 inh. Yes Yes Yes Yes Yes Yes 

Synthetic 
accessibility 

2.94 2.94 3.05 2.73 3.16 3.15 

Skin 
permeation Log 

Kp (cm/s) 

-5.79 -6.30 -6.40 -6.00 -6.03 -5.79 

Table 4. PHASE fitness score, molecular properties and the ADMET prediction results 

performed with SwissADME and ProTox II for the best scoring ligands. The values for 

hepatotoxicity, carcinogenicity, immunotoxicity, mutagenicity and cytotoxicity that could 

be predicted with minimum 70% accuracy are presented with bright green or red 

background. Values that were below 70% but higher than 50% in accuracy are 

presented in light green and light red. If a feature is labeled “inactive” it means that the 

ligands is not predicted to be for example mutagenic and the opposite if the feature is 

labeled “active”. With the different colors from the toxicity class, GI absorption, BBB 

permeability, P-gp substrate and CYP inhibition predictions, the purpose was to make it 

easier to distinguish between differing results.  
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5.6.2 Testing the pharmacophore hypothesis of the known antagonists 

If both the known antagonists bind into different antagonist binding sites in the protein, 

the pharmacophore model based on their superposed structures may be wrong. On the 

other hand, if the two antagonists bind into the same binding site, the results obtained 

from the pharmacophore modeling could be valid. However, it is of course not certain if 

either of the compounds binds specifically to the putative VBS that we used in this study.  

The results from the test docking are visualized in Figure 41. Both GSK 205 and HC-067047 

were successfully docked into the vanilloid binding pocket. However, the docking scores 

were poor. The XP score for GSK 205 was -4.557 and for HC-067047 -2.605. The MM-GBSA 

score for GSK 205 was -40.82 and for HC-067047 -37.61. Both XP score and MM-GBSA score 

are low for these ligands when compared to the MM-GBSA scores obtained from the 

docking studies of the best Enamine library compounds. Especially the Glide docking results 

suggest that these two antagonists may bind into some other binding pocket than the VBS. 

On the other hand, the accuracy of the model can also affect the docking results. 

 

 

 

 

 

Figure 41. The docked antagonists GSK 205 in red and human TRPV4 in green (left 

panel) and HC-067047 in magenta and human TRPV4 in cyan (right panel). Only the 

transmembrane parts of the proteins are visualized.  
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6. Discussion 

Despite of huge advances in the computer-aided drug design methods, there are still many 

problems to be solved. For example, the restrictions in estimating the ADMET properties 

are yet to be conquered, the flexibility of the target protein and the ligand are not always 

considered and the knowledge in choosing the right scoring function should be enhanced 

(Batool et al., 2019). 

TRPV4 receptors are found in various locations in the body and because they are involved 

in so many different functions, it has been suggested that the administration route for the 

possible future inhibitors could be through local injections, for example in the joint (intra-

articular) or in the spinal cord (intrathecal).  Other non-systemic administration routes 

could be via inhalation or transdermal administration. Hence, the predicted skin 

permeation abilities were presented in this thesis for the best scoring ligands. Via local 

administration it would be easier to reach the specific area and cells meant to be targeted 

and hopefully decrease the possibility for serious adverse effects (Kanju et al. 2016). 

It has been suggested that another way to avoid adverse effects would be to inhibit a part 

of the signaling pathway leading to TRPV4 activation, instead of directly blocking the ion 

channel. Grace et al. (2014) discovered that bafetinib, which is a tyrosine kinase inhibitor, 

blocked the signaling pathway between PAR2 and TRPV4. Bafetinib is believed to inhibit 

tyrosine kinases to activate TRPV4. Bafetinib did not affect PAR2 activation. 

After the experimental phases of this thesis were completed, a study describing an 

antagonist binding site was discovered (Doñate-Macian et al., 2020). The study applied 

SiteMap for locating the binding pocket and Desmond for MD simulations. The western 

clawed frog TRPV4 3D structure was used for the CADD approaches. The study discovered 

the binding pocket for TRPV4 antagonist HC-067047. The pocket is formed by S2-S3 linker 

and the alpha-helices S4 and S5 (Fig. 42). The pocket occupied partly the same areas that 

the agonist binding site for agonist 5’,6’-EET occupy (see section 2.4). The study also 

applied human TRPV4 transfected HeLa cells for the validation of important residues. 

Mutation studies confirmed the residue Asp 546 to be crucial for inhibition intermediated 

by HC-067047. Tyr 591 was discovered to be another important residue. The study also 
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aimed to discover novel TRPV4 antagonists against Zika virus. Since the antagonist in the 

study was the same as one of the antagonists used in this thesis for creating the 

pharmacophore model, there is a possibility that the ligands from the pharmacophore 

modeling study would rather bind to this pocket. This would be consistent with the poor 

docking results. But since the binding pocket for the other antagonist used in 

pharmacophore modeling, GSK205, is still unknown, the accuracy of the pharmacophore 

model and the resulting hit ligands needs further experimental evaluation. It is yet to be 

discovered if this binding pocket presented in the study by Doñate-Macian et al. (2020) 

also serves in mediating pain and inflammation. 

AlphaFold (Jumper et al., 2021) is an artificial intelligence system that has recently 

predicted the 3D structures of the human proteome. The prediction of one human TRPV4 

subunit was found (with UniProt entry code Q9HBA0) in AlphaFold (Fig. 43A). According to 

AlphaFold’s predicted local-distance difference test (pLDDT), a large part of the protein 

structure was predicted with a confidence score of over 70 (on a scale from 0 to 100). The 

Figure 42. The antagonist binding site located by Doñate-Macian et al. (2020). The left 

panel visualizes partly the VBS (on the left of the labeled S5) and the transmembrane 

part next to the VBS of the frog TRPV4 (PDB ID 6BBJ), the magenta-colored parts are 

the residues forming the binding cavity, the chains of the protein are colored with 

different colors. The figure on the right visualizes the binding site from another angle. 

The important residues are shown as sticks and labeled. The S5 and the S4 from 

adjacent chains are also labeled.  
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AlphaFold model was aligned with the human TRPV4 model that was used in this thesis in 

PyMOL (Fig. 43B). The RMSD was 2.171 Å, 446 C-alpha atoms from each subunit were 

aligned and 195 C-alpha atoms were rejected from the alignment. The two models were 

almost identical at the ARD, but the transmembrane domains, where the binding sites have 

been located at, were not identical, although similar. Perhaps the fact that the AlphaFold 

structure only consists of one subunit could affect the overall structure of the model?    

 

 

Figure 43. A) The AlphaFold human TRPV4 subunit model. The coloring indicates the 

model confidence; dark blue means that the pLDDT score > 90 (very high confidence), 

light blue means that the pLDDT score is between 70 and 90, yellow means that the 

pLDDT score is between 50 and 70 and orange means that the pLDDT score is < 50 

(very low confidence). B) The aligned human TRPV4 subunit model structures, the 

AlphaFold model can be seen in magenta and the model used in this thesis work in teal. 
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The selected ligands were not predicted to be easily soluble. If necessary, the solubility may 

be increased with various methods. For example, the pH can be adjusted, a salt form can 

be added to the molecule or various dispersion methods can be used. The poor solubility 

of new drug candidates remains a challenge for the drug development community (Savjani, 

Gajjar, & Savjani, 2012).  

Since the binding site used in this thesis is the corresponding site to the vanilloid binding 

site in TRPV1, it could be of interest to dock and simulate the best scoring ligands with 

TRPV1 to determine if the ligands could act as dual antagonists (or agonists). 
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7. Conclusions 

In this study, new putative TRPV4 antagonists were searched for the treatment of pain and 

inflammation. The human TRPV4 model was built with the program MODELLER by using 

the frog TRPV4 structure as the template structure. The putative antagonist binding site 

was discovered by using the program SiteMap. The discovered binding site corresponded 

to the VBS found in TRPV1. The Enamine Ion Channel molecule library was docked into the 

putative binding site with the docking programs GOLD and Glide. A 300-ns MD simulation 

was performed with Desmond for the 10 most promising protein-ligand complexes. Finally, 

ADMET predictions were performed with SwissADME and ProTox II, to be able to choose 

the most promising compounds with good predicted pharmacokinetic properties. A 

pharmacophore model was created by using two known TRPV4 antagonists with the 

program PHASE. The Enamine Ion Channel library was then screened with the model and 

six most interesting ligands were chosen for ADMET prediction. The final selected ligands 

from the molecular docking study were Z1213735368, Z1157726398 and Z221487176 and 

from the pharmacophore study Z443243482 and Z1728742868. 

The lack of experimentally solved good quality membrane protein structures is a factor that 

makes computer-aided drug design methods slower and more unreliable. The solution to 

the challenges lies in the development of even more powerful and accurate tools for 

computer-aided drug discovery, such as artificial intelligence. The development relies in 

the future resources and investments in the science. 

Because the putative binding site used in this thesis serves as a binding site in other TRPV 

proteins, it is possible that the location also acts as a binding site in TRPV4. If it would be 

determined that the site actually serves as a binding site, the next thing to do would be to 

identify the properties and functions that are mediated through the binding site.  

Hence, further experimental testing and knowledge of the TRPV4 antagonist binding site(s) 

and the critical residues involved are required, to be able to conclude if the ligands 

discovered in this thesis would act as TRPV4 antagonists against pain and inflammation.  
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8. Summary in Swedish –Svensk sammanfattning  

Upptäckt av nya TRPV4 inhibitorer för behandling av smärta och inflammation med hjälp 

av datorstödd läkemedelsdesign 

Målsättningen med pro gradu-avhandlingen var att upptäcka några nya potentiella 

antagonister till proteinet TRPV4 och sedan skicka dessa molekyler till vårt 

samarbetslaboratorium för fortsatta undersökningar. Arbetet utfördes genom att använda 

olika metoder av datorstödd läkemedelsdesign.  

TRP-proteiner fungerar som jonkanaler (membranproteiner) i kroppen. Trettiotre olika 

TRP-proteiner har upptäckts hos däggdjur och dessa indelas vidare i åtta undergrupper 

(Nikolaev et al., 2019). Denna avhandling koncentrerade sig på det specifika TRP-proteinet 

TRPV4. TRPV4 har en viktig roll vid smärtsignalering och då smärtkänslan uppstår. Proteinet 

fungerar som mekanoreceptor i kroppen och påträffas i de inåtledande nerverna 

(sensoriska nerverna) i spinalganglierna och i trigeminusganglierna (Kanju et al., 2016). Den 

exakta mekanismen hur TRPV4 fungerar och vilka kemiska ämnen som medverkar i 

aktiveringen och inaktiveringen är ännu till stor del okända. För tillfället finns inga 

läkemedel på marknaden som skulle fungera som TRPV4-antagonister eller -agonister. 

Antagonisten GSK2798745 har man lyckats få till den kliniska prövningsfasen, en studie är 

för tillfället i fas II kliniska studier (ClinicalTrials.gov., 2021a) och en annan studie är i fas I 

kliniska studier (ClinicalTrials.gov., 2021b). 

För tillfället är den västafrikanska klogrodans (Xenopus tropicalis) TRPV4-struktur den enda 

experimentellt lösta TRPV4-strukturen som finns tillgänglig för allmänheten (Deng et al., 

2018). Denna struktur användes som mall i avhandlingen, då den teoretiska modellen av 

människans TRPV4 byggdes upp. Metoden kallas för jämförande modellering och kan 

tillämpas då aminosyrasekvensidentiteten mellan två proteiner är minst 40 %. Grodans och 

människans TRPV4-sekvensidentitet är 78 % (Deng et al., 2018). Multipel linjering utfördes 

med några olika arters TRPV4-aminosyrasekvenser med programmet Clustal Omega 

(Sievers et al., 2011). Körningen gav de motsvarande aminosyrorna för proteinerna och 

denna information användes då jämförande modellering genomfördes med programmet 

MODELLER (Šali & Blundell, 1993). Modelleringen resulterade i tio modeller och den bästa 

modellen valdes genom att undersöka DOPE-poängen, Ramachandran-graferna och 
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genom visuell granskning av proteinerna med programmet PyMOL (DeLano, 2002). Med 

programmet Desmond (Bowers et al., 2006) utfördes molekyldynamisk simulering för att 

undersöka stabiliteten av den bästa modellen. Simuleringstiden var 300 ns och 

lipidmembranen tillsattes till proteinet för att åstadkomma ett så realistiskt resultat i 

simuleringen som möjligt. Ramachandran-grafen visade för den bästa modellen att 93,4 % 

av aminosyrorna hittades i de mest gynnsamma regionerna, 6,3 % hittades i de ytterligare 

tillåtna regionerna, 0,2 % hittades i de generellt tillåtna regionerna och 0,2 % hittades i de 

förbjudna regionerna. Aminosyrorna i de generellt tillåtna och förbjudna regionerna var 

lokaliserade i de flexibla loopstrukturerna och ansågs därför inte skadliga för 

proteinstrukturen.  DOPE-poängen för den bästa modellen var -319982,78125 och 

resultaten av simuleringen visade att proteinet var stabilt. 

Information om antagonistbindningsställen fanns inte tillgänglig i litteraturen då 

dockningsstudien utfördes. Därför undersöktes om positionerna för 

antagonistbindningsfickor hade hittats hos andra TRP-proteiner. Proteiner inom samma 

huvudgrupp är släkt med varandra och är därför ofta liknande till struktur och 

aminosyrasekvens. Två experimentellt lösta TRPV-strukturer med bundna antagonister 

upptäcktes, TRPV1 med antagonisten capsazepin (Gao et al. 2016) och TRPV5 med 

antagonisten ekonazol (Hughes et al., 2018). Bindningsställena hos dessa två proteiner 

fanns på motsvarande positioner. TRPV4-modellen kördes med SiteMap (Halgren, 2009) 

programmet som lokaliserade och rangordnade möjliga bindningsfickor i proteinet. Fickan 

som gav bästa poängen motsvarade fickan i TRPV1 och TRPV5. Denna förmodade 

bindningsficka valdes för dockningsstudien. 

Nästa steg var att docka ett molekylbibliotek i bindningsfickan. Enamine Ion Channel 

Library (https://enamine.net/) valdes som molekylbibliotek. Molekylbiblioteket bestod av 

cirka 38 000 molekyler ämnade för att dockas i jonkanaler. Programmen Glide (Friesner et 

al., 2006) och GOLD (Verdonk et al., 2003) användes för dockning och LigPrep användes för 

att förbereda molekylerna för dockning. Glide-dockning utfördes tre gånger med 

metoderna vHTS, SP och XP. Efter varje dockningsomgång valdes de bästa 10 % av 

resultaten för nästa dockningssteg. XP-dockningen resulterade i cirka 170 molekyler. MM-

GBSA-beräkningar utfördes för 28 molekyler med de bästa XP-poängen. MM-GBSA-

poängen uppskattar affiniteten mellan proteinet och liganden (Tingjun et al. 2011).  
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GOLD-dockning utfördes två gånger, först med metoden GA 10 % och sedan med GA 100 

%. Positionerna i bindningsfickan för de resulterande 500 molekylerna från GA 10 %-

körningen granskades visuellt och cirka 180 molekyler valdes för dockning med GA 100 %-

metoden. MM-GBSA-beräkningar utfördes för de resulterande 50 molekylerna.   

Genom att jämföra MM-GBSA-resultaten, valdes fyra molekyler från Glide-gruppen och sex 

molekyler från GOLD-gruppen för molekylärdynamisk simulering. Simuleringarna kördes 

med programmet Desmond, simuleringstiden var 300 ns och lipidmembranen tillsattes till 

varje protein-ligandkomplex.  

Av simuleringsresultaten granskades RMSD, RMSF och protein–ligand-

interaktionsdiagrammen. Videon av simuleringarna granskades visuellt. Fyra ligander 

valdes som mest intressanta. Två av dessa bildade långvariga vätebindningar med 

proteinet och de två andra bildade långvariga hydrofobiska interaktioner med proteinet. 

Prognos av ADMET egenskaper (absorption, distribution, metabolism, exkretion och 

toxicitet) för de fyra liganderna utfördes med online-verktygen SwissADME (Daina et al., 

2017) och ProTox II (Banerjee et al., 2018). ADMET-prognosen visade inga drastiska 

skillnader mellan liganderna. Liganderna Z1213735368, Z1157726398 och Z221487176 

valdes för fortsatta studier hos samarbetslaboratoriet.  

En kontrollsimulering utfördes med ett protein-ligandkomplex utan lipidmembran. Målet 

var att få en inblick i betydelsen av lipidmembranen för simuleringen. Resultaten visade att 

det är kritiskt att tillsätta lipidmembranen till membranproteiner inför molekyldynamisk 

simulering. Liganden skiftade kraftigt strukturen och bindningsläget och bildade inga 

långvariga interaktioner med proteinet då lipidmembranen saknades.  

Farmakoformodellering användes också för att hitta nya möjliga antagonister. För 

körningen användes programmet PHASE (Dixon et al., 2006) och farmakoforhypotesen 

byggdes upp av två kända TRPV4-antagonister, GSK205 (Kanju et al. 2016) och HC-067047 

(Zhang et al. 2015). Hypotesen, som bestod av fyra aromatiska ringar och en 

vätebindningsdonator, screenades med samma molekylbibliotek som användes i 

dockningsstudien. Sex molekyler med de bästa PHASE-poängen valdes för prognos av 

ADMET-egenskaper. Efter en evaluering av alla resultaten valdes liganderna Z443243482 

och Z1728742868 för fortsatta studier hos samarbetslaboratoriet.  
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Kontrolldockning av GSK205 och HC-0607047 i den förmodade bindningsfickan utfördes, 

för att få en inblick över bindningsförmågan av dessa antagonister, i denna ficka. 

Dockningen lyckades för båda molekylerna, men docknings- och MM-GBSA-poängen tydde 

inte på starka interaktioner mellan proteinet och antagonisterna. Detta kunde betyda att 

bindningsfickan som användes i denna avhandling möjligtvis inte binder dessa två 

antagonister.  

Studien av Doñate-Macian et al. (2020) hittades efter att den experimentella delen av 

avhandlingen var slutförd. Denna studie beskrev ett bindningsställe för TRPV4, som binder 

antagonisten HC-0607047. Studien efterforskade nya ligander mot zikavirus. 

Bindningsstället i studien motsvarade inte bindningsstället som användes i denna 

avhandling. Detta betyder att de molekyler som uppfunnits med hjälp av 

farmakoforstudien möjligtvis kunde binda i bindningsstället som studien av Doñate-Macian 

et al. (2020) beskrivit. Dock vet man inte om GSK205 binds i denna ficka, eller om fickan 

deltar i förmedlandet av smärta och inflammation.  

För att undvika allvarliga biverkningar som kan uppkomma då TRPV4 blockeras i alltför stor 

utsträckning i kroppen, har det föreslagits att de möjliga framtida läkemedlen skulle 

påverka TRPV4 receptorer endast lokalt. Olika läkemedelstillförselvägar kunde vara till 

exempel administration direkt i leden genom intraartikulär injektion, via lungorna genom 

inhalation eller via huden genom transdermal administration (Kanju et al. 2016). 

Mera experimentellt erhållen kunskap och kunskap om TRPV4-antagonistbindningsställen 

och de viktiga aminosyrorna som medverkar i protein-ligandbindningen krävs, för att 

kunna bestämma om de ligander som presenteras i avhandlingen fungerar som TRPV4-

antagonister.  

 

 

 

 

 



80 
 

9. References 

Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). 
GROMACS: High performance molecular simulations through multi-level 
parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25.  

 
Ali, J., Camilleri, P., Brown, M., B., Hutt, A., J., & Kirton, S., B. (2012). In silico prediction of 

aqueous solubility using simple QSPR models: The importance of phenol and 
phenol-like moieties. Journal of Chemical Information and Modeling, 52 (11), 
2950-2957. DOI: 10.1021/ci300447c 

 
Arinaminpathy, Y., Khurana, E., Engelman, D. M., & Gerstein, M. B. (2009). Computational 

analysis of membrane proteins: the largest class of drug targets. Drug 
Discovery Today, 14, 1130-5. DOI: 10.1016/j.drudis.2009.08.006 

 
Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., & Ben-Tal, N. (2016). 

ConSurf 2016: an improved methodology to estimate and visualize 
evolutionary conservation in macromolecules. Nucleic acids research, 
44(W1), W344–W350. DOI: https://doi.org/10.1093/nar/gkw408 

 
Banerjee, P., Eckert, A, O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: a webserver for 

the prediction of toxicity of chemicals. Nucleic Acids Research, 46, W1, W257–
W263. DOI: https://doi.org/10.1093/nar/gky318 

 
Batool, M., Ahmad, B., & Choi, S. (2019). A structure-based drug discovery paradigm. 

International journal of molecular sciences, 20(11), 2783. DOI: 
https://doi.org/10.3390/ijms20112783 

 
Baylie, R. L., & Brayden J. E. (2011). TRPV channels and vascular function. Acta Physiologica 

(Oxford, England), 203, 99-116. DOI: 10.1111/j.1748-1716.2010.02217.x 
 
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., … Bourne, P. 

E. (2000). The Protein Data Bank. Nucleic Acids Research, 28, 235-242. 
 
Berna-Erro, A., Izquierdo-Serra, M., Sepúlveda, R. V., Rubio-Moscardo, F., Doñate-Macián, 

P., … Valverde, M. A. (2017) Structural determinants of 5′,6′-
epoxyeicosatrienoic acid binding to and activation of TRPV4 channel. 
Scientific Reports, 7, 10522. 

 
Blass, B. E. (2015). Basic principles of drug discovery and development (pp. 218-220). 

Philadelphia, PA: Academic press. 
 
Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., … Shaw, D. E. 

(2006, November 11-17). Scalable Algorithms for Molecular Dynamics 
Simulations on Commodity Clusters. Proceedings of the ACM/IEEE 
Conference on Supercomputing (SC06), Tampa, Florida. 

 



81 
 

Cambridge Crystallographic Data Centre. (2019). GOLD User Guide. Retrieved 27.7.2021 
from: https://www.ccdc.cam.ac.uk/support-and-
resources/ccdcresources/GOLD_User_Guide.pdf  

 
Cao, S., Anishkin, A., Zinkevich, N. S., Nishijima, Y., Korishettar, A., Wang, Z., Fang, J., Wilcox, 

D.A., & Zhang, D. X. (2018). Transient receptor potential vanilloid 4 (TRPV4) 
activation by arachidonic acid requires protein kinase A-mediated 
phosphorylation. The Journal of Biological Chemistry, 6, 5307-5322. DOI: 
10.1074/jbc.M117.811075 

 
Case, D. A., Ben-Shalom, I. Y., Brozell S. R., Cerutti, D. S., Cheatham, T. E. III, Cruzeiro, V. W., 

… Kollman, P. A. (2018). AMBER 2018 [Computer software], University of 
California, San Francisco. 

 
ClinicalTrials.gov. (2021a). A first time in human study to evaluate the safety, tolerability, 

pharmacokinetics, and pharmacodynamics of GSK2798745 in healthy 
subjects and stable heart failure patients. Retrieved 24.10.2021 from: 
https://clinicaltrials.gov/ct2/show/NCT02119260 

 
ClinicalTrials.gov. (2021b). Study 212669: A phase I study to evaluate the safety, 

tolerability, pharmacokinetics and pharmacodynamics of GSK2798745 in 
participants with diabetic macular edema. Retrieved 24.10.2021 from: 
https://clinicaltrials.gov/ct2/show/NCT04292912 

 
ClinicalTrials.gov. (2021c). A study to assess the effectiveness and side effects of 

GSK2798745 in participants with chronic cough. Retrieved 24.10.2021 from: 
https://clinicaltrials.gov/ct2/show/NCT03372603 

 
D E Shaw Research. (2021). Desmond. Retrieved 13.11.2021 from: 

https://www.deshawresearch.com/resources_desmond.html 
 
Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate 

pharmacokinetics, drug-likeness and medicinal chemistry friendliness of 
small molecules. Scientific Reports, 7, W257-W263. DOI: 
https://doi.org/10.1038/srep42717 

 
Delaney, J. S. (2004). ESOL:  Estimating aqueous solubility directly from molecular 

structure. Journal of Chemical Information and Computer Sciences, 44 (3), 
1000-1005. DOI: 10.1021/ci034243x 

 
DeLano, W. L. (2002). PyMOL. DeLano Scientific, San Carlos, CA, 700. 
 
Deng, Z., Paknejad, N., Maksaev, G., Sala-Rabanal, M., Nichols, C. G., Hite, R. K., & Yuan, P. 

(2018). Cryo-EM and X-ray structures of TRPV4 reveal insight into ion 
permeation and gating mechanisms. Nature Structural & Molecular Biology, 
25(3), 252-260. 



82 
 

Desmond 4.2 User Manual. (2015). Retrieved 27.9.2021 from: 
http://gohom.win/ManualHom/Schrodinger/Schrodinger_2015-
2_docs/desmond/desmond_user_manual.pdf 

Dias, F. C., Alves, V. S., Matias, D. O., Figueiredo, C. P., Miranda, A. L. P., Passos, G.F., & 
Costa R. (2019). The selective TRPV4 channel antagonist HC-067047 
attenuates mechanical allodynia in diabetic mice. European Journal of 
Pharmacology, 856:172408. DOI: 10.1016/j.ejphar.2019.172408 

Dixon, S. L., Smondyrev, A. M., Knoll, E. H., Rao, S. N., Shaw, D. E., & Friesner, R. A. (2006). 
PHASE: A new engine for pharmacophore perception, 3D QSAR model 
development, and 3D database screening. 1. Methodology and preliminary 
results. Journal of Computer-Aided Molecular Design, 20, 647-671. 

Doñate-Macian, P., Duarte, Y., Rubio-Moscardo, F., Pérez-Vilaró, G., Canan, J., Díez, J., 
González-Nilo, F., & Valverde, M. A. (2020). Structural determinants of TRPV4 
inhibition and identification of new antagonists with antiviral activity. British 
Journal of Pharmacology. DOI: 10.1111/bph.15267 

Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., 
Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision Glide: docking and 
scoring incorporating a model of hydrophobic enclosure for protein-ligand 
complexes. Journal of Medicinal Chemistry, 49, 6177–6196. 

 
Gao, Y., Cao, E., Julius, D., & Cheng, Y. (2016). TRPV1 structures in nanodiscs reveal 

mechanisms of ligand and lipid action. Nature, 534, 347-51. DOI: 
10.1038/nature17964 

 
Garcia-Elias, A., Berna-Erro, A., Rubio-Moscardo, F., Pardo-Pastor, C., Mrkonjić, S., 

Sepúlveda, R. V., Vicente, R., González-Nilo, F., & Valverde, M. A. (2015). 
Interaction between the linker, Pre-S1, and TRP domains determines folding, 
assembly, and trafficking of TRPV channels. Structure, 23(8), 1404-1413. 

 
García-Sanz, N., Valente, P., Gomis, A., Fernández-Carvajal, A., Fernández-Ballester, G., 

Viana, F., Belmonte, C., & Ferrer-Montiel A. (2007). A role of the transient 
receptor potential domain of vanilloid receptor I in channel gating. The 
Journal of Neuroscience, 27(43), 11641–11650.  

 
Goyal, N., Skrdla, P., Schroyer, R., Kumar, S., Fernando, D., Oughton, A., … Cheriyan, J. 

(2019). Clinical Pharmacokinetics, Safety, and Tolerability of a Novel, First-in-
Class TRPV4 Ion Channel Inhibitor, GSK2798745, in Healthy and Heart Failure 
Subjects. American Journal of Cardiovascular Drugs, 19 (3): 335-342. DOI: 
10.1007/s40256-018-00320-6 

 
Grace, M. S., Lieu, T., Darby, B., Abogadie, F. C., Veldhuis, N., Bunnett, N. W., & McIntyre, 

P. (2014). The tyrosine kinase inhibitor bafetinib inhibits PAR2-induced 
activation of TRPV4 channels in vitro and pain in vivo. British Journal of 
Pharmacology, 171 (16), 3881-94. DOI: 10.1111/bph.12750 

 



83 
 

Grace, M. S., Bonvini, S. J., Belvisi, M. G., & McIntyre, P. (2017). Modulation of the TRPV4 
ion channel as a therapeutic target for disease. Pharmacology & 
Therapeutics, 177, 9-22. DOI: 10.1016/j.pharmthera.2017.02.019 

 
Guedes I. A., de Magalhães, C. S., & Dardenne, L. E. (2014). Receptor-ligand molecular 

docking. Biophysical Reviews, 6 (1): 75-87. DOI: 10.1007/s12551-013-0130-2 
 
Halgren T. (2007). New method for fast and accurate binding-site identification and 

analysis. Chemical biology & drug design, 69 (2): 146-8. DOI: 10.1111/j.1747-
0285.2007.00483.x 

 
Halgren, T. A. (2009). Identifying and characterizing binding sites and assessing 

druggability, Journal of Chemical Information and Modeling, 49 (2), 377-389. 
DOI: 10.1021/ci800324m 

 
Henrich, S., Salo-Ahen, O. M., Huang, B., Rippmann, F., Cruciani, G., & Wade, R. C. (2010). 

Computational approaches to identifying and characterizing protein binding 
sites for ligand design. Journal of Molecular Recognition, 23 (2), 209-219. 

 
Hughes, T.E., Lodowski, D.T., Huynh, K.W., Yazici, A., Del Rosario, J., … Moiseenkova-Bell, 

V.Y. (2018). Structural basis of TRPV5 channel inhibition by econazole 
revealed by cryo-EM. Nature Structural & Molecular Biology, 25, 53-60. DOI: 
10.1038/s41594-017-0009-1 

 
Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J., Honig, B., Shaw, D. E., & Friesner, R. A. 

(2004). A hierarchical approach to all-atom protein loop prediction. Proteins: 
Structure, Function and Bioinformatics, 55, 351-367.  

 
Jones, G., Willett, P., Glen, R. C., Leach, A. R., & Taylor, R. (1997).  Development and 

validation of a genetic algorithm for flexible docking. Journal of Molecular 
Biology, 267, 727-748. DOI: 10.1006/jmbi.1996.0897 

 
Jorgensen, W. L., Chandrasekhar, J., & Madura, J. D. (1983). Comparison of simple potential 

functions for simulating liquid water. The Journal of Chemical Physics, 79, 926. 
DOI: 10.1063/1.445869 

 
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., … Hassabis, D. (2021). Highly 

accurate protein structure prediction with AlphaFold. Nature, 596, 583–589. 
DOI: 10.1038/s41586-021-03819-2 

 
Kaminski, G. A., Friesner, R. A., Tirado-Rives, J., & Jorgensen W. L. (2001). Evaluation and 

reparametrization of the OPLS-AA force field for proteins via comparison with 
accurate quantum chemical calculations on peptides. The Journal of Physical 
Chemistry B, 105 (28), 6474-6487. DOI: 10.1021/jp003919d 

 



84 
 

Kaneko, Y., & Szallasi, A. (2014). Transient receptor potential (TRP) channels: a clinical 
perspective. British journal of pharmacology, 171 (10), 2474–2507. DOI: 
10.1111/bph.12414 

 
Kanju, P., Chen, Y., Lee, W., Yeo, M., Lee, S. H., Romac, J., ... Liedtke, W. B. (2016). Small 

molecule dual-inhibitors of TRPV4 and TRPA1 for attenuation of inflammation 
and pain. Scientific Reports, 6, article number 26894. 

 
Li, D., Kao, T.-H., & Chang, S.-W. (2020) The structural changes of the mutated ankyrin 

repeat domain of the human TRPV4 channel alter its ATP binding ability. 
Journal of the Mechanical Behavior of Biomedical Materials, 101, 103407. 
DOI: /10.1016/j.jmbbm.2019.103407 

 
LigPrep. Schrödinger Release 2020-3: LigPrep, Schrödinger, LLC, New York, NY, 2020. 
 
Lipinski, C. A., Lombardo, F., Dominy, B. W., & Freeney, P. J. (1997). Experimental and 

computational approaches to estimate solubility and permeability in drug 
discovery and development settings. Advanced Drug Delivery Reviews, 23, 3-
25. 

 
Ludbrook, V., Hanrott, K. E., Marks-Konczalik, J., Kreindler, J. L., Bird, N. P., ... Smith, J. 

(2019). S27 A placebo-controlled, double-blind, randomised, crossover study 
to assess the efficacy, safety and tolerability of TRPV4 inhibitor GSK2798745 
in participants with chronic cough. Thorax, 74, A18. 

 
Lupyan, D., Mezei, M., Logothetis, D. E., & Osman, R. A. (2010). Molecular dynamics 

investigation of lipid bilayer perturbation by PIP2. Biophysical Journal, 
98(2):240-7. DOI: 10.1016/j.bpj.2009.09.063 

 
Moore, C., Cevikbas, F., Pasolli, H. A., Chen, Y., Kong, W., … Liedtke, W.B. (2013). UVB 

radiation generates sunburn pain and affects skin by activating epidermal 
TRPV4 ion channels and triggering endothelin-1 signaling. Proceedings of the 
National Academy of Sciences of the United States of America, 
110(34):E3225-34. DOI: 10.1073/pnas.1312933110 

 
Nikolaev, Y. A., Cox, C. D., Ridone, P., Rohde, P. R., Cordero-Morales, J. F., … Martinac, B. 

(2019). Mammalian TRP ion channels are insensitive to membrane stretch. 
Journal of Cell Science, 132 (23): jcs238360. 

 
Phase [Computer software]. (2021). Retrieved 25.10.2021 from: 

https://www.schrodinger.com/products/phase 
 
Phelps, C. B., Wang, R. R., Choo, S. S., & Gaudet, R. (2010). Differential regulation of TRPV1, 

TRPV3, and TRPV4 sensitivity through a conserved binding site on the ankyrin 
repeat domain. The Journal of Biological Chemistry, 285 (1): 731-40. DOI: 
10.1074/jbc.M109.052548 

 



85 
 

Poole, D. P., Amadesi, S., Veldhuis, N. A., Abogadie, F. C., Lieu, T., Darby, W., … Bunnett, N. 
W. (2013). Protease-activated receptor 2 (PAR2) protein and transient 
receptor potential vanilloid 4 (TRPV4) protein coupling is required for 
sustained inflammatory signaling. The Journal of Biological Chemistry, 288(8), 
5790-802. 

 
Prime 4.0 User Manual. (2015). Retrieved 24.10.2021 from: 

http://gohom.win/ManualHom/Schrodinger/Schrodinger_2015-
2_docs/prime/prime_user_manual.pdf 

 
Roos, K., Wu, C., Damm, W., Reboul, M., Stevenson, J. M., Lu, C., … Harder, E. D. (2019). 

OPLS3e: Extending force field coverage for drug-like small molecules. Journal 
of Chemical Theory and Computation, 15 (3), 1863-1874. DOI: 
10.1021/acs.jctc.8b01026 

 
Šali, A., & Blundell, T. L. (1993).  Comparative protein modelling by satisfaction of spatial 

restraints. Journal of Molecular Biology, 234 ,779–815. 
 
Salo-Ahen, O. M. H., Alanko, I., Bhadane, R., Bonvin, A. M. J. J., Honorato, R. V., Hossain, S., 

… Vanmeert, M. (2021). Molecular dynamics simulations in drug discovery 
and pharmaceutical development. Processes, 9 (1): 71. 
https://doi.org/10.3390/pr9010071 

 
Samanta, A., Hughes, T., & Moiseenkova-Bell, V. Y. (2018). Transient receptor potential 

(TRP) channels. Sub-cellular Biochemistry, 87, 141–165. 
https://doi.org/10.1007/978-981-10-7757-9_6 

 
Savjani, K. T., Gajjar, A. K., & Savjani, J. K. (2012). Drug solubility: importance and 

enhancement techniques. ISRN pharmaceutics, 195727. DOI: 
/10.5402/2012/195727 

 
Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and 

ligand preparation: Parameters, protocols, and influence on virtual screening 
enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221-234. 
DOI: https://doi.org/10.1007/s10822-013-9644-8 

 
Shen, M. & Sali, A. (2006). Statistical potential for assessment and prediction of protein 

structures. Protein Science, 15, 2507–2524. 
 
Sievers, F., Wilm, A., Dineen, D. G., Gibson, T. J., Karplus, K., … Higgins, D.G. (2011). Fast, 

scalable generation of high-quality protein multiple sequence alignments 
using Clustal Omega. Molecular Systems Biology 7, 539. 
DOI:10.1038/msb.2011.75 

 
SwissADME – FAQ. Retrieved 15.8.2021 from: http://www.swissadme.ch/faq.php 
 



86 
 

Teng, J., Loukin, S. H., Anishkin, A., & Kung, C. (2015). L596-W733 bond between the start 
of the S4-S5 linker and the TRP box stabilizes the closed state of TRPV4 
channel. Proceedings of the National Academy of Sciences of the United 
States of America, 112(11), 3386-3391. 

 
Tingjun H., Junmei W., Youyong L., & Wei W. (2011). Assessing the Performance of the 

MM/PBSA and MM/GBSA Methods. 1. The Accuracy of Binding Free Energy 
Calculations Based on Molecular Dynamics Simulations. Journal of Chemical 
Information and Modeling, 51 (1), 69-82. DOI: 10.1021/ci100275a 

 
Verdonk, M. L., Cole, J. C., Hartshorn, M. J., Murray, C. W., & Taylor, R. D. (2003). Improved 

protein-ligand docking using GOLD. Proteins, 52 (4), 609-23. DOI: 
10.1002/prot.10465 

 
Vincent, F., Acevedo, A., Nguyen, M. T., Dourado, M., DeFalco, J., … Duncton, M. A. (2009). 

Identification and characterization of novel TRPV4 modulators. Biochemical 
and Biophysical Research Communications, 389, 490-494. DOI: 
10.1016/j.bbrc.2009.09.007 

 
Wade, R. C., & Goodford, P. J. (1989). The role of hydrogen-bonds in drug binding. Progress 

in Clinical and Biological Research, 289, 433-44. 
 
Wang, H., & Woolf, C. J. (2005). Pain TRPs. Neuron, 46, 9-12. 
 
White, J. P., Cibelli, M., Urban, L., Nilius, B., McGeown, J. G., & Nagy, I. (2016). TRPV4: 

Molecular conductor of a diverse orchestra. Physiological Reviews, 96, 911-
973. DOI: 10.1152/physrev.00016.2015 

 
Yu, W., & MacKerell, A. D., Jr. (2017). Computer-Aided Drug Design Methods. Methods in 

Molecular Biology (Clifton, N.J.), 1520, 85–106. DOI: 10.1007/978-1-4939-
6634-9_5 

 
Zhang, L. P., Kline, R. H. 4th, Deevska, G., Ma, F., Nikolova-Karakashian, M., & Westlund, K. 

N. (2015) Alcohol and high fat induced chronic pancreatitis: TRPV4 antagonist 
reduces hypersensitivity. Neuroscience, 311, 166-179. DOI: 
10.1016/j.neuroscience.2015.10.028. 


