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Abstract

Despite the advancements in technologies for maritime navigation, maritime acci-

dents are still a big problem in the industry. Extensive research has been done to

study these accidents and try to find solutions to avoid them, but no research has

tried to apply Explainable AI approaches to navigational data.

The goal of this thesis is to produce a predictive deep learning model to study

navigational data and use attention mechanisms to identify seafarer behaviors which

could lead to accidents during the ship’s navigational operations.
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Introduction

In the past years, maritime navigation is a sector that has kept growing, with a world

fleet today that is almost three times what it was at the beginning of the century

(Fig.1.1).

Figure 1.1: Size of the World Fleet for merchant ships above 100 Gross Tonnage
per primary vessel type (in Millions of dead-weight tons). Source : [1]

With the number of ships sailing globally increasing, accidents are increasing

too, and while the numbers are not growing at the same speed, the growing size of

the ships means that the scale of the accidents is becoming larger too.

In the last decade, navigation in the Baltic Sea alone represented 15% of cargo

transport worldwide[2], and has resulted in about 150 shipping accidents every

year[3], causing financial losses, but more importantly costing human lives and

causing dramatic environmental issues through pollution. Maritime safety is a very

important topic for all neighboring countries and extensive research is led to try to

reduce the number of accidents.[4]
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1.1 Motivation

The goal of this thesis is to suggest a new approach for reviewing maritime ac-

cidents, using LSTM Neural Networks to analyze navigational data where ships

involved in an accident have been isolated, to build a deep learning model capa-

ble of predicting seafaring behaviors that might lead to accidents (referred to as

risk-prone behaviors) and using attention mechanisms to extract the features of said

behaviors and translate them into general understanding, possibly allowing us to

pass that information to sailors as behaviors to avoid when at sea.

1.2 Thesis outline

This introductory chapter presents general information about the thesis, its back-

ground as well as the purpose of the study presented. The next chapter will be ded-

icated to describing the concepts used to carry out this work. Chapter 3 will give

details about the data sources used for this study and the resulting dataset to train the

model, and then describe the implementation and architecture of the network. The

results of the attention mechanisms will be studied in Chapter 4 and their validity

will be discussed in Chapter 5 which will serve as conclusion and summarize this

study’s findings.
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Theory

The goal of this chapter is to present the concepts of maritime navigation monitor-

ing used in this study, and the relevant actors in this field, as well as present the

techniques used to create our system.

2.1 Maritime navigation data

This section will be presenting the kind of navigational data used in this study and

the organism providing this data to us.

2.1.1 AIS Data

Automatic Identification Systems (AIS) are a standard of maritime navigation iden-

tification. The International Maritime Organisation requires that every ship carries

equipment capable of sending standard information to the surrounding ships and to

coastal authorities, as well as receive this information from other ships themselves.

This regulation is in effect for cargo ships (300 or more gross tonnage for inter-

national transport and 500 or more gross tonnage for non-international transport)

as well as all passenger ships (regardless of their size). The European Union also

requires all ships longer than 15 meters to comply with these regulations.

These regulations only enforce the use of vessel-based AIS transceivers, which

should be sending information continuously, and at least comply with the specifica-

tions of "Class A transceivers"; Very High Frequency (VHF) transceivers composed

of a VHF transmitter, two VHF Time-Division Multiple Access (TDMA) receivers,

one VHF Digital Selective Calling (DSC) that use the sensors of the ship to col-

lect the information (excepted for the time synchronization which is assured via an

internal time base, synchronized to a global navigation satellite system (e.g. GPS)

receiver).[5]

The data sent by Class A transceivers is separated into two parts. One is sent

every 2 to 10 seconds, and it contains the fields (detailed in table 2.1). This one does

not have a full timestamp; for completeness, it must be combined with the second
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Vessel Maritime Mobile Service Iden-
tity (MMSI)

A unique identification number that is
different from the IMO number

Navigation status E.g. "at anchor", "under way using en-
gine(s)", "not under command", etc.

Rate of turn right or left, from 0 to 720 degrees per
minute.

Longitude to 0.0001 arcminutes
Latitude to 0.0001 arcminutes
Speed Over Ground (SOG) Speed of the ship when removing the

effects of the currents; in knots : 0.1-
knot (0.19 km/h) resolution from 0 to
102 knots (189 km/h)

Course Over Ground (COG) Direction in which the ship is moving
when taking into account the effects of
the current; relative to true north to 0.1°

True heading 0 to 359° (for example from a gyro
compass)

True bearing at own position 0 to 359°
UTC seconds The seconds field of the UTC time

when these data were generated

Table 2.1: Standard Class A AIS position report[6]

IMO ship identification number A seven digit number that remains un-
changed upon transfer of the ship’s reg-
istration to another country

Radio call sign International radio call sign, up to 7
characters, assigned to the vessel by its
country of registry

Name 20 characters to represent the name of
the vessel

Type of ship/cargo
Dimensions of ship to nearest meter
Location of positioning system’s an-
tenna on board the vessel

in meters aft of bow and meters port or
starboard

Type of positioning system such as GPS, DGPS or LORAN-C.
Draft of the ship vertical distance between the waterline

and the bottom of the hull; between
0.1–25.5 meters

Destination max. 20 characters
ETA (estimated time of arrival) at des-
tination

UTC month/date hour:minute

High precision time request Optional field a vessel can use to re-
quest other vessels provide a high pre-
cision UTC time and datestamp

Table 2.2: Standard Class A AIS static data report[6]
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one which is sent every 6 minutes and contains more static data about the ship (as

detailed in table 2.2).

Class B transceivers send the same kind of data, but they limit their standard

position report to MMSI, time, SOG, COG, longitude, latitude and true heading,

and send it at a different rate depending on the SOG (every 3 minutes for speeds

under 2 knots, and every 30 seconds for greater speeds), the same data presented in

Table 2.1 is sent as Extended Position Report upon request from coast stations. The

static data report uses the same 6 minutes interval as Class A and brodcasts MMSI,

boat name, ship type, call sign, dimensions and equipment vendor id.

The fact that these transceivers are mandatory means that in theory, when col-

lecting the signals in a set area, we should have complete information about the

boats navigating through it during the observation period.

However, ultimately, it is up to the observer to decide what part of the data is to

be saved in their database. Not all of them register the complete information, and it

is often limited to the parts of the data that are common between all classes of AIS,

so we might be limited depending on what features our data sources have decided

to keep.

This data is only partly openly available online. Actually, the Maritime Safety

Committee (MSC) has been condemning the publication of AIS data to the World

Wide Web and encourages its Member Governments to actively discourage it as

well. The MSC argues that the public availability of such data is detrimental to the

safety objectives of the organization and contrary to its safety measures.[7]

Despite that, there are many applications using either openly available AIS data

or data provided by safety organisms. These application range from vessel tracking

via data mining[8] or visualizations[9] to navigator behaviors pattern mining[10].

2.1.2 HELCOM

The Baltic Marine Environment Protection Commission, also known as the Helsinki

Commission or HELCOM is an organization that cooperates with organizations gov-

erned by the signers of the Helsinki Convention on the Protection of the Marine

Environment of the Baltic Sea Area1.

HELCOM has various missions around maritime environment protection, based

on the Baltic Sea Action Plan, and its vision of "A healthy Baltic Sea environment,

1The 9 countries with a coast on the Baltic Sea : Denmark, Estonia, Finland, Germany, Latvia,
Lithuania, Poland, Russia and Sweden, plus the European Union signing as a separate entity
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with diverse biological components functioning in balance, resulting in good en-

vironmental/ecological status and supporting a wide range of sustainable human

economic and social activities". Among its numerous missions, HELCOM works

with the International Maritime Organization to monitor shipping activities in the

Baltic sea which could have an environmental impact , and this implies aggregating

data from all member countries for reporting, among which we can find AIS data.
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2.2 Machine Learning

This section lays out what we describe as Machine Learning and presents the dif-

ferent techniques used in this study.

2.2.1 Predictive Model and Supervised Learning

In Supervised Machine Learning, we study a system with a set of variables, called

inputs, that have an influence on one or more other variables, called outputs[11].

In the typical definition of Artificial Intelligence, a program is presented with a

set of inputs and we create the rules that it has to follow to determine the correct

output (e.g. the actions to take in a particular situation). Instead, in supervised

learning, a program is presented with a set of inputs and their associated outputs

and it then has to infer the rules that support the system that is studied[12].

This set of found rules is called the model, and it is then tested by trying to

apply its rules to a new set of inputs. The model provides a prediction based on

the inputs, and we compare them to the true outputs. The ability of the model to

provide accurate predictions consistently is most often the metric upon which we

judge the quality of a model.

The term supervised learning is used in opposition to unsupervised learning,

where no examples are needed; this can be applied for tasks where we let the net-

works find the characteristics of the inputs to differentiate them (e.g. clustering,

anomaly detection...) or to reproduce them (e.g. content generation, speech synthe-

sis...).

Supervised learning algorithms are not too different from the regression analysis

that can be found in statistical modeling, but different methods have different ways

of combining the inputs that go beyond what even nonlinear regression can do.

2.2.2 Deep Learning

This next section will be dedicated to presenting Deep Learning, from its most basic

form to the highly complex systems that will be used in this study.

2.2.2.1 Neural Networks

Among supervised learning methods, Artificial Neural Networks (simply called

neural networks hereafter), are the ones closest to nonlinear regression.
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The name Neural Network conveys the initial motivation behind the creation of

this technique; the goal is to replicate the way a human brain works, with its billions

of neurons and synapses performing highly complex calculations.

Neural networks are composed of units called cells, artificial neurons or just

neurons for simplicity; these neurons are linked to each other in layers, and each

neuron in a layer applies combinational weights to the information coming from

neurons on the previous layers to create new outputs[13].

This is to emulate the way neurons work in the human brain, and the high level

of interconnectivity is important here.

Input
layer

Hidden
layer

Output
layer

Input 1

Input 2

Input 3

Input 4

Input 5

Ouput

Figure 2.1: Representation of a simple Feed-Forward Neural Network.

The kind of network represented in Figure 2.1 is called a feed-forward network,

as the information is always passed to the next layer, its layers are dense, fully

connected to the ones after (i.e. all neurons in a layer are connected to all neurons

of the following layer) with those weighted connections (detailed in Fig. 2.2).

y(x) = f (wx+b) (2.1)

A layer between the inputs and the outputs is commonly called a hidden layer

because it is not explicitly accessed. The weights w and biases b (Eq. 2.1) are

adjusted during the training so that they can be combined with the input vector x to
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x2 w2 Σ f

Activate
function

y
Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 2.2: Representation of the connections between neurons using notations
from Eq. 2.1

obtain an output y closer to the true result. The function applied to this combination

is called the activation function. Some functions that are commonly used are the

rectified linear units (ReLU), the logistic sigmoid (σ ) and hyperbolic tangent (tanh).

ReLU(x) = max(0,x) (2.2)

σ(x) =
1

1+ e−x (2.3)

tanh(x) =
ex− e−x

ex + e−x (2.4)

2.2.2.2 Training process

The training of a neural network is done in several iterations called epochs. During

every epoch, the training data is passed through the network and the outputs are

evaluated. The evaluation is based on a metric called the loss which is usually a

measure of the error of the model that we want to minimize (although sometimes it

can be an other kind of measure that has to be maximized).

The minimization (or maximization) of the loss is done through an optimization

algorithm that uses the loss to modify the weights in the networks starting from the

last ones (this is the process of backpropagation).

gt =5L(Wt) (2.5)

Wt+1 =Wt− lr ∗gt
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Different optimization algorithms have different update rules using the loss and

the previous weights and are affected by different hyperparameters. Equation 2.5

shows the update rule for Stochastic Gradient Descent[14], which is considered one

of the simplest optimization algorithms[15]. It uses the gradient of the loss and has

a single hyperparameter lr, its learning rate that many gradient-based optimizers

also have, which determines how fast the model is going to converge on the optimal

solution (a compromise is to be made between a low learning rate, which would

make the training longer, and a high learning rate that might prevent the model

from stabilizing on its optimal solution.).

v0 = 0 ; vt+1 = γ ∗ vt +gt (2.6)

Wt+1 =Wt− lr ∗ vt+1

αt−1 =
t−1

∑
i=1
5g2

i ; lrt =
lr√

αt−1 + ε
(2.7)

Wt+1 =Wt− lrt ∗gt

edat−1 = γ ∗ edat−2((1− γ)∗g2
t−1) (2.8)

lrt =
lr√

edat−1 + ε

Wt+1 =Wt− lrt ∗gt

Other gradient-based optimizers improve on this method by adding parameters

to converge faster, such as Stochastic Gradient Descent with momentum (Eq. 2.6,[16]),

or look into an adaptive learning rate such as Adagrad (Eq. 2.7,[17]) or AdaDelta

(Eq2.8,[18]).

One of the most widely used optimizers based on these methods is Adam [19],

which uses the first and second order of moment (i.e. gt and its square) in the

decay rate (Eq. 2.9) for a more complex tuning (since they are affected by separate

hyperparameters β1 and β2.
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mt = β1 ∗mt−1 +(1−β1)∗gt (2.9)

vt = β2 ∗ vt−1 +(1−β2)∗g2
t

m∗t =
mt

1−β t
1

v∗t =
vt

1−β t
2

Wt =Wt−1− lr ∗ m∗t√
v∗t + ε

2.2.2.3 Deep Neural Networks

A neural network is called deep when it uses several hidden layers successively,

allowing for a very high complexity in the combination of the inputs, especially

when different functions are applied between each layer. The number of different

layers between the inputs and outputs is the depth of the network.

In the few years since their introduction, deep learning models have imposed

themselves as a staple of machine learning. They have been looked at for all kinds

of applications and often taken as a silver bullet for tasks that we didn’t think pos-

sible before. This is because they have shown high performance approaching or

surpassing human accuracy on supervised tasks like image recognition[20][21], lan-

guage translation[22], as well as unsupervised task like text generation[23] or image

generation[24].

However to obtain the results they obtained, these methods have greatly ex-

panded on the basic architecture of deep neural networks.

2.3 Recurrent Neural Network

Recurrent Neural Networks are a class of neural networks where, in addition to the

traditional output (vertical outputs h in Fig. 2.3), the information of one unit is also

passed along inside the same layer (horizontal outputs in Fig. 2.3). This property

gives it the ability to use its internal state as a memory of sorts and exploit part of the

information from previous states, which allows for better treatment of information

that comes in the form of sequences, such as phrases, time series, audio or video

inputs.

When unrolled, we can see that each cell receives information from all its pre-
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Figure 2.3: Recurrent Neural Network architecture showed in its compact and un-
rolled representation. Source: [25]

decessors, in addition to the normal input. In this form, we can assimilate each cell

as a layer with a very specific way of combining the data from previous cells, which

makes the RNNs analogous to a deep neural network, which means that it can be

trained in the same way.

2.3.1 Long Short-Term Memory

Long Short-Term Memory networks are an upgrade of the classic RNN[26]. They

have a memory cell that has a more complex structure than regular neurons. It

includes the input gate that updates the cell state values, the output gate that selects

the parts of the cell state to output, and a forget gate. This gate allows the internal

memory to select irrelevant information from the previous cells to be forgotten.[27]

Figure 2.4: Architecture of the LSTM cell as defined in [28].

Figure 2.4 shows the design of the LSTM cell with the notation commonly found

when laying down the equation behind the activation function vectors of the cell
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state.

it = σ(Wxixt +Whiht−1 +Wcict−1 +bi) (2.10)

ft = σ(Wx f xt +Wh f ht−1 +Wc f ct−1 +b f ) (2.11)

ot = σ(Wxoxt +Whoht−1 +Wcoct +bo) (2.12)

ct = ftct−1 + ittanh(Wxcxt +Whcht−1 +bc) (2.13)

ht = ottanh(ct) (2.14)

Equations 2.10-2.12 show the use of a logistic sigmoid ruling the updates of

the different gates, each using its own set of weights W and bias b that are learned

during the training. Equations 2.13 and 2.14 denote the two types of hidden cell

states of the LSTM. We can see that ht , which is a regularization of ct through a

hyperbolic tangent and a combination with ot , is used by the next cell in conjunction

with the bare ct .

LSTMs have been known to solve the problem of vanishing gradients that reg-

ular RNNs can suffer from[29] as the cell state accumulates activities over time and

derivatives of the error are summed[30].

Whereas RNNs get the full information from past states indiscriminately, LSTM’s

selective memory also makes it better at identifying actions and changes that can

have an impact much later (long-term dependencies)[31].

In recent years, LSTMs have been widely used in the context of Natural Lan-

guage Processing, due to their high performance in prediction and classification

tasks over long sequences, but those properties can be seen in a much wider field of

problems, and many methods like ours look to apply LSTMs to other domains.

Other networks have been developed with designs analogous to the LSTM, like

the Gated Recurrent Unit (GRU)[32] , which also has a forget gate but no output

gate (which means their cell state and hidden state are one and the same), and have

been used for their lower number of parameters yielding higher learning speed.

2.3.2 Phased LSTM

The Phased LSTM is defined by Neil et al. (2016)[33] as a further extension of the

LSTM that adds a new time gate, kt (as shown in Figure 2.5). This gate has an

opened and a closed state. When it is open, the cell functions as usual, but when it

is closed, the cell state is not updated by ct and ht .
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Figure 2.5: Architecture of a Phased LSTM cell in the same style as [28] showing
where the new kt gate takes place in the LSTM cell. Source: [33]

φt =
(t− s)modτ

τ
(2.15)

kt =


2φt
ron

, if φt <
1
2ron

2− 2φt
ron

, if 1
2ron < φt < ron

αφt , otherwise

(2.16)

As shown in Eq. 2.16, what determines if the gate is opened or closed is a

rhythmic oscillator that is independent of the rest of the model. This relationship

with the oscillator has its own three parameters that can be learned during training

: τ which is different for each neuron, s the phase shift of the oscillator and ron the

openness ratio. Figure 2.6 shows how these parameters apply graphically.

The parameter α used in the closed phase is the leak rate that allows some

important information to be propagated despite the closed gate.

c̃ j = f jc j−1 + i jσ(x jWxc +h j−1Whc +bc) (2.17)

c j = k jc̃ j +(1− k j)c j−1 (2.18)

h̃ j = o jσ(c̃ j) (2.19)

h j = k jh̃ j +(1− k j)h j−1 (2.20)
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Figure 2.6: Diagram of Phased LSTM behaviour. (a) Top: The rhythmic oscilla-
tions to the time gates of 3 different neurons; the period τ and the phase shift s is
shown for the lowest neuron. The parameter ron is the ratio of the open period to
the total period τ . Bottom: Note that in a multilayer scenario, the timestamp is
distributed to all layers which are updated at the same time point. (b) Illustration
of Phased LSTM operation. A simple linearly increasing function is used as an in-
put. The time gate kt of each neuron has a different τ , identical phase shifts, and an
open ratio ron of 0.05. Note that the input (top panel) flows through the time gate
kt (middle panel) to be held as the new cell state ct (bottom panel) only when kt is
open. Source (including caption): [33]

For the Phased LSTM, since it can be applied to irregularly sampled time points,

there is a new notation t j. The new cell states equations use the short notation

c j = ct j for cell states a time t j (and c j−1 = ct j−1).

2.4 Explainable AI

The problem with a Phased LSTM, as with any kind of Deep Learning method, is

that it is what is commonly called a "black box". Contrary to a classic regression,

the weights in a Deep Neural Network cannot be simply traced back to produce an

explanation of the decision-making process.

Some machine learning models are developed only for prediction, so they can

rely on deep learning only for its high performance, but in some cases, the mod-

els are built for applications of critical importance where we cannot afford to not

understand the inner workings of the system.

Explainable AI has already proved it could be used to develop solutions in such

applications like in the medical field[34] where the results can be reassessed by

health professionals, or to bring interpretability to the computer vision used for au-

tonomous driving[35]; two sectors where the safety of human life is on the balance.
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Explainable AI designates the methods that aim to produce explainability for a

system that does not have it by default.

2.4.1 Attention Mechanisms

Attention was first introduced by Bahdanau in 2014 [36] as a way for a translation

model to decide what parts of the word sequence to focus on when doing the pre-

diction. It was a parallel mechanism that was used in conjunction with an encoder-

decoder to separate the information and make it easier to process.

Subsequent studies have looked into attention mechanisms and modified them

to apply them to different kinds of tasks, such as translation[37] [38], document

classification[39], or even image captioning[40]. Attention generally designates

techniques that aim at enhancing certain parts of the input data.

Later works describe an attention mechanism that is an additional subnetwork

that works in parallel of the main network (in this case a RNN)[41]. Among the in-

put sequence elements, it selects the ones that will be used to update the RNN. The

subnetwork learns to generate attention weights that are then combined to the orig-

inal inputs and taken into account by the predictive part of the network. The most

common method of attention mechanisms is using dot-product attention, where the

weights and inputs are combined through a dot-product.

To generate proper weights, the outputs of the subnetwork are passed through a

softmax function (Eq. 2.21).

letx ∈ RK

so f tmax(x) =
exi

∑
K
j=1 ex j

(2.21)

The softmax function converts the outputs into values between 0 and 1, so that

they can be interpreted as probabilities, while preserving the relative weight and

making the weight’s sum add up to 1, so we can use them as an indication of what

part of the input the model should be focused on.
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Methodology

The goal of this chapter is to describe the different processes that are necessary to

carry out the objectives presented in section 1.1.

3.1 Data processing

This section will detail the shape of the data used in this study and the different

processes needed to obtain a dataset suited to our Machine Learning task.

3.1.1 HELCOM’s navigational dataset

The dataset used for navigation data is a dataset made available to us by HELCOM.

It is referred to in the rest of the study as the maritime navigation dataset. This

dataset contains files listing all signals collected in HELCOM member countries all

across the Baltic Sea. There is a file for each month from January 2009 to December

2019.

The features that have been kept in this dataset are the MMSI of the ship and

timestamp of the data point, the latitude, longitude, speed over ground, course over

ground, and draft at the moment of the recordings, as well as the IMO number and

dimensions of the ship extracted from the second recording.

The main challenge with these data comes from the unevenness of the sampling

rate; the points in our dataset are very unevenly distributed, sometimes separated by

one or two minutes, and on other occasions, there can be 15 minutes between two

points.

The reason why shorter intervals may appear comes from the fact that HELCOM

is a cooperation of many institutions that do not record the data in exactly the same

way, and the data we have are reconstructed on top of those from the two types

of signals described in section 2.1, in addition to the mix of Class A and Class B

transceivers (with their adaptive sampling rate).

The reason for longer intervals is the potential data loss that can occur if the AIS

transmitter is not sending the information properly (either due to a technical issue
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or if it was voluntarily turned off by the crew), or if the data is not received properly

(most likely due to weather conditions). In the Baltic Sea Area, maritime observers

only work with base stations. There are no satellites, since the base stations are sup-

posedly good enough to cover the area, but these base stations also have technical

limitations depending on the weather, maintenance, etc..

The last potential explanation for the timing irregularities is that the data we are

working with have already been processed by HELCOM when merging databases

from all member countries and harmonizing inputs, which includes discarding sig-

nals that contain wrong information (e.g. position on land, wrong IMO number,

wrong MMSI, etc.).

In the end, less than half of the data actually follow the standard 6-minute cycle,

and even these ones have irregularities, be it one missing point or some points being

1-2 minutes late.

3.1.2 Maritime Accidents Database

The data sources presented in the previous section do not contain a simple indicator :

whether the ship was involved in an accident. Although we could probably identify

certain accidents by analyzing strange behaviors in the draft of the ship, we will not

be able to catch all of them, so we need external data source on maritime accidents.

3.1.2.1 Source

The data we used relating to shipping accidents are extracted from an openly ac-

cessible database from HELCOM containing data from all the shipping accidents

in the Baltic Sea since 1989 (this database being updated every few years, only data

up to 2017 were available at the time of this study).

However, this database, like others of the same kind, suffers from problems of

underreporting[42]. This means that numerous accident reports are missing some

fields, and that includes some fields that we would need to identify the ships in-

volved and trace those accidents to the navigation behaviors that caused them.

3.1.2.2 Integration

Since the navigation dataset only has data from as far back as 2009, we only con-

sidered accidents that were more recent than this. The maritime dataset was also

reduced to 2009-2017 to make sure that we only take time periods where we have

information on accidents.
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To clean the accident dataset, we keep only the records that contain an indication

of when and where an accident occured and what ships were involved. From this

information, we can look inside the navigation dataset. If we have a record of a

ship navigating at that time under that identification, we can take the data before the

accident and decide on a time period where we consider the behavior as risk-prone.

For this study, we took the estimate of one hour leading to the accident.

As a matter of fact, only a few accident records add the identification numbers

of the involved ships. A total of 512 ships were properly identified out of 1297

accidents during the studied time period (note that this includes some accidents

involving two ships), 286 of which could be traced back to their behavior before the

accident.

We used the indications of where the accidents occured to identify danger areas

and used this to filter our pool of behaviors. This is to ensure that even the behaviors

we select that do not imply an accident are in zones where it is relevant to observe

them. The estimation of a danger area is 5km around the location where an accident

has taken place.

3.1.3 Behavior Sequences

The navigation dataset in its original form is a set of data points following each

other in a pseudo-continuous way. It can be ordered by timestamps and separated

by boat. However, the danger areas are the critical point in the data processing;

they give us a metric upon which we can determine how to cut the sequences (that

would otherwise have been cut arbitrarily). A sequence starts when a boat enters a

potentially dangerous area and ends when the boat has an accident or exits the area.

3.1.3.1 Coordinates projection

To allow for better generalization despite the low number of examples in the dataset,

the geographical coordinates are replaced by a projection on a relative area. Enter-

ing in a danger area marks the beginning of a sequence, and the coordinates at this

entry mark the origin point of the sequence. The coordinates for the rest of the se-

quence are replaced with relative coordinates with the distance and angle from the

origin point to the current point.

As a measure of the angle, we choose the absolute bearing of the trajectory. In

maritime navigation, the absolute bearing is the angle between the magnetic north

and an object observed from the vessel. An other way to use it, and what we are
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using here, is taking the origin point of the sequence as point of observation, and

as observed object the current point, this is the initial bearing of the trajectory. As

the vessel moves the absolute bearing will change constantly, which is why for

this coordinate system we only consider the initial bearing of the trajectory, which

is enough (combined to the point of origin and the distance) to find the current

coordinates.

Furthermore, to avoid big jumps in value when going from 359° to 0°, the bear-

ing will be denoted by its sine and cosine, which as a side-effect, will make them

analogous to a projection of the latitude and longitude in the relative coordinate sys-

tem (since the bearing is the angle between the trajectory and the north, the cosine

represents the latitudinal movement and the sine represents the longitudinal part).

Figure 3.1: Visual representation of the projected coordinates

3.1.4 Final dataset

Table 3.1 summarizes the ten features selected for the final dataset; seven of them

are from the original data and three have been derived from it.

The final data have been split into three datasets : the training, validation and

testing datasets. Each dataset is composed of 50% of sequences containing a risk-

prone behavior (as defined in section 3.1.2.2) and 50% of sequences showing only

regular behaviors. This is a proportion that has been selected because, with a lower

proportion of risk-prone behaviors, the number of false negatives increases; as risk-

prone behaviors become negligible to the model. The training, validation and testing
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datasets containing 70%, 15% and 15% respectively of the total sequences contain-

ing risk-prone behaviors, the sequences with regular behavior are selected randomly

among the big pool of behaviors linked to the danger areas.

Distance Distance from the origin point to the current point
(in km)

Bearing sine sin(bi) where bi is the absolute bearing from the
origin point to the current point, i.e. the sinus of
the angle between the trajectory (0° at origin)

Bearing cosine cos(bi) where bi is the absolute bearing from the
origin point to the current point (0° at origin)

Speed Over Ground (SOG) Speed of the ship when removing the effects of
the currents; in knots : 0.1-knot (0.19 km/h) res-
olution from 0 to 102 knots (189 km/h)

Course Over Ground (COG) Direction in which the ship is moving when tak-
ing into account the effects of the current; relative
to true north to 0.1°

Draft of the ship vertical distance between the waterline and the
bottom of the hull; between 0.1–25.5 meters

Bow dimension Distance between the AIS transmitter and the bow
(front) of the boat in meters

Port side dimension Distance between the AIS transmitter and the port
side (left) of the boat in meters

Starboard side dimension Distance between the AIS transmitter and the
starboard side (right) of the boat in meters

Stern dimension Distance between the AIS transmitter and the
stern (back) of the ship in meters

Table 3.1: Features selected for the predictive model
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3.2 Implementation of the predictive model

This section will present the decisions that have been made concerning the modeling

and implementation of our classification model.

3.2.1 Predicting over Irregular sequences

Recently, LSTMs have been widely used in the context of Natural Language Pro-

cessing, due to their high performance in prediction and classification tasks over

long sequences, but those properties can be seen in a much wider field of problems,

and many methods like ours look to apply LSTMs to other domains.

The choice of an LSTM for our problem is motivated by the same kind of ob-

jectives. Since, in our navigational data, we have consecutive recordings of the

situation of the ships, the behavior of a ship comes in the form of a sequence of

those recordings, which LSTMs should be the right technology to work with.

However, the understanding of language does not require to take into account

the timing of the words, only their place in the sentence; this is a property that we

have when dealing with real-world navigational data. And as described in section

3.1.1, the sampling rate of our data is very uneven which is bad for the LSTM, that

sees the sequences as a series of input without considering the link between them,

which is akin to implicitly assuming the data to be evenly sampled.

This is why we have chosen a Phased LSTM for our model. The original pub-

lication on Phased LSTM showed a better performance than regular LSTMs on

non-uniformly sampled data[33], and this property has proven useful in certain do-

mains, like the medical domain, where studies used Phased LSTM to solve issues

introduced by the event-based sampling of Electronic Health Records [43].

3.2.2 Architecture of the network

In our case, the Phased LSTM is used to build a predictive model that will identify

the behaviors that are considered risk-prone.

The phased LSTM implementation we have chosen makes use of the PyTorch

library for Python[44]. PyTorch is a library that provides a framework to implement

various machine learning and neural networks models. The implementation of the

phased LSTM cell is left untouched from the updated implementation provided by
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Daniel Neil, with our model built around the phased LSTM layer provided (after

adapting it to our input data).

Our problem is to discriminate between regular behaviors and risk-prone be-

haviors, so it is a binary classification problem, where the risk-prone behaviors

represent our positive class. As with a logistic regression model, we only have one

cell on the output layer (i.e. for each step of the behavior, a single value between 0

and 1 is returned) : a value closer to 0 indicates a regular behavior, a value closer to

1 indicates a risk-prone behavior. To that end, we chose a sigmoid function as the

output activation function to confine the results between 0 and 1.

In the implementation we have chosen, the input is separated into two vectors,

the regular input bX consists of the ten features we have selected as relevant to

the behavior and will be fed to the network as x, after going through the attention

mechanism. A separate vector bT contains the timestamps associated with these

data points and will indicate the values of t j for the time gate kt .

3.2.3 Training Specifics

The model’s loss function is the binary cross-entropy, which is a standard measure

of how close the results are to the expected outputs when doing binary classification.

l(x,y) = mean(L) where L = {l1, l2, ..., lN}> (3.1)

ln =−[yn · log(xn)+(1− yn) · log(1− xn)]

Equation 3.1 defines the binary cross-entropy between vectors x and y, the

model’s predictions and the true values (i.e. usually called the input and the tar-

get), by calculating the error between each predicted term and the expected term,

reduced to their mean for the error over the whole batch.

For this model we have chosen the Adam optimizer[19] which is widely used

in deep learning and has been proven as a reliable optimizer[15]. A learning rate

of 0.0001 has been found to be ideal, because the small size of our dataset prevents

the model from converging smoothly, using a learning rate lower than the defaults

slightly helped to stabilize it.

The model was trained with an early stopping clause; this ensures that the train-

ing stops when the loss on the validation set stops decreasing. Since the validation
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set does not contain the data used for training, the ability of the model to give con-

sistently accurate predictions on it is representative of its ability to generalize the

problem. Any decrease of the loss on the training set that is not reflected with the

validation set would be synonymous with overfitting, i.e. the model learning pat-

terns specific to the training model that are not useful in other data.

3.3 Explainable AI

In their Survey[45], Rojat et al. define seven potential purposes for Explainable AI

(XAI) for time series, putting trustworthiness at the center (i.e. the underlying

purpose of every XAI approach). This definition aligns with our objectives, as we

have mentioned several times the critical aspect of the maritime safety domain, and

we need a model that we can trust if we want to protect human lives.

Figure 3.2: Knowledge graph relating all the purposes of explain-ability methods
for time series. Source: [45]

Of the seven potential purposes of XAI, we have already covered one : con-
fidence (the ability of the model to assess the quality of its own predictions); as

we have decided to work with an output in the form of probabilities, this already

represents the confidence of the model in each prediction, and helps avoiding false

alarms.

The main purpose of looking into XAI in our case is explainability. The goal of
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the study is not only to classify which behaviors are risk-prone, but also to identify

what sets those behaviors apart from the rest, so that we can provide useful insights

to seafarers in order to reduce the risks taken at sea. This is why we need an XAI

approach.

There are many approaches that can be qualified as XAI, but to add explainabil-

ity to the Phased LSTM model, the one we have selected is Attention Mechanisms.

3.3.1 Attention Mechanisms

Attention Mechanisms are a combination of techniques that aim to direct the at-

tention of the model on a certain part of the input, often by applying weights that

change the way the inputs are taken into consideration by the model.

Those attention weights, while they cannot be regarded as a straight explanation

of the way the model takes a decision [46][47], can still provide insight into how to

look at the results[48].

Despite that, they are widely used in the field of NLP because they can give a

human-interpretable intuition that is easy to verify a posteriori; but other domains

might be able to take advantage of that kind of human interpretation verification as

well, as long as there are people who have the necessary knowledge to interpret it.

This is why, in this study, the interpretation obtained from the attention mecha-

nisms is meant to be presented to experts on maritime navigation, who will deter-

mine what parts of the identified behavior are actually at fault, if any.

3.3.2 Implementation of Attention-Based Phased LSTM

The biggest difference between our network and a typical neural network with at-

tention is the lack of an embedding layer, as an embedding serves better to describe

categorical value and not something continuous like our data.

As our attention mechanism, we chose a LSTM layer, as we figured that the

attention mechanism would profit from the recognition of long-term dependencies

that it provides, but the use of an additional Phased LSTM would imply the intro-

duction of a second oscillator that might conflict with the main one, which is why

we chose to make the attention mechanism time agnostic.

The attention LSTM was not made bidirectional because the model is seen as a

predictive model so we do not want to give it access to future information.

The attention LSTM layer takes the original inputs and gives 10 outputs for each
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data point (as many as the number of features our dataset has). These values then

pass through a softmax function, as described in section 2.4.1, to obtain attention

weights that can be assimilated to probabilities.

The softmax is applied over the features in each datapoint, so that the features

will receive attention when doing the prediction for the point, but the points them-

selves keep the same weight inside the sequence, since we are outputting a predic-

tion for each data point. Furthermore, the relative importance of different points in

a sequence is already managed by the time gate.

Figure 3.3: Final architecture of our Neural Network.

3.4 Evaluation of the Model

For the purpose of evaluating the model, we will review standard performance mea-

sures for classification : precision, recall and f-measure (also known as F1 score),

as defined in Equations 3.2-3.4.

precision =
true positives

true positives+ f alse positive
(3.2)

recall =
true positives

true positives+ f alse negatives
(3.3)

F1 =
2

1
precision +

1
recall

= 2∗ precision∗ recall
precision+ recall

(3.4)
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The f-measure is the harmonic mean between the precision and the recall, so it

can be seen as a compromise between the two other metrics. The idea of using a

harmonic mean instead of a standard one is to make it so that the score will plummet

if any of the two is too low. However, we will pay specific attention to the recall,

which can also be seen as the sensitivity of the model (i.e. a higher recall is a lower

chance of missing a risk-prone behavior).

This metric is very important in a domain involving the security of people, as

we prefer to investigate a behavior and find that there was actually nothing wrong

with it, instead of letting a risk-prone behavior pass us by.

This is why, while the main metric of judgement will be the f-measure, if we

need to differentiate between two models with seemingly the same performance,

we will prefer the one with a higher recall.
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Results

The goal of this chapter is to present the results of this study in terms of machine

learning architecture as well as the findings pertaining to maritime safety.

4.1 Predictive Model evaluation

This section will be showing the results obtained with our predictive model and

evaluate them according to the criteria established in section 3.4.

4.1.1 Model output

Figure 4.1: (a) Evolution of the losses during the training. (b) Evolution of the
performance measures on the validation set during the training

Figure 4.1 shows the convergence of the loss and the evolution of the perfor-

mance metrics during the training (ten extra epochs were left to show the stagnation

that was removed by the early stopping). We can see that the loss decreases progres-

sively for both datasets, and as we could expect the loss variations on the validation

dataset are not as smooth as on the training dataset, that is most likely due to the
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small size of the dataset which implies that a few errors can have a big impact on

the overall performance.

Figure 4.2: Example of a model prediction over the sequence.

Figure 4.2 shows an example of the output we get when predicting over a whole

whole sequence, as described in section 3.2.2 for each point in the sequence we get

an output that can be assimilated to a probability of being risk-prone. This sequence

of probabilities is visualized as a heatmap with the probability as the color’s inten-

sity. The beginning of the sequence (at the top) is usually not too far from 0.5 as the

network does not yet have enough information to give a very confident prediction.

As the sequence progresses, the model tends to get more confident in its predictions.

4.1.2 Performance comparison with standard networks

The final model’s performance measures are shown in Table 4.1, the model was

tested on the same classification task with and without using its attention weights,

29



and other recurrent neural networks were tested to compare their performance on

the same task. The models chosen for comparison were a standard LSTM, and a

GRU.

Model Precision Recall F1-Score
Phased-LSTM
with Attention

67% 62% 64%

Phased-LSTM
without Attention

64% 64% 64%

Standard LSTM 19% 27% 22%
Gated Recurrent
Unit (GRU)

19% 21% 20%

Table 4.1: Performance results of the predictive model and other standard models
for the classification of the testing dataset

For a fair comparison, the two models without a time gate received an additional

feature representing the difference between the timestamp of the current point and

the timestamp of the point before it (contrary to the Phased LSTM’s time gate,

which receives the timestamps as-is, but feeding the timestamps as-is to these net-

works seems to produce too much noise and prevents them from giving any results).

For the sake of those metrics, any probability over 0.5 is considered a 1 (i.e.

a classification of risk-prone behavior) and values under 0.5 are considered a 0

(classification as regular behavior).

The first thing to note is that our model largely outperforms the other two models

in terms of precision and recall. The conventional models do not seem to be able to

generalize the risk-prone behaviors.

The second thing is that the difference between the phased LSTM with and with-

out attention is not as pronounced as we had expected. In other domains, attention

weights have been shown to increase the performance of neural networks on cer-

tain tasks[40][38], but our attention mechanism does not impact the performance

too much (in fact it slightly decreases the recall, which is an important metric as

described in section 3.4). This is most likely due to the fact that our attention mech-

anism is based on a regular time-agnostic LSTM.

4.1.3 Results observations

One thing we can notice when looking at the predictions of our model, is that the

model rarely gives an abrupt change from one point to the next. This could be an
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indication that the model is not able to precisely pinpoint the moment a behavior

becomes risk-prone. This is easily explained by the fact that in our original dataset,

the beginning of a risk-prone behavior was decided to be one hour before the acci-

dent, as described in section 3.1.2. This estimation means that, even in the training

data, the marked beginning of the risk prone behavior was not necessarily signifi-

cant, and the fact that the model was not able to learn this is actually a good sign

that it did not learn dependencies where they should not be.

However, it also means that the model has a lot of "inertia": Figure 4.3 shows

an example of a sequence where after a long history of (correctly classified) regular

behavior the probability of being risk prone increases again, but not fast enough to

cross the threshold of 0.5.

Figure 4.3: Another example of prediction
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4.2 Attention mechanism interpretation

Figure 4.4: Visualization of the attention weights next to the visualization of the

risk classification.

Figure 4.5: A second example of weights visualization for a more stable sequence
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When we get the predictions for a sequence, we can extract the attention weights

applied to the input. Figure 4.4 shows these attention weights as a heatmap, where

each line shows the attention applied on each feature of each data point. A more

intense shade of blue indicates a higher attention.

On Fig. 4.4 we can see a sequence where the attention alternates between the

distance traveled and the longitudinal part of the movement. Other sequences, like

the one shown on Fig. 4.5, have attention weights that stay relatively the same all

across the sequence (here focused in the latitudinal movement and the draft of the

ship).

4.2.1 Attention observations

Once we have made our predictions for the whole testing dataset, we can observe

the tendencies of the weights. Figure 4.6 represents the distribution of the weights

across all predictions.

Figure 4.6: Boxplot of the attention weights for the whole testing dataset. (note that
since we have 10 features and the attention weights are made to sum up to 1, 0.10
is our medium attention)

We can note that certain dimensions of the ship tend to receive lower attention

in general, this effect is particularly strong for the distance between the transceiver

and the stern of the ship. A possible explanation for this is that the AIS transceiver

is often posted at the back of the ship, which means that the distance behind it is

very often not indicative of the actual dimensions of the ship, and thus not relevant

to the analysis of the ship’s movement.

This was briefly considered as an indication that this feature could be removed
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from the dataset, but there were enough outliers (shown on Fig. 4.7), to justify

keeping it as it could prove relevant in cases where the transceiver is located in the

middle of the ship. The same logic can be applied to the distance to the starboard

side.

Figure 4.7: Boxplot of the weights applied on the the distance between the
transceiver and the stern showing outliers.

The other features that tend to receive a particular amount of attention are the

sine and cosine of the bearing, while on average they receive a regular 10% of

attention, their attention has a much higher variance than the other features. This

seems to be characteristic of a phenomenon that we can observe of Figure 4.5, as the

network is rarely giving attention to both direction at the same time, and especially

on Figure 4.4 often there is only one of the direction that is observed so closely.

Finally, the feature with the highest average attention is the draft of the ship.

The draft of the ship is an important variable carrying multiple information at once,

as it is a kind of height dimension for the ship but also an indicator of the sea

conditions, so it is understandable that the model focuses on it more often than the

other features.

Figure 4.8 shows that this discrepancy is even more noticeable in risk-prone

behaviors. The draft of the ship is almost the only feature to have a sensibly different

attention distribution depending on the true label (with the longitudinal movement,

which tends to have attention values closer to the median and less spread toward

higher values). Knowing that it tends to have a higher attention on average tells

us that it might be worth observing the draft more closely than any other variables

when we will be reviewing the behaviors manually, and the absence of a strong

attention might be an information in and of itself.
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Figure 4.8: Boxplot of the attention weights for behaviors with true labels (a) regu-
lar behavior and (b) risk-prone behavior.
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Discussion

This chapter’s goal is to bring an external discussion on the results and their validity,

as well as provide a conclusion for this whole study.

5.1 Threats to validity

This sections aims to address the possible threats to the validity of this study and its

results.

5.1.1 Conclusion validity threats

Some aspects of the study threaten the validity of its results. The first hindrance

during the setting of this experiment is the small number of examples we have for

the risk-prone class. Only having 286 risk-prone behaviors to constitute our dataset

not only reduces the ability of the network to generalize, but it forced us to introduce

a major sampling bias in the data to make sure that the network wouldn’t just discard

said behaviors.

The same can be said for the criteria upon which we have decided to classify a

behavior as risk-prone. Using the report of an accident as the basis seems sound,

but big estimates were made by extrapolating what qualifies as a risk behavior from

the record of an accident. Notably, we assumed for every boat that their behavior

one hour before having an accident is a risk-prone behavior. Secondly, the danger

areas are defined as 5km around a place where an accident has occurred, despite

the fact that some of those zones are located in or close to ports, which should be

very different from a zone in the middle of the sea.

Potential solutions to this specific issue will be addressed in section 5.2.

Moreover, a compromise had to be made between removing all accidents hap-

pening at port and removing accidents linked to a technical failures, as both could

not be done without reducing the data to an unusable size. The choice was made to

filter out the accidents at port, as AIS Data does not have the granularity necessary

to observe the small movements made inside of a port (accidents on port approach
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were still kept). The accidents related to technical failures were kept on the assump-

tion that the technical failure can influence the behavior of the ship in a way that is

visible from the data we have.

However, these issues have just been accepted as the reality of the maritime

safety sector, and unless new data is formed with the specific intent of classifying

risk-prone behaviors (possibly including risk-prone behaviors not directly leading

to accidents), the dataset cannot be expanded too fast. As we cannot retrieve earlier

AIS data and we are not hoping for an increase in shipping accidents in the Baltic

Sea, we can only hope for better accident reporting.

5.1.2 Social threats

One upside of having data that was gathered a posteriori from a general monitoring

database, is that we can safely assume that there are no social threats of any kind to

the validity of our study. Seafarers know that their behaviors are monitored all the

time but that is always the case independently of this study, and the database was

built for HELCOM’s own internal reporting so we know that our conjectures didn’t

have an impact on the data collection.

5.2 Improvements to the Data

This section describes the different shortcomings in the data used for this study, as

well as possible improvements that could give be made to the data to give better

results with the same model implementation.

5.2.1 Navigational Data

It is unmistakable that if this work were to be expanded on in future studies, a

dataset would have to be created specifically for the task at hand. The ideal form of

this dataset would a have much shorter sampling rate. Although an even one is not

necessary thanks to the Phased LSTM architecture; a sampling rate that is shorter

on average would make the behavior sequences more detailed and most probably

give a better view of the ships’ movements.
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5.2.2 Accidents

The accident database suffers from the same problem of incompleteness. As we

noted in the threats to validity, we needed to make big estimates and generalizations,

when in reality each accident is unique and should be reviewed independently, at

least when it comes to constituting the training data.

On that subject what is needed to improve the quality of the dataset would be a

closer cooperation with maritime experts, from the very beginning when constitut-

ing the data.

5.2.3 Additional Features

An other addition to give the model better insight into the behaviors to determine

their risk-prone factor would be to incorporate in the data some of the information

that the seafarers use themselves when taking decisions.

One such information would be the weather conditions at the time of record-

ing, as this has a major influence on the navigation, and some major irregularities

could be considered completely normal under bad weather while still indicating

a dangerous behavior in normal conditions. Weather information is so important

for maritime situational awareness that it has recently been studied as a potential

addition to AIS[49].

5.3 Conclusion

We have proposed an architecture that allows us to predict the risk of accident over

irregularly sampled data, using attention mechanisms to extract a potential explana-

tion of this risk. Although the performance of the predictive model was hindered by

several shortcomings in the dataset, the results are satisfactory in that they demon-

strate the ability of the model to generalize over new data samples.

Thus, this thesis has laid the groundwork for future studies to use the same archi-

tecture for the task of identifying risk-prone behaviors by seafarers. Future works

should also include a visualization support to facilitate the transfer of knowledge to

maritime experts without any knowledge of Artificial Intelligence and we have good

hopes that it can be used for all sorts of Explainable AI approaches over irregularly

sampled time series.

38



References

[1] Unctad handbook of statistics 2020 - merchant fleet, 2020. [Online]. Avail-

able: https://stats.unctad.org/handbook/MaritimeTransport/

MerchantFleet.html.

[2] J. Häkkinen and A. Posti, “Overview of maritime accidents involving chemi-

cals worldwide and in the baltic sea,” Maritime Transport & Shipping-Marine

Navigation and Safety at Sea Transportation, CRC Press, Taylor and Frances

Group, Abingdon, Oxford, pp. 15–25, 2013.

[3] F. Nicolas, A. Bakhtov, M. Helavuori, and D. Shinoda, “Report on ship-

ping accidents in the baltic sea from 2014 to 2017,” HELCOM, Tech. Rep.,

2018. [Online]. Available: https://helcom.fi/media/publications/

Report-on-shipping-accidents-in-the-Baltic-Sea-from-2014-

to-2017.pdf.

[4] K. Kulkarni, F. Goerlandt, J. Li, O. V. Banda, and P. Kujala, “Preventing

shipping accidents: Past, present, and future of waterway risk management

with baltic sea focus,” Safety science, vol. 129, p. 104 798, 2020.

[5] Iec61993-2 : Maritime navigation and radiocommunicationequipment and

systems –automatic identification systems (ais). [Online]. Available: https:

//gmdsstesters.com/downloads/docs/IEC61993.pdf.

[6] H. M. Perez, R. Chang, R. Billings, and T. L. Kosub, “Automatic identifi-

cation systems (ais) data use in marine vessel emission estimation,” in 18th

Annual International Emission Inventory Conference, vol. 14, 2009, e17.

[7] Anonymous, International maritime organization - ais transponders. [On-

line]. Available: https://www.imo.org/en/OurWork/Safety/Pages/

AIS.aspx.

[8] F. Deng, S. Guo, Y. Deng, H. Chu, Q. Zhu, and F. Sun, “Vessel track informa-

tion mining using ais data,” in 2014 International Conference on Multisen-

sor Fusion and Information Integration for Intelligent Systems (MFI), 2014,

pp. 1–6.

[9] F. Natale, M. Gibin, A. Alessandrini, M. Vespe, and A. Paulrud, “Mapping

fishing effort through ais data,” PloS one, vol. 10, no. 6, e0130746, 2015.

39

https://stats.unctad.org/handbook/MaritimeTransport/MerchantFleet.html
https://stats.unctad.org/handbook/MaritimeTransport/MerchantFleet.html
https://helcom.fi/media/publications/Report-on-shipping-accidents-in-the-Baltic-Sea-from-2014-to-2017.pdf
https://helcom.fi/media/publications/Report-on-shipping-accidents-in-the-Baltic-Sea-from-2014-to-2017.pdf
https://helcom.fi/media/publications/Report-on-shipping-accidents-in-the-Baltic-Sea-from-2014-to-2017.pdf
https://gmdsstesters.com/downloads/docs/IEC61993.pdf
https://gmdsstesters.com/downloads/docs/IEC61993.pdf
https://www.imo.org/en/OurWork/Safety/Pages/AIS.aspx
https://www.imo.org/en/OurWork/Safety/Pages/AIS.aspx


[10] M. Hansen, T. Jensen, T. Lehn-Schiøler, K. Melchild, F. Rasmussen, and F.

Ennemark, “Empirical ship domain based on ais data,” Journal of Naviga-

tion, vol. 66, pp. 931 –940, 2013.

[11] T. Hastie, R. Tibshirani, and J. Friedman, “Overview of supervised learning,”

in The elements of statistical learning, Springer, 2009, pp. 9–41.

[12] F. Chollet et al., Deep learning with Python. Manning New York, 2018,

vol. 361.

[13] S.-C. Wang, “Artificial neural network,” in Interdisciplinary computing in

java programming, Springer, 2003, pp. 81–100.

[14] H. Robbins and S. Monro, “A stochastic approximation method,” The annals

of mathematical statistics, pp. 400–407, 1951.

[15] D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, and G. E. Dahl, “On

empirical comparisons of optimizers for deep learning,” CoRR, vol. abs/1910.05446,

2019. arXiv: 1910.05446. [Online]. Available: http://arxiv.org/abs/

1910.05446.

[16] B. T. Polyak, “Some methods of speeding up the convergence of iteration

methods,” Ussr computational mathematics and mathematical physics, vol. 4,

no. 5, pp. 1–17, 1964.

[17] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online

learning and stochastic optimization.,” Journal of machine learning research,

vol. 12, no. 7, 2011.

[18] M. D. Zeiler, “ADADELTA: an adaptive learning rate method,” CoRR, vol. abs/1212.5701,

2012. arXiv: 1212.5701. [Online]. Available: http://arxiv.org/abs/

1212.5701.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[20] A. Karpathy, “What i learned from competing against a convnet on ima-

genet,” Andrej Karpathy Blog, vol. 5, pp. 1–15, 2014.

[21] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C.

Huang, and P. H. S. Torr, “Conditional random fields as recurrent neural net-

works,” CoRR, vol. abs/1502.03240, 2015. arXiv: 1502.03240. [Online].

Available: http://arxiv.org/abs/1502.03240.

40

https://arxiv.org/abs/1910.05446
http://arxiv.org/abs/1910.05446
http://arxiv.org/abs/1910.05446
https://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1502.03240
http://arxiv.org/abs/1502.03240


[22] S. P. Singh, A. Kumar, H. Darbari, L. Singh, A. Rastogi, and S. Jain, “Ma-

chine translation using deep learning: An overview,” in 2017 International

Conference on Computer, Communications and Electronics (Comptelix), 2017,

pp. 162–167.

[23] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Lan-

guage models are unsupervised multitask learners,” 2019.

[24] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn-

ing with deep convolutional generative adversarial networks,” arXiv preprint

arXiv:1511.06434, 2015.

[25] C. Olah, “Understanding lstm networks,” 2015.

[26] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Com-

putation, vol. 9, no. 8, pp. 1735–1780, 1997. eprint: https://doi.org/10.

1162/neco.1997.9.8.1735. [Online]. Available: https://doi.org/10.

1162/neco.1997.9.8.1735.

[27] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual

prediction with lstm,” 1999.

[28] A. Graves, “Generating sequences with recurrent neural networks,” arXiv

preprint arXiv:1308.0850, 2013.

[29] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training re-

current neural networks,” in International conference on machine learning,

PMLR, 2013, pp. 1310–1318.

[30] G. Abdullayeva, “Application and evaluation of lstm architectures for energy

time-series forecasting,” M.S. thesis, University of Tartu, 2019.

[31] A. M. Schaefer, S. Udluft, and H.-G. Zimmermann, “Learning long-term de-

pendencies with recurrent neural networks,” Neurocomputing, vol. 71, no. 13-

15, pp. 2481–2488, 2008.

[32] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, and

Y. Bengio, “Learning phrase representations using RNN encoder-decoder

for statistical machine translation,” CoRR, vol. abs/1406.1078, 2014. arXiv:

1406.1078. [Online]. Available: http://arxiv.org/abs/1406.1078.

[33] D. Neil, M. Pfeiffer, and S.-C. Liu, “Phased lstm: Accelerating recurrent net-

work training for long or event-based sequences,” arXiv preprint arXiv:1610.09513,

2016.

41

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078


[34] E. Choi, M. T. Bahadori, J. A. Kulas, A. Schuetz, W. F. Stewart, and J. Sun,

“Retain: An interpretable predictive model for healthcare using reverse time

attention mechanism,” arXiv preprint arXiv:1608.05745, 2016.

[35] M. Hofmarcher, T. Unterthiner, J. Arjona-Medina, G. Klambauer, S. Hochre-

iter, and B. Nessler, “Visual scene understanding for autonomous driving

using semantic segmentation,” in Explainable AI: Interpreting, Explaining

and Visualizing Deep Learning, W. Samek, G. Montavon, A. Vedaldi, L. K.

Hansen, and K.-R. Müller, Eds. Cham: Springer International Publishing,

2019, pp. 285–296, ISBN: 978-3-030-28954-6. [Online]. Available: https:

//doi.org/10.1007/978-3-030-28954-6_15.

[36] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly

learning to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[37] M. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-

based neural machine translation,” CoRR, vol. abs/1508.04025, 2015. arXiv:

1508.04025. [Online]. Available: http://arxiv.org/abs/1508.04025.

[38] P.-Y. Huang, F. Liu, S.-R. Shiang, J. Oh, and C. Dyer, “Attention-based mul-

timodal neural machine translation,” in Proceedings of the First Conference

on Machine Translation: Volume 2, Shared Task Papers, Berlin, Germany:

Association for Computational Linguistics, Aug. 2016, pp. 639–645. [On-

line]. Available: https://www.aclweb.org/anthology/W16-2360.

[39] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchical

attention networks for document classification,” in Proceedings of the 2016

conference of the North American chapter of the association for computa-

tional linguistics: human language technologies, 2016, pp. 1480–1489.

[40] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel,

and Y. Bengio, Show, attend and tell: Neural image caption generation with

visual attention, 2016. arXiv: 1502.03044 [cs.LG].

[41] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio, “End-to-

end attention-based large vocabulary speech recognition,” in 2016 IEEE in-

ternational conference on acoustics, speech and signal processing (ICASSP),

IEEE, 2016, pp. 4945–4949.

[42] M. Grabowski, Z. You, Z. Zhou, H. Song, M. Steward, and B. Steward, “Hu-

man and organizational error data challenges in complex, large-scale sys-

tems,” Safety Science, vol. 47, no. 8, pp. 1185–1194, 2009.

42

https://doi.org/10.1007/978-3-030-28954-6_15
https://doi.org/10.1007/978-3-030-28954-6_15
https://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1508.04025
https://www.aclweb.org/anthology/W16-2360
https://arxiv.org/abs/1502.03044


[43] S.-J. Bang, Y. Wang, and Y. Yang, Phased-lstm based predictive model for

longitudinal ehr data with missing values, 2020.

[44] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style, high-

performance deep learning library,” arXiv preprint arXiv:1912.01703, 2019.

[45] T. Rojat, R. Puget, D. Filliat, J. Del Ser, R. Gelin, and N. Díaz-Rodríguez,

“Explainable artificial intelligence (xai) on timeseries data: A survey,” arXiv

preprint arXiv:2104.00950, 2021.

[46] S. Jain and B. C. Wallace, “Attention is not explanation,” CoRR, vol. abs/1902.10186,

2019. arXiv: 1902.10186. [Online]. Available: http://arxiv.org/abs/

1902.10186.

[47] S. Serrano and N. A. Smith, “Is attention interpretable?” CoRR, vol. abs/1906.03731,

2019. arXiv: 1906.03731. [Online]. Available: http://arxiv.org/abs/

1906.03731.

[48] S. Wiegreffe and Y. Pinter, “Attention is not not explanation,” CoRR, vol. abs/1908.04626,

2019. arXiv: 1908.04626. [Online]. Available: http://arxiv.org/abs/

1908.04626.

[49] B Tetreault and G. Johnson, “Sharing ships’ weather data via ais,” TransNav:

International Journal on Marine Navigation and Safety of Sea Transporta-

tion, vol. 14, 2020.

43

https://arxiv.org/abs/1902.10186
http://arxiv.org/abs/1902.10186
http://arxiv.org/abs/1902.10186
https://arxiv.org/abs/1906.03731
http://arxiv.org/abs/1906.03731
http://arxiv.org/abs/1906.03731
https://arxiv.org/abs/1908.04626
http://arxiv.org/abs/1908.04626
http://arxiv.org/abs/1908.04626

	Introduction
	Motivation
	Thesis outline

	Theory
	Maritime navigation data
	AIS Data
	HELCOM

	Machine Learning
	Predictive Model and Supervised Learning
	Deep Learning
	Neural Networks
	Training process
	Deep Neural Networks


	Recurrent Neural Network
	Long Short-Term Memory
	Phased LSTM

	Explainable AI
	Attention Mechanisms


	Methodology
	Data processing
	HELCOM's navigational dataset
	Maritime Accidents Database
	Source
	Integration

	Behavior Sequences
	Coordinates projection

	Final dataset

	Implementation of the predictive model
	Predicting over Irregular sequences
	Architecture of the network
	Training Specifics

	Explainable AI
	Attention Mechanisms
	Implementation of Attention-Based Phased LSTM

	Evaluation of the Model

	Results
	Predictive Model evaluation
	Model output
	Performance comparison with standard networks
	Results observations

	Attention mechanism interpretation
	Attention observations


	Discussion
	Threats to validity
	Conclusion validity threats
	Social threats

	 Improvements to the Data
	Navigational Data
	Accidents
	Additional Features

	Conclusion


