
Modeling molecular trajectories using long
short-term memory with stacked state

pooling

Otto Lindfors

Master's thesis in computer science

Supervisors: Sepinoud Azimi Rashti, Sebastien Lafond

Faculty of Science and Engineering

Åbo Akademi University

June 2021

Abstract

Atomistic molecular dynamics can be used for simulating large molecular sys-

tems with great accuracy. The downside to this is that simulations are com-

putationally expensive and thus take a long time to perform. Many times, one

is only interested in a subset, or a summarizing statistic, of the information

available in the results of the simulations. This raises the question whether it

is necessary to run full molecular dynamics simulations when one is interested

in only partial outputs or if similar results can be achieved with a cleverly de-

signed machine learning algorithm. In this thesis, an attempt to answer this

question is made by proposing a deep learning model for solving general many-

body problems. The model generates long sequences of particle positions by

predicting one time step at a time, using its previous outputs as new inputs.

It is demonstrated that this model is capable of running simple molecular dy-

namics. Suggestions for further experiments to measure the capability of the

model to generalize to complex many-body problems are presented.

Keywords: CNN, deep learning, Gaussian mixture model, LSTM, machine

learning, molecular dynamics, probabilistic model, RNN, sequence-to-sequence

learning, social-LSTM, stacked state pooling

Contents

1 Introduction 1

1.1 Previous Work . 2

2 Theory 3

2.1 A Note on Tensors . 4

2.2 Long Short-Term Memory . 4

2.3 Pooling the LSTM States of Spatially Nearby Particles 6

2.3.1 A brief Motivation for using LSTM State Pooling 8

2.3.2 Grid Based Sum Pooling . 9

2.3.3 Distance based �ltering . 10

2.3.4 Limitations . 11

2.3.5 Stacked State Pooling - An Attempt to Overcome the Limita-

tions in Resolution . 13

2.3.6 Motivation for using Sum Pooling from a Perspective of Physics 14

2.4 Convolutional Neural Networks . 15

2.5 Probabilistic Predictions . 17

2.5.1 Mixture Density Network . 21

2.5.2 Recurrent Neural Networks and Probability Densities 23

2.6 Multipole Expansion . 24

2.6.1 Monopole Approximation . 26

2.6.2 Dipole Approximation . 26

3 A First Experiment 28

3.1 Data Exploration . 29

3.2 Data Preprocessing . 31

3.3 Model . 34

3.4 Result . 35

4 A Second Experiment 38

4.1 Newtonian Many-Body Mechanics . 39

4.2 Velocity Verlet Integration . 40

4.3 Data Preprocessing . 41

4.4 Model . 42

4.5 Result . 47

5 Conclusions 54

5.1 Suggestions for Future Work . 55

6 List of Abbreviations 57

References 58

Otto Lindfors 1 Introduction

1 Introduction

Molecular dynamics is a collection of methods for simulating the motion of inter-

acting particles. The particle motion is simulated by numerically solving Newton's

equations of motion in order to obtain trajectories as the solution. This is done by

numerically integrating the equations of motions with respect to time and approxi-

mating the forces to be constant over short time intervals ∆t, where ∆t is the step

size used in the numerical integration. A smaller step size will lead to a smaller error

and in the limit of ∆t → 0 one obtains the true integral. Therefore, a su�ciently

small step size must be chosen when performing molecular dynamics simulations.

This means that a large number of calculations must be done in order to simulate

a relatively short period of time. Furthermore, when the simulated system contain

many particles the total number of calculations is further increased. Therefore, sim-

ulations of large molecular structures are computationally very expensive.

The extended aim of the work in this thesis is to develop a machine learning based

method for performing computationally less expensive molecular dynamics simula-

tions than conventional methods but still having su�cient precision for calculating

accurate summarizing statistics on the results. The scope of this thesis is limited

to demonstrating the viability of the approach in basic many-body problems. It is

shown that the model is able to perform reasonably well even when being trained on

solutions (trajectories) with sub-optimal sampling rates.

Two approaches are taken. The �rst approach, presented in section 3, attempts to

model the surface molecules in a large drug carrying nanoparticle, consisting of 40 000

atom, using a naïve LSTM based neural network. However, this turned out to be a

challenge and the particle trajectories were unsuccessfully modeled. In addressing the

shortcomings of the �rst approach, a second approach where a sophisticated model

inspired by the works of [1] and [2] is developed with the speci�c task of modeling

particle-particle interactions in mind. The model generates a sequence of predictions

one step at a time, always using the previous prediction as new input. At each time

step, the particle interactions are modeled on a per-particle basis. The approach has

1

Otto Lindfors 1 Introduction

similarities with molecular dynamics although being fundamentally di�erent in that

no rules for the interactions and position predictions are given. Instead these rules

are learned in a completely data-driven fashion.

In section 2 the various model components are presented in detail. In section 2.6 an

approximation of inter-molecular electrostatic forces, central to some of the subse-

quent sections, is presented. Section 3 and 4 present the �rst and second experiments,

respectively, and detailed descriptions of the speci�c model architectures and imple-

mentation details. Section 5 present the conclusions and suggested future work.

1.1 Previous Work

In previous work such as Wang et. al [3] and Pihlajamäki et. al. [4] a similar

deep learning approach is taken. A deep learning model is used as a component

for estimating the inter-atomic energies in popular molecular dynamics software in

order to speed up computations. The work in this thesis uses similar ideas but

approaches the problem by simplifying the simulated systems to only contain a partial

description of the atomic structure and letting the deep learning model replace the

entire molecular dynamics simulation. Further experiments are needed in order to

tell whether or not this is a viable approach for general molecular dynamics problems

but the initial proof of concept performed in this thesis shows promising results (see

section 4.5).

2

Otto Lindfors 2 Theory

2 Theory

On the most general level, a neural network is a function fθ parameterized by θ that

maps values from some M -dimensional domain to some N -dimensional codomain,

f : RM → RN . Although the neural network in this thesis is de�ned to be real

valued it is not a requirement. [5] Machine learning deals with problems that are too

complex or too large to be feasibly solved analytically and are therefore approached

using numerical methods. [6] In case of supervised learning, the problem is to �nd a

function that describes some other observed function with as little error as possible

by numerically �tting the neural network to samples of the observed function.

The neural network is �tted to the samples by maximizing the likelihood that the

parameters θ correspond to the neural network fθ, which best describes the sam-

ples. In practice, the neural network is optimized using a �nite set of samples, a

training set. Because the training set is �nite, the di�culty lies in �nding a function

fθ that correctly maps values from the domain to the codomain for values that are

not present in the training set. This is referred to as generalization of the model.

The goal is not to learn the speci�c samples that are present in the training set but

instead to learn the underlying function or phenomenon that generated the samples

in the �rst place. As a simple example, consider �gures 1a and 1b where a n:th order

polynomial is �tted to some noisy data generated by a second order polynomial. As

a more abstract example related to deep learning, one can consider the task of image

recognition where the true function that produce the training samples is the human

consciousness. The goal would in this case be to model the human decision process

that takes the form of images being labeled as, say, �cat� or �dog�. The challenge in

this is that, the samples only contain the result of the human decision process, and

so, only the result of a very small portion of the conscious process of the human mind

will be mimicked, at most. [6]

3

Otto Lindfors 2 Theory

−1 −0.5 0 0.5 1

0

0.5

1

1.5

(a) The polynomial is memorizing

this speci�c dataset by describing

many of the small variations in the

dataset.

−1 −0.5 0 0.5 1

0

0.5

1

(b) The polynomial captures the gen-

eral trend in the dataset.

Figure 1: Fitting a n:th order polynomial to noisy data generated by a quadratic
function. Figure 1a is an example of over�tting. Figure 1b is an example of a well
�tted polynomial.

2.1 A Note on Tensors

In this work, multidimensional arrays will be referred to as tensors, which is di�erent

from the mathematical tensors. A mathematical object A whose elements are iden-

ti�ed by tree or more indices will be called a tensor. As an example, the elements of

a matrix are (aij), and the elements of what will be called a tensor are (aijk...). The

reason for this (ab)use of the meaning of the word tensor is the common terminology

used in the �eld of machine learning.

2.2 Long Short-Term Memory

Long short-term memory (LSTM) is a recurrent neural network (RNN) architecture,

which was introduced in 1997 as being better than its predecessors at capturing

long-term dependencies in temporal sequences. [7] Since then, the LSTM has been

successfully applied to a broad range of sequence modeling tasks, such as handwriting

imitation, speech recognition, machine translation, computer vision, and prediction

of human social behavior. [1, 2, 8, 9, 10, 11, 12] The basic idea behind an RNN is to

iterate over the same RNN cell multiple times while using feedback connections to

previous iterations. At each iteration, the RNN accepts an input vector and a state

4

Otto Lindfors 2 Theory

vector. The input vector is used for updating the state vector, which is forwarded

to the next iteration through the feedback connection, thus giving the algorithm its

name. The feedback connection connects the cell to (in principle) all previous in-

puts. Therefore, the state will contain residues of all previous inputs. Because of

this, RNNs are suitable for modeling sequences where elements depend on the ones

preceding them. Naturally, such sequences are often time series. [7, 13,14]

xt x1 x2 xT

h1 h2 hT

h1 hT

ht

ht

h1

Figure 2: Unfolding of an RNN. Left: A single time step computation of
the RNN. Right: An unfolded sequence of RNN computations.

When training an RNN, iterating the same computation is equivalent to traversing

an unfolded graph of consecutive RNN cells, as visualized in �gure 2. However, the

feedback connection causes the state to be unstable. If the derivative of the cell's

activation function has values between, and excluding, −1 and 1, the product of the

partial derivatives that are calculated by the backpropagation algorithm, when ap-

plying the chain rule for calculating gradients, will decay as the number of time steps

increases. Similarly, if the activation function has a derivative with values greater

than 1 or smaller than −1, the product of partial derivatives will grow as the num-

ber of time steps increases. When gradients are decaying, the errors from long-term

dependencies will become insigni�cant in comparison to the errors from short-term

dependencies, and vice-versa for large gradients. This issue was a bottleneck for

early implementations of RNNs. [14, 15] The long short-term memory is an attempt

to address these issues. The LSTM has gating mechanisms that control to what

extent the cell states are a�ected by new inputs and previous cell states. The LSMT

has two internal states, a memory state for capturing long-term dependencies and a

conventional cell state for capturing short-term dependencies. [7, 16]

5

Otto Lindfors 2 Theory

The forward pass of the LSTM is described by

ft = σ(Wfxt + Ufht−1 + bf) (1)

it = σ(Wixt + Uiht−1 + bi) (2)

ot = σ(Woxt + Uoht−1 + bo) (3)

c̃t = tanh(Wcxt + Ucht−1 + bc) (4)

ct = ft ⊙ ct−1 + it ⊙ c̃t (5)

ht = ot ⊙ tanh ct (6)

where the sigmoid functions ft, it and ot have values beween 0 and 1. The Hadamard

products work as a gating mechanism for controlling to what extent the elements

of the cell state ct and the memory state ht are updated. [15] The forget gate ft

determines to what extent ct−1 remains unchanged, while it controls to what extent

the state is updated with new information in c̃t. A computational graph of equations

(1) - (6) is shown in �gure 3.

it ft c̃t

ot ht

ct

ht−1,xt

ct−1 ct

ht

Figure 3: The LSTM represented as a computational graph.

2.3 Pooling the LSTM States of Spatially Nearby Particles

In the model that uses state pooling, the particles are represented by LSTMs. Each

particle will be modeled by a separate LSTM, such that there are as many LSTMs

6

Otto Lindfors 2 Theory

as there are particles. The LSTM state can be seen to contain an abstract represen-

tation of the physical properties of the particle that the LSTM represents. Some of

these physical properties can cause an interaction between particles and some other

properties can determine the nature of the interaction. For example, the charge dis-

tribution of an object determine the magnitude of its electric �eld and whether it

behaves like a monopole, dipole, quadrupole, etc. (see section 2.6). Depending on

their respective properties, two particles do not necessarily interact. To allow for the

possibility that particles may interact, but without requiring it, and to allow for the

possibility that di�erent particles interact according to di�erent rules, the properties

of each particle must be taken into consideration when calculating the next position

and state for a particle.

In dense systems, it is reasonable 1 to simplify the problem by only considering the

closest neighboring particles, within some radial distance r, of each particle for which

the trajectory is being predicted. A somewhat similar approach is also taken by Wang

et. al. where particles outside the cut-o� radius are simpli�ed as monopoles. [3] By

limiting the set of particles that are considered, it is assumed that the forces con-

tributing to the interactions in the system are only signi�cant within distances of r.

Hence, r is a hyperparameter of the model and speci�c to the system. Using domain

knowledge about the physical system, a suitable value for r can be chosen. The value

for r can be further improved by hyperparameter tuning.

At each time instant t each particle i is described by a set of coordinates, xi
t and yit,

and some arbitrary number of additional features. Additionally, each particle is also

represented by an LSTM with a hidden (memory) state vector hi
t and a cell state

vector cit. Note that the superscript i represents an index rather than an exponent.

To allow for the particles to interact, the hidden states are shared between neigh-

boring LSTMs. As the hidden states are treated as some abstract representations of

the physical states, it is unknown how these should be combined in order to model

the particle-particle interaction. One of the things that is assumed, based on domain

1The magnitude of all interactions are taken to be inversely proportional to some power of the
distance, F ∼ r−n, that is, they decrease with distance.

7

Otto Lindfors 2 Theory

knowledge, is that the distances and angles to the neighbors are of signi�cance when

modeling the interactions. To give the LSTMs access to this spatial information, but

without knowing how to interpret the values of the states in a physical sense, and

therefore not knowing how to combine the two, state pooling is used as a general

representation for the neighborhood of particles.

Similar approaches to the one that will be presented here, which learn interactions

by pooling neighboring states, have been shown to be successful. However, these

approaches focus mainly on modeling how humans move in crowded spaces. [2, 12]

This thesis will explore if state pooling is useful for modeling particle-particle inter-

actions, and will analyze whether or not this technique could be used when modeling

molecular systems.

2.3.1 A brief Motivation for using LSTM State Pooling

One may ask why something like state pooling, which will be described shortly, is

used. After all, the forces acting on each particle are determined by only the current

state of the physical system. As will be seen in section 4, the initial inputs to the

model are obtained through molecular dynamics simulations, which contain a com-

plete description of the physical system, including all forces at each time instant. A

problem with using any set of features for making predictions is that one still have to

derive a description of the relationship between these features in order to accurately

describe how the system evolves with time. For this, any su�cient set of features,

such as LSTM states that are assumed to contain representations of the physical

states of the particles, may be used.

In this work, only measurements of position are given, which means, no time deriva-

tives of these are given. The time derivatives of the position measurements, such

as velocities or accelerations, are needed in order to solve Newton's equations of

motion. The time derivatives are easily approximated as discrete changes in the

measured positions with respect to time. These changes in position are expected to

8

Otto Lindfors 2 Theory

be found (calculated) by the LSTMs. The LSTM hidden states, as described in sec-

tion 2.2, are expected to contain information about all such derived variables. State

pooling can be seen as introducing a relationship between the inferred properties of

multiple particles in a way that should allow the machine learning algorithm to learn

the rules for these relationships (interactions), using minimal prede�ned knowledge.

In systems with high particle density, state pooling can e�ciently summarize the

properties (LSTM states) of all particles in some neighborhood of prede�ned size by

using some summarizing statistic, as will be described in the next sections.

2.3.2 Grid Based Sum Pooling

State pooling is a compact representation of the neighborhood of particles. It com-

bines the states of the neighboring LSTMs while preserving spatial information. It

can be seen as a collective state of the neighborhood. State pooling works by placing

a square grid of size N ×N , centered at the i:th particle, in the coordinate system,

where N is the number of cells along one side of the grid. The sides of this square

grid have some physical length l = 2r, as illustrated in �gure 4. The LSTM states

of only those particles that fall within the boundaries of this grid will be used to

construct the pooling tensor Hi
t.

x

y

2r

2r

Figure 4: A N×N square pooling grid were N = 4. The primary particle
(the i:th particle) is in the center of the grid and is marked with red, and
its neighbors i ̸= j are marked with black.

Let hi
t be the hidden state vector of the LSTM representing the i:th particle at time

9

Otto Lindfors 2 Theory

t, and let (xi
t, y

i
t) be the Cartesian spatial coordinates of the particle. The hidden

states of the neighboring particles j ̸= i are shared with the i:th particle through a

pooling tensor Hi
t. Given some hidden state dimension D, the pooling tensor will be

of shape N ×N ×D. The elements of Hi
t are given by

Hi
t,mn =

∑︂
j ̸=i

1mn(x
j
t − xi

t, y
j
t − yit)h

j
t (7)

where 1mn(x, y) is an indicator function checking if a coordinate (x, y) is in the m,n

cell of the pooling grid. This means that the matrix element Hi
t,mn is a D dimen-

sional vector consisting of the sum of all state vectors hj
t of those particles whose

coordinates (xj
t , y

j
t) are within the cell m,n of the pooling grid. This is depicted in

�gure 5.

x

y

(a)

x

y

h1

h2

h3

h4

(b)

x

y

h1

h2 + h3

h4

(c)

Figure 5: A N ×N square pooling grid, were N = 4, is used to construct
the pooling tensor H at some arbitrary time instant. In 5a, the pool-
ing grid is placed in a coordinate system where the coordinates of four
particles (black dots) will be used to construct Hi

t. In 5b, the same four
particles are represented as LSTM hidden state vectors hi. In 5c, the
state vectors, whose corresponding coordinates are within the same grid
cell, are summed.

2.3.3 Distance based �ltering

Since the pooling grid is of square shape, the maximum allowed range of the inter-

action is not uniform in all directions. The distance between particles is allowed

to be greatest along the diagonals of the pooling grid and smallest in vertical and

10

Otto Lindfors 2 Theory

horizontal directions. Thus, on average, fewer particles are allowed to interact in

directions θ = {0, π
2
, π, 3π

2
}, where θ is the angle from the x-axis in counter-clockwise

direction, than in any other direction. In order to avoid introducing such bias into

the model, the states hj
t are �ltered based on their corresponding particles' radial dis-

tance from particle i, as depicted in �gure 6, before using them when constructingHi
t.

x

y

2r

r

(a)

x

y

2r

(b)

Figure 6: At any time t, only particles whose distance from the reference
particle i (the red dot in the center) is less than r are considered when
constructing the pooling tensor Hi

t. In 6a, the indicator function R(x, y)
takes the value 1 inside the circle with radius r and the value 0 outside
the circle. In 6b is depicted how the indicator function R(x, y) is used to
exclude some particles when constructing the pooling tensor Hi

t.

The elements of Hi
t are now given by

Hi
t,mn =

∑︂
j ̸=i

1mn(x
j
t − xi

t, y
j
t − yit)R(xj

t − xi
t, y

j
t − yit)h

j
t (8)

where R(x, y) is an indicator function like

R(x, y) =

⎧⎪⎨⎪⎩1 if
√︁
x2 + y2 ≤ r

0 otherwise

(9)

2.3.4 Limitations

State pooling, as described in previous sections, replaces the exact coordinates of

neighboring particles j ̸= i with discrete evenly spaced coordinates relative to parti-

11

Otto Lindfors 2 Theory

cle i. The process is very similar to rasterization in image processing. Transforming

continuous coordinates to discrete ones introduces uncertainty in the values of the

new representation. This uncertainty is greater for coordinates close to particle i

compared to particles further away. This is illustrated in �gure 7. Because the

direction of the force acting on a particle is determined by the angle to the neigh-

boring particle it interacts with, the uncertainty in the direction of the force will

grow as the uncertainty in the angle grows. Similarly for the magnitude of the force

the uncertainty is proportional to the uncertainty in the radial distance separating

the interacting particles. For particles close to each other, the uncertainty arising

from the rasterization is signi�cant, and thus the prediction errors are expected to

be greater when particles are close to each other compared to when they are far

apart. A good balance between the resolution of the pooling grid and the number

of trainable parameters has to be found through experiments. This limitation in

precision must be considered when setting up the experiments and when evaluating

the model's prediction performance.

x

y

θ1
θ2

x

y

α1

α2

Figure 7: State pooling is similar to rasterization in image processing.
The exact positions are replaced by pixels in a matrix. In this thesis,
the pixel values are LSTM states. This process makes both the angular
and radial coordinates discrete. For coordinates close to the center of the
pooling grid, state pooling introduces greater uncertainty in the angular
position than for more distant coordinates. This is illustrated by α1 > α2.
Thereby, the force cannot be determined as precisely for a nearby particle
as for a distant one. It is expected that there will be greater uncertainty
in predictions for position of nearby particles than of distant ones.

12

Otto Lindfors 2 Theory

2.3.5 Stacked State Pooling - An Attempt to Overcome the Limitations

in Resolution

In an attempt to overcome the limited spatial resolution of the pooling grid, stacked

state pooling is introduced. The hypothesis is that the resolution can be increased

by using multiple identical pooling grids, each corresponding to a di�erent physical

size. The resulting pooling tensors can then be combined by calculating the element-

wise sum. This is illustrated in �gure 8. One can use a small neural network for

interpreting the information in the stacked pooling tensor before feeding it as input

to the LSTM. Whether or not this will provide any signi�cant improvements in the

results will be seen in the experiments of section 4.

+ + =

Figure 8: The top row: Three pooling grids of the same 8× 8 shape but
each corresponding to a di�erent physical size. A small grid will record
more precise positions than a large gird. However, the small grid will
only detect particles within a small total area. Similarly, a large grid
will be able to detect particles within a large total area. Coordinates
at short distances from the common center point of the grids can be
recorded with greater precision than coordinates at long distances from
the common center point. The bottom row: By combining three pooling
tensors (in this case by summation), a stacked pooling tensor is obtained.
Each distinct particle position in the coordinate system (top left) will lead
to unique patterns in the stacked pooling tensor (bottom right).

13

Otto Lindfors 2 Theory

2.3.6 Motivation for using Sum Pooling from a Perspective of Physics

In section 2.3.2, a type of sum pooling was described. The elements of the pooling

tensor Hi
t, given by equation (8), are sums of hidden state vectors hj

t . When im-

plementing the pooling operation, the hidden states could equally well be pooled by

some other summarizing statistic, such as the average. [17]. The choice of summa-

rizing statistic should be motivated by the problem one attempts to solve. From a

purely physical perspective, the choice of using a sum as the summarizing statistic

can be motivated by reasoning that the net force F acting on a single particle is a

sum of all contributing forces Fj. All forces in the system are taken to be either

constant or proportional to some power of the inverse radial distance r, such that

F ∼
∑︁

j kj
r̂j

r−p
j

, where p is a positive integer and k is a constant that depends on the

properties of the interacting particles. Since the forces are approximately invariant to

small translations, multiple nearby particles can be approximated as a single particle

whose position is given by the mean coordinate.

F(rn) ≈ F(rm) for rn ≈ rm (10)

F ∼ k1
r̂1

r−p
1

+ · · ·+ kN
r̂N

r−p
N

≈ (k1 + . . . kN)
1

N

(︃
r̂1

r−p
1

+ · · ·+ kN
r̂N

r−p
N

)︃
(11)

State pooling replaces continuous coordinates with discrete ones, see �gure 6. Because

the force is approximately invariant to small changes in position, the properties of

multiple particles with the same discrete coordinates can be summed according to

equation (11). Particle properties k are represented by hidden state vectors hi.

Thus, it is reasonable to sum the state vectors of all particles that have the same

discrete coordinates. The state vectors are summed component-wise, which means

that di�erent properties will not be mixed.

hi + hj =
(︁
hi
n + hj

n

)︁
(12)

Therefore, a vector sum will be used when pooling the LSTM hidden states of nearby

particles.

14

Otto Lindfors 2 Theory

2.4 Convolutional Neural Networks

The pooling tensor Hi
t can easily become very large as it has the shape N ×N ×D,

where D is the dimensionality of the LSTM states. The tensor Hi
t will be used

as input to an LSTM which uses several fully connected layers, equations (1)-(4),

to transform the input. [7, 16] As the pooling tensor is large, these transformations

become computationally expensive to perform. More importantly, the number of

trainable parameters can become prohibitively large. One can do several things in

order to reduce the size of the pooling tensor while at the same time extracting the

relevant information from it. The LSTM states hi
t can be transformed (embedded)

into a lower dimension before pooling, or the pooled states can be embedded into a

lower dimension. Another option is to use a convolutional neural network (CNN).

CNNs have been shown to be good feature extractors in various computer vision

tasks. [11,18,19]. Similar to an image of shape H ×W ×C, where H and W are the

height and width of the image, respectively, and C is the number of color channels,

the pooling tensor Hi
t is of shape N ×N ×D. The convolutional layers may extract

important features from the pooling tensor similarly to how features are extracted

from an image. A CNN have very few trainable parameters compared to a fully

connected layer, thereby making it a suitable component to use between the state

pooling and the LSTM.

One important weakness of CNNs that should be kept in mind when using them is

that CNNs are not generally invariant to translations of the input, only equivariant.

This is attributed to the use of subsampling in the convolutional layers. [20, 21, 22]

However, this will not be an issue, as the pooling grid is always centered on the

primary particle, and so shift invariance is not necessary.

Even though the name suggest a convolution is calculated, a cross-correlation is used

in practice for performance reasons. In early CNNs convolution was calculated and

the name has stuck since then. [17] The simplest two-dimensional (2D) convolutional

layer takes as input a 2D array A ∈ R2 and calculates the cross correlation between

the input and a 2D �lter K ∈ R2 that is smaller than the input. The cross correlation

15

Otto Lindfors 2 Theory

C is calculated as

(cp,q) =
∑︂
m,n

(ap+m−1,q+n−1)⊙ (km,n) (13)

This is visualized in �gure 9. When the input is a tree-dimensional array, like the

pooling tensor or an color image, the cross correlation is calculated separately for

each channel, using a separate �lter for each channel. In the case of D channels,

there are D �lters and the result is D separate cross correlations Cd. The D separate

cross correlations are summed together to produce a single output C. This whole

operation is called a convolutional kernel. Additionally, one may use multiple kernels.

When using B kernels there will be B separate outputs. The result is an array of

shape N1 × N2 × B. Finally, the convolutional layer is often followed by a pooling

layer whose purpose is to reduce the size of the output by, for example, summing

together groups of elements. [17, 23] This operation is visualized in �gure 10.

(km,n)

(ap+m−1,q+n−1)

(cp,q) =
∑︁

m,n(ap+m−1,q+n−1)⊙ (km,n)

Figure 9: A visualization of equation (13). The cross correlation is calcu-
lated between the matrix K (the �lter) and the input matrix A. This can
be visualized as sliding the �lter over the input, while at each position
calculating the Hadamard product of the �lter and the portion of the
input that the �lter overlap, and summing the elements of the Hadamard
product to give a single scalar.

16

Otto Lindfors 2 Theory

N1 ×N2 ×D

B kernels: K1 ×K2 ×D

N1 ×N2 ×B

M1 ×M2
N1

M1
× N2

M2
×B

Figure 10: Illustration of a two dimensional convolution layer followed
by a pooling layer with stride equal the size of the pooling kernel's size.
From left to right: An input of size N1 × N2 × D, on which B kernels
of size K1 ×K2 ×D operate (only one kernel is illustrated), producing a
convolution of size N1×N2×B, which is then pooled with a pooling kernel
size of M1 × M2, producing a �nal output of size N1

M1
× N2

M2
× B. In the

illustration the input is assumed to be appropriately padded to produce
a same sized output N1 × N2. The illustrated convolutional kernel uses
no dilation (i.e. uses the whole input) and is assumed to be shifted by
steps of length 1.

2.5 Probabilistic Predictions

State pooling, as described in section 2.3, introduces uncertainty into the coordinates

of neighboring particles. Therefore the predicted position estimates for the primary

particle will also be inherently uncertain. By this reasoning, the estimates for target

positions should not be exact values, but rather expressed as some probability den-

sity function conditioned on the history of previous positions. This is achieved by

using the model output to parameterize such a probability density function. When

the true distribution of the target is unknown, the probability density for a Gaussian

distribution should be used, as it introduces the least amount of prior knowledge into

the model. [24]

The value of a Gaussian probability distribution N at some coordinate a gives the

relative likelihood of the outcome a being randomly drawn from the distribution

N . In other words, it answers the question, given some outcome (training data),

what is the relative likelihood that the Gaussian distribution generated by the model

17

Otto Lindfors 2 Theory

describes that outcome? This means that when the probability density is generated

by the model in the form of a prediction, and the sample is the target coordinates

in the training data, the value of the probability density at the target coordinates is

the relative likelihood that the model would generate the observed data. Thereby,

the likelihood L is a measure of how well the model describes the target data y, and

so the likelihood L should be maximized with respect to the model parameters θ.

θ0 = argmax
θ

L(y|θ) (14)

At any given time, the predicted probability density describing the position at t+ 1

should be conditioned on the entire history of past positions. The motivation for this

can be intuitively understood as follows. The model predicts position as probability

densities ξ, rather than of exact positions x. Assuming the position and velocity of

some primary particle, and the positions of all neighboring particles are known, the

exact 2 position of the primary particle at time t+∆t can be predicted, by calculating

how much x will change during the time ∆t, as described in section 4.2. However,

this requires that the exact value for x(t) is known. Because the model uses state

pooling for calculating probabilistic predictions, the exact position x(t) is not known.

Instead the position is described by a probability density ξ(t). Therefore ξ(t + ∆t)

should be a conditional probability density, conditioned on ξ(t). Similarly, when ξ(t)

was predicted, the preceding position was ξ(t−∆t). Thus ξ(t) should be conditioned

on ξ(t−∆t), which in turn should be conditioned on ξ(t−2∆t), and so on. Therefore,

a prediction at time t should be conditioned on all past positions.

Given some M -dimensional input vector x = (x1, . . . , xM) and an N -dimensional

target vector y = (y1, . . . , yN), with independently normally distributed target com-

ponents yn, the conditional relative likelihood of observing a component yn is given

by

p(yn|x) =
1√
2πσ

e−
1
2(

yn−µ
σ)

2

(15)

which is the probability density for a one-dimensional Gaussian distribution. The

2Exact with respect to the training data.

18

Otto Lindfors 2 Theory

variables µ and σ are the mean and standard deviation, respectively, of the component

yn. In the two-dimensional case, for which N = 2, the relative likelihood of observing

both target components y1 and y2 simultaneously is given by the product of the

likelihoods of observing each component separately.

p(y|x) = 1

2πσ1σ2

e
− 1

2

(︂
y1−µ1

σ1

)︂2
+ 1

2

(︂
y2−µ2

σ2

)︂2

(16)

In D dimensions, when the components of y are independently distributed, one can

generalize equation (16) as

p(y|x) =
D∏︂

d=1

p(yd|x) =
D∏︂

d=1

1

(2π)d/2σd

e
− 1

2

(︂
yd−µd

σd

)︂2

(17)

where µd and σd now are the mean and standard deviation, respectively, of the

component yd in the d:th dimension. Equation (17) will become useful when mixture

densities are considered. If the target components in the two-dimensional case are

not independent, the correlation ρ must be added to equation (16). This modi�cation

will turn equation (16) into the probability density function for a bivariate Gaussian

distribution.

p(y|x) = 1

2πσ1σ2

√︁
1− ρ2

e
− 1

2(1−ρ2)

(︃(︂
y1−µ1

σ1

)︂2
+
(︂

y2−µ2
σ2

)︂2
−2ρ

(︂
y1−µ1

σ1

)︂(︂
y2−µ2

σ2

)︂)︃
(18)

≡ Nn(µ1, µ2, σ1, σ2, ρ) (19)

The likelihood of observing the input vector x and the target vector y simultaneously

is given by the joint probability density [25]

L ≡ p(y,x) = p(y|x)p(x) (20)

The model output ŷ will be used to parameterize a Gaussian distribution by letting

the means, standard deviations and the correlation be functions of the output ŷ. The

output is calculated by a fully connected layer with a linear activation function. Since

the means µd should have values in the open interval µd ∈]−∞,∞[, the corresponding

components of the output vector are used without any modi�cations. Since the

19

Otto Lindfors 2 Theory

standard deviations σd should be in the open interval σd ∈]0,∞[, a softplus function is

applied to the corresponding components of the output vector. A hyperbolic tangent

is used for limiting the correlation ρ to the open interval]− 1, 1[.

µd(ŷ) = ŷµ,d (21)

σd(ŷ) = softplus(ŷσ,d) ≡ ln(ex + 1) (22)

ρd(ŷ) = tanh ŷρ,d (23)

Thus, the likelihood L of the target vector y is predicted by the model. Optimizing

of the neural network loss is now a matter of maximizing the relative likelihood L

with respect to the layer weights. Since the likelihood L is expressed by a continuous

exponential function, it is convenient to maximize the logarithmic likelihood. Maxi-

mizing the logarithmic likelihood is equivalent to minimizing the negative logarithmic

likelihood. Thereby, the error function E of the neural network is de�ned.

E = − lnL (24)

−1 −0.5 0 0.5 1

0

0.5

1

σ = 0.3
σ = 0.5
σ = 1.0

(a) The probability density functions

for three normal distributions with

di�erent standard deviations σ.

−1 −0.5 0 0.5 1

0

5

10
σ = 0.3
σ = 0.5
σ = 1.0

(b) The negative logarithmic likeli-

hood. A smaller standard deviation

lead to a more distinct minima.

Figure 11

Everything so far applies to single vector transformations f : x → ŷ. In order to �nd

a transformation f that can be claimed to describe the true function or phenomenon

that generated the target vector y, more than one sample must be considered. Let

X = {x1, . . . ,xS} be a set of input vectors and Y = {y1, . . . ,xS} be a set of target

20

Otto Lindfors 2 Theory

vectors. The simultaneous likelihood of the whole data set is the product of the

likelihood of each separate transformation fs. [9, 15]

L =
∏︂
s

Ls (25)

The error function now becomes

E = − ln
∏︂
s

Ls (26)

= − ln
∏︂
s

p(ys|xs)p(xs) = − ln
∏︂
s

p(ys|xs)− ln
∏︂
s

p(xs) (27)

= −
∑︂
s

ln p(ys|xs)−
∑︂
s

ln p(xs) (28)

The likelihood p(ys|xs) is predicted by the model, such that p(ys|xs) ≡ p(ys|ŷs)

is a function of the model parameters θ and the input xs. The second term in

equation (28) does not depend on the model parameters and is, thus, a constant in

the optimization problem. The error function for the complete set X is reduced to

E = −
∑︂
s

ln p(ys|ŷs) (29)

where the relative likelihood p(ys|ŷs) is given by equation (17) or (18).

2.5.1 Mixture Density Network

It is not always appropriate to calculate a single-valued prediction. This is the case

for problems where the solution is multi-valued and the average is not necessarily

a correct solution itself. Imagine a particle restricted to some circular motion. If

there is uncertainty in the exact angular position of the particle, then the particle is

still bound to be found somewhere along a circular trajectory, but now with a (nor-

malized) probability density function p(α) describing the probability of �nding the

particle at coordinates (R,α), where R is the radius of the circular trajectory. The

mean Cartesian position (⟨x⟩ , ⟨y⟩) =
∫︁
α
p(α)(r cos(α), r sin(α))dα would be some-

where inside the circle at coordinates given by ⟨x⟩2 + ⟨y⟩2 < R2. Similarly, for other

non-linear trajectories, the mean would not always be a suitable metric for describ-

21

Otto Lindfors 2 Theory

ing the position of a particle. Relevant to this thesis are such particle trajectories

where there is inherent uncertainty in the position estimates at some speci�c time,

and thus the next position would have to be expressed as a probability density along

some non-linear trajectory, see �gure 12b. This thesis will be restricted to problems

in only two spatial dimensions.

1.1

0.87
0.67

0.490.34
0.22

0.1
2

0.
12

5 · 1
0
−2

5
· 1
0
−
2

−0.4 −0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4

(a) A plot of the probability density

function of a bivariate Gaussian dis-

tribution. Such a probability density

can describe linear relationships.

5.2
4.43.7

3.1
2.52
1.5
1.1

0.8

0.5 0.30.30.1 0.1
0
.1

0 1 2
−0.5

0

0.5

1

(b) A plot of a Gaussian mixture den-

sity. A mixture density can describe

non-linear relationships.

Figure 12

A single bivariate Gaussian distribution, given by (18), is limited to describing a

linear relationship between two stochastic variables, as illustrated in �gure 12a. As

spatial trajectories of interacting particles are generally arbitrary, the probability

density function p(ys|ŷs) ≡ p(ys|xs) should be able to express such arbitrary non-

linear functions. Arbitrary density functions can be constructed as a mixture of

component probability densities ϕi as

p(ys|xs) =
∑︂
i

ci(xs)ϕi(ys|xs) (30)

where ci are normalized mixing coe�cients and ϕi are probability densities for Gaus-

sian distributions given by equation (17) or (18). The index i denotes the i:th com-

ponent of the mixture. In general, the correlation ρi in equation (18) is redundant

when used in a mixture density, since a Gaussian mixture with component probabili-

ties given by (17) is a universal approximator, capable of approximating any density

22

Otto Lindfors 2 Theory

function with an arbitrary non-zero error. The error is proportional to the number

of mixture components, and in the limit of i → ∞, it will be zero. [25] A Gaussian

mixture density is illustrated in �gure 12b. When using component densities like

(17), the D separate standard deviations σi,d (one for each dimension d) of the i:th

mixture component can be replaced by a global standard deviation σi of the mixture

component. [26] However, in this thesis, a small number of mixture components will

be preferred over a very generalized model, and therefore components given by equa-

tion (17) will be used.

When the mixing coe�cients ci(xs) ≡ ci(ŷs) and probability densities ϕi(ys|xs) ≡

ϕi(ys|ŷs) are modeled by a conventional neural network, it gives rise a mixture den-

sity network. [26] The mixture coe�cients should be properly normalized, so that∑︁
i ci(xs) = 1. A Boltzmann distribution (sometimes also called a softmax distribu-

tion) can be applied to the model output ŷc
s, corresponding to the mixture coe�cients

of sample s, in order to normalize the mixture coe�cients. The Boltzmann distribu-

tion is given by

ci(xs) =
exp(ŷcs,i)∑︁M
j=1 exp(ŷ

c
s,j)

≡
exp(ŷcs,i)

Zs

for i, j = 1, 2, . . . ,M (31)

where the normalization constant Zs is summed over all mixture components corre-

sponding to a sample s. By substituting the mixture density (30) into the sequence

error (29), the error for the mixture density network becomes

E = −
∑︂
s

ln
∑︂
i

ci(xs)ϕi(ys|xs) (32)

2.5.2 Recurrent Neural Networks and Probability Densities

In the case of temporal sequences, the input sequence X = {x1, . . . ,xT} is used for

calculating a sequence of hidden states H = {h1, . . . ,hT} which, in turn, is used

for calculating a sequence of outputs Ŷ = {ŷ1, . . . , ŷT}. An RNN will be used for

generating an output sequence of arbitrary length by treating the output vector ŷt

as a new input vector xt+1.

23

Otto Lindfors 2 Theory

Real particles have properties that are essential for making accurate predictions that

are consistent with Newtonian mechanics (see section 4.1). Some of these properties,

such as velocities, cannot be determined based on only a single observation of a vector

xt.
3 In order to allow for the initial prediction ŷT to be based on some statistical

prior, ŷT will be based on a short input sequence Xin = {x1, . . . ,xT}, instead of only

a single vector x̂T . The initial output ŷT corresponds to the true target xT+1. As the

model will produce an output sequence of arbitrary length T ′, the complete output

sequence will be Ŷ = {ŷT , . . . , ŷT+T ′}, which corresponds to a true target sequence

Xtarget = {xT+1, . . . ,xT+1+T ′}. Similarly, the sequence of hidden state vectors will be

H = {hT , . . . ,hT+T ′}.

In terms of the negative logarithmic likelihood (29), it does not matter whether the

di�erent samples are simultaneous transformations of multiple vectors or repeated

transformations of a single vector. Thus, a temporal sequence, which is a repeated

transformation of a single vector, can be treated as a set of simultaneous transfor-

mations f : xt,ht−1 → ŷt. The error of the output sequence will be a sum over the

temporal samples. [1, 15]

E = −
T+T ′∑︂
t=T

ln p(xt+1|xt) ≡ −
T+T ′∑︂
t=T

ln p(xt+1|ŷt) (33)

For a mixture density network, the error will be [1, 26]

E = −
T+T ′∑︂
t=T

ln
∑︂
i

ci(xt)ϕi(xt+1|xt) ≡ −
T+T ′∑︂
t=T

ln
∑︂
i

ci(xt)ϕi(xt+1|ŷt) (34)

2.6 Multipole Expansion

When modeling interaction between molecules, or any object, it is convenient to use

approximations. The electric �eld due to an arbitrary charge distribution can be

3An object with zero initial velocity will start to move in the direction of the force it is subject
to. However, if the initial velocity is not zero, the force will only cause a change in the object's
initial velocity. Without knowing the initial velocity, one can only guess where the particle will be
after some time ∆t. Therefore, knowing the initial velocity is essential when estimating the future
position.

24

Otto Lindfors 2 Theory

seen to contain a monopole term, a dipole term, a quadrupole term, and other higher

order terms. Given some arbitrary charge distribution, as in �gure 13, the potential

in the point given by r is given in Gaussian units by

φ(r) =

∫︂
V

ρ(r′)

|r− r′|
dv′ (35)

where ρ(r′) is the charge density in the point given by r′. [27] (In SI units φ is scaled

by a proportionality constant kE = 1/(4πε0), see for example [28]).

r
r′

dv′

O

Figure 13: An arbitrary charge distribution centered at origin and an
in�nitesimally small volume dv′ at the point given by the vector r′ from
origin.

By centering the volume at origin and requiring that |r| > |r′|, i.e. the point given

by r is outside the volume, the denominator |r − r′|−1 can be expanded in terms of

r′

r
as follows.

|r− r′|−1 =
(︁
r2 − 2rr′ + r′2

)︁− 1
2 (36)

=
1

r

(︃
1− 2rr′

r2
+

r′2

r2

)︃− 1
2

(37)

=
1

r

(︄
1− 1

2

[︃
−2rr′

r2
+

r′2

r2

]︃
+

1

2

1

2

3

2

[︃
−2rr′

r2
+

r′2

r2

]︃2
−O(r′3)

)︄
(38)

=
1

r
+

rr′

r3
− 1

2

r′2

r3
+

3

8

4(rr′)2

r5
+O(r′3) (39)

where the binomial expansion

(1 + x)s = 1 + sx+
s(s− 1)

2!
x2 + ... (40)

25

Otto Lindfors 2 Theory

was used. Substituting the expression for |r− r′|−1 into equation (35) yields

φ(r) =

∫︂
V

(︃
1

r
+

rr′

r3
+

1

2

[︃
3(rr′)2

r5
− r′2

r3

]︃
+O(r′3)

)︃
ρ(r′)dv′ (41)

φ(r) =
1

r

∫︂
V

ρ(r′)dv′ +
r

r3

∫︂
V

r′ρ(r′)dv′

+
3∑︂

i=1

3∑︂
j=1

1

2

xixj

r5

∫︂
V

(3x′
ix

′
j − δijr

′2)ρ(r′)dv′ +O(r′3) (42)

where x1 = x, x2 = y and x3 = z. The �rst term in equation (42) is the monopole con-

tribution, the second term is the dipole contribution, the third term is the quadrupole

contribution, and the fourth term is the contribution from higher order moments. [27]

2.6.1 Monopole Approximation

As r grows in proportion to r′, the quadrupole moment quickly diminishes. For small

molecules, i.e. molecules where r′ is small, the contribution of the dipole moment will

also quickly diminish. Therefore, it can be assumed that for a system of molecules,

where the molecules are small in comparison to the distance separating them, only

the monopole contribution needs to be taken into consideration. In such systems, one

can make the approximation of point-like particles with no geometric orientation.

2.6.2 Dipole Approximation

In many cases it is not appropriate to only use the monopole approximation. In

such cases one can retain more information about the particles by approximating the

particles as dipoles, keeping the �rst two terms in equation (42). Given a particle

with some arbitrary charge distribution, the particle can be roughly approximated

as a dipole by describing it with the dipole moment

p = qd (43)

where q is a measure of the charge of the dipole and d is the displacement vector

describing the net charge separation. By using a molecule's geometric orientation as

input to a neural network, one could let let the neural network build some abstract

26

Otto Lindfors 2 Theory

description of the molecules geometry and/or dipole moment.

27

Otto Lindfors 3 A First Experiment

3 A First Experiment - A Preamble to a Second Ex-

periment

The purpose of the experiment is to explore the whether or not the motion of the sur-

face molecules in a large nanoparticle can be modeled using a simple neural network

based machine learning model. The model is trained on molecular dynamics simula-

tions of several functionalized drug-carrying nanoparticles in aqueous environments.

The nanoparticles consist of a gold core to which thiolated ligands are attached by

the (self-assembling) gold-sulfur bonds that the thiol and the gold form. To the

free ends of the ligand either a drug molecule or a background molecule is attached.

The drug may either be hydrophobic (quinolinol) or hydrophilic (panobinostat). The

main purpose of the hydrophilic background molecule is to increase the solubility

of the hydrophobic drug. It is non-trivial to determine an optimal ratio of drug to

background molecules, such that the amount of dissolved drug is maximized. See

Kovacevic, et. al (2021) for further details of the simulated systems. [29]

When designing drug-carrying nanoparticles like the ones described above, molecular

dynamics simulations are run in order to evaluate how the particles' properties are

a�ected by changes in the system. [29] In order to accelerate the search for promising

designs, mainly promising drug to background molecule ratios, a machine learning

algorithm could help interpreting complex relationships between di�erent atomistic

and molecular properties in the system as a whole. The machine learning algorithm

could give an estimate for di�erent particle properties, mainly the solvent accessible

surface area (SASA), without the need to run full molecular dynamics simulations

that are computationally expensive. This �rst approach tries to model the motion

of the surface molecules, the spatial con�gurations of which determine the solvent

accessible surface area, in order to explore whether or not there are some simple

patterns present in the motion that could be exploited for estimating the SASA.

A few alterations of a simple LSTM centered model was developed. All models

take molecule positions and labels as input and tries to predict the future positions

from these. The hypothesis is that if there is some generic pattern in the motion of

28

Otto Lindfors 3 A First Experiment

the molecules, the model may capture it and successfully model the motion of the

molecules.

3.1 Data Exploration

The molecule positions that are used as training data in the machine learning opti-

mization problem are obtained through molecular dynamics (MD) simulations. The

Amber molecular dynamics package [30] was used to model the drug carrier consist-

ing of approximately 40 000-50 000 atoms in a water solvent for 300 ns. In total, 44

simulations with di�erent drugs and di�erent ratios of drug to background molecules

were created. From each simulation a set of pdb �les, one per nanosecond, were

extracted, thereby creating a timeseries of 300 pdb �les. A pdb �le contains the

structural information of the system at some speci�c time instance in the simulation.

This structural information includes, among other things, the coordinates of each

atom and information about which atoms make a molecule. A visual render of a

drug-carrying nanoparticle, based on a single pdb �le, is shown in �gures 14a and

14b. The drug carrier is approximately 30 nm in diameter. During the length of a

simulation the drug carrier evolves towards its equilibrium con�guration. Since the

drug carrier is in a solvent of small molecules, which in this case are water molecules,

the motion of the drug carrier's surface molecules are mostly thermal (Brownian)

motion. Because of this, the trajectories of the surface molecules are random walks

with possibly (depending on the molecule) a trend in some direction. For example,

the hydrophobic quinolinol is repelled by the water and is forced towards to the center

of the drug carrier and ends up buried among the ligands, whereas the hydrophilic

background molecule is attracted by water and is forced to the surface (water and

drug carrier interface) of the drug carrier. This is visualized in �gure 15 and quan-

ti�ed in �gure 16. In the case of a hydrophilic drug, it is competing for space at the

water interface with the also hydrophilic background molecule and the ratio of the

two determine the �nal properties of the drug carrier. [29]

29

Otto Lindfors 3 A First Experiment

(a) A drug-carrying nano-particle

with approximately 40 000 atoms.

Drug molecules (bright pink) and

background molecules (bright

turquoise) attached on the ends of

ligands (grey) that are attached to a

gold core (not visible).

(b) A cross section view of a drug-

carrying nanoparticle. The thiolated

ligands (gray and orange) are at-

tached to the gold core (yellow) by

gold-sulfur bonds. The sulfur atoms

are colored orange.

Figure 14: Images are rendered using UCSF ChimeraX. [31]

(a) t = 1ns (b) t = 150 ns (c) t = 300 ns

Figure 15: Hydrophobic drug molecules (bright pink) are repelled by
the solvent and are therefore buried among the ligands (grey). The hy-
drophilic background molecules (bright turquoise) are attracted by water
and are therefore forced to the surface of the drug carrier. 15a at the be-
ginning, 15b in the middle and 15c at the end of the simulation. Images
are rendered using UCSF ChimeraX. [31]

30

Otto Lindfors 3 A First Experiment

0 100 200 300
38

40

42

44

46

48

time [ns]

m
ea
n
ra
d
ia
l
d
is
ta
n
ce

[n
m
]

ONC
OCN
OCQ
OQL

(a) Radial distribution of the surface

molecules with respect to time.

0 100 200 300

20

30

40

50

time [ns]

m
ea
n
ra
d
ia
l
d
is
ta
n
ce

[n
m
]

(b) Radial distribution of all molecules

(and gold core) with respect to time.

Figure 16: The distance from the drug-carrier center point to each atom,
averaged per group. The plot shows how the molecules are radially dis-
tributed. As time progresses the drug (OQL) and background molecules
(ONC) are separated. The OCQ and OCN are the molecules at the ends
of the ligands to which the drug and background molecules are attached,
respectively.

3.2 Data Preprocessing

The aim of the experiment is to explore whether or not there are some simple patterns

present in the motion of the active substances (molecules) near the water interface

(the drug carrier surface) that could be exploited using an LSTM. The pdb �les are

�rst preprocessed to produce NumPy �les containing the coordinates of each molecule

rather the coordinates of each atom. This is done by calculating the geometric

center point of each molecule and removing all atoms in each molecule except for

the ones closest to the center points. See �gure 17a. This reduces the number

of atoms from around 40 000-50 000 to approximately 6000. Since this can still be

prohibitively many particles when each particle has multiple features, and because

the data exploration shows that mainly the drug and background molecules determine

the �nal spatial conformation of the drug carrier, all but the drug and background

molecules are removed. Additionally, all water molecules are removed since these act

as a heat bath and so the motion of individual water molecules is unnecessary to

model. The result of preprocessing a single pdb �le so far is visualized in �gure 17b.

In order to obtain a time series, all 300 pdb �les of a MD simulation are preprocessed

31

Otto Lindfors 3 A First Experiment

similarly.

(a) Each circular marker represents

an atom in a molecule. The small

black triangular marker represents

the geometric center of the molecule.

The red marker is the atom closest to

the geometric center.

(b) The center atoms of all drug and

background molecules in a drug car-

rier.

Figure 17

I addition to the coordinates of the center atoms, the molecule type will also be used

as a feature. The molecule name is encoded using a simple one-hot encoding.

Two di�erent datasets are created, one that is two-dimensional (2D) and one that

is three-dimensional (3D). The 3D dataset is what has been described so far. The

samples in the 2D dataset are created by taking geometric slices of the drug carriers

in the 3D dataset. A slice is taken at the initial time step t0 along an arbitrary axis d

that goes through the same center of the drug carrier by removing all molecules that

do not fall within a distance ±∆d along the axis. See �gure 18. I order to ensure

that the same center point is always used, the drug carrier's centermost gold atom

(the same atom is always chosen) is aligned with origin. Multiple slices are taken at

di�erent angles so that the whole 3D drug carrier is used when producing slices. At

the following time steps tn the slices are taken di�erently. All particles but the ones

selected at t0 are removed. This way, complete trajectories are obtained and can be

used as time series. Because the trajectories happen to be such that the slices remain

thin throughout all 300 ns the slices can be �attened into two dimensions without

loss of much information. The �attening is done by simply removing the coordinate

32

Otto Lindfors 3 A First Experiment

along the thickness axis d. Finally all slices are rotated to lie in the x-y plane. See

�gure 18 for a visual description of this process.

(a) The complete drug

carrier.

(b) A slice of the drug car-

rier.

(c) The slice is rotated to

lay in the x-y plane.

(d) Only the centers of

drug and background

molecules are selected.

(e) 18d viewed in the x-y
plane

(f) The slice is �attened.

Figure 18

The preprocessed �les are passed to the model through an e�cient input pipeline

that creates sliding windows of shorter sequence lengths than the complete 300 time

steps. These shorter sequences are then split into an input and a target sequence.

The input sequence will be used to predict the target sequence. Additionally the

input pipeline creates augmented copies of the sequences through random rotations

of the drug carrier (the drug carrier is rotated the same amount at all steps in a

sequence).

To summarize, the �nal temporal sequences consist of multiple time steps. Each time

step consists of a set of features describing every molecule at that time instant. The

features are the coordinates of each molecule's center atom and the one-hot encoded

33

Otto Lindfors 3 A First Experiment

molecule name.

The dataset is divided into training and validation sets having 70% and 30% of

the samples respectively. Since the sliding window causes the same data point to

be included in multiple sequences (at di�erent relative time steps), the divide is

made in such a way that the training set and validation set are guaranteed to be

non-overlapping, thereby ensuring that any datapoint in the validation set is never

observed during training, and vice versa.

3.3 Model

The model takes as input temporal sequences of length T and predicts sequences of

length T ′ that are compared to the target sequences. The input sequence is passed to

a time distributed multilayer preceptron (MLP), followed by a set of LSTMs, followed

by another MLP. The output is a single-step prediction and an LSTM state for the

time step T + 1. This will be called the initialization phase as during it the LSTM

internal states accumulates information from the whole input sequence before a �rst

prediction is made. The prediction and the LSTM state at time step T + 1 are used

as input at time step T + 2, and so on until the last step T ′ has been reached. The

exact number of layers and nodes were varied in search for an optimal model. An

overview of the architecture is shown in �gure 19.

Timedistributed MLP

MLP

LSTM

LSTM

Input shape (None, T , particles, features)

Output shape (None, T ′, particles, features)

Figure 19

34

Otto Lindfors 3 A First Experiment

3.4 Result

The models were trained for a maximum of 30 epochs with early stopping to reduce

over�tting. The sequence lengths were T = 25 and T ′ = 125. Multiple models

with di�erent hyper parameters were trained. Dropout was applied to the hidden

perceptron layers during training. The hyperparameters were selected using Bayesian

optimization with the tree-structured Parzen estimator. [32] The hyperparameters

were

� the number of units in the layers of the �rst MLP,

� the number of units in the LSTMs, tuned separately per LSTM,

� the number of units in the second MLP.

A model with two sequential LSTMs had the best performance. A summary of all

trained variations of that model is given in �gure 20. Any of the trained models were

unable to produce meaningful results regardless of whether the 2D or 3D dataset

was used. All models fell into one of two categories when evaluating them on the

validation set. Either the predicted particle positions would converge into a single

con�guration regardless of the input, or the particles would oscillate between two

meta stable con�gurations, as seen in �gure 21. This suggest that the model in

combination with the training algorithm is only able to �nd the static values for

which the loss is small, rather than modeling particle trajectories. There are a few

potential reasons for this. 1) The drastic simpli�cations made in the preprocessing

may obscure the information necessary for modeling the motion of the molecules. 2)

There is no simple pattern present in the motion of the molecules. 3) The model

does not have the capability of expressing the motion. 4) A combination of 1-3.

Alternative 4 is the most likely. Since the molecules in the drug carrier are large

and tightly packed their geometric shapes are of importance in order to accurately

model their motion. Furthermore the molecules form long chains by forming chem-

ical bonds which further constrain their motion. These properties are not explicitly

present in the preprocessed data and may obscure much of the information necessary

35

Otto Lindfors 3 A First Experiment

for deriving some rules for the motion. The motion of the molecules is very chaotic

but it has a general trend, as described in section 3.2. However, this trend is a re-

sult of a stochastic process and should therefore be treated accordingly. The model

is very simple and more care should be put into formulating a more sophisticated

architecture that has the capability of modeling the drug carrier properly.

(a) (b) (c)

(d) (e) (f)

Figure 20: Validation loss surfaces with respect to hyperparameters. Fig-
ures 20a-20c show that the validation loss at the end of training is es-
sentially una�ected by changes in the hyperparameters. Figures 20d-20f
show the amount with which the loss decreased during training, with re-
spect to the hyperparameters.

36

Otto Lindfors 3 A First Experiment

(a) Predicted

molecule positions

oscillate between two

meta stable states.

(b) Predicted

molecule positions

stays in a single

con�guration.

(c) The mean absolute velocity

of the same molecules as in 21b

shows that the predicted motion

has truly stagnated.

Figure 21: Predictions on the validation set. Figures 21a and 21b: The
mean radial distance (calculated from position predictions) from each
molecule to the drug carriers center. Red is drug molecules, blue is back-
ground molecules, and green is the mean weighted by the ratio in molecule
counts. The smaller distances (bottom) are predictions, the larger dis-
tances (top) are true values.

37

Otto Lindfors 4 A Second Experiment

4 A Second Experiment

The shortcomings of the �rst experiment led to the development of the model whose

components are the main focus of the theory sections 2.2-2.5. An attempt at ad-

dressing some of the issues associated with the information loss due to preprocessing

of the MD simulations is made. The model is tested on a relatively straightforward

problem of predicting two-dimensional trajectories of interacting particles. The prob-

lem is approached by modeling the particle-particle interactions, rather than trying

to model the trajectories directly as in the �rst experiment. As described in section

2.3, the particle-particle interactions are allowed to be arbitrary. The machine learn-

ing algorithm has the potential to �nd these arbitrary rules for the interactions by

not being programmed with any domain knowledge of the nature of these interactions.

The core idea behind this approach is that the molecules do not undergo chemical

reactions and interact mainly through electromagnetic forces and collisions. Gener-

ally, molecules have some charge distribution and can therefore be approximated in

terms of a multipole expansion, as described in section 2.6. This means that over

long distances, compared to the size of the molecule, the electric �eld can be approx-

imated as a monopole �eld, meaning that the molecule itself can be approximated as

a point-like particle in terms of the charge. A practical example of the monopole ap-

proximation being successfully used in a similar deep learning approach to molecular

dynamics can be seen in the work of Wang et. al. [3] On shorter distances one must

also account for the dipole moments, and eventually, as the intermolecular distance

is further decreased the quadrupole and higher order moments must also be consid-

ered. [27] It is therefore convenient to �rst test the model using only the monopole

approximation as a proof of concept, which is what this experiment will focus on. In

order to directly measure the model's performance on modeling the intermolecular

forces, only electrostatic interactions are considered, no collisions.

The hypothesis is that when irregularly shaped molecules are approximated as point-

like particles (or dipoles, etc.), as described by section 2.6.1, the model could poten-

tially account for the missing information about the higher order moments and the

38

Otto Lindfors 4 A Second Experiment

missing geometric shape information by modeling the corrections for these using the

LSTMs. By observing the motion of a molecule (including collisions) together with

the trajectories of the neighboring molecules the LSTM could perhaps infer some

(abstract) representation of an approximate charge distribution or geometric shape.

This is left as a suggestion for future work to test.

Multiple many-body systems are simulated and used as training data. Trajectories of

simulated particles are obtained by solving the classical equations of motion numeri-

cally, using velocity Verlet integration. The model's loss on the simulated trajectories

is minimized with respect to the layer weights, using gradient descent. That is, the

model is tasked with predicting the trajectories of simulated particles in a many-body

system and the optimization algorithm is tasked with minimizing the prediction error

of the model.

4.1 Newtonian Many-Body Mechanics

Assuming an inertial reference frame, the motion of the i:th particle in a many-body

system is given by the second order ordinary di�erential equation

Fi(ri(t)) = mi
∂2ri(t)

∂t2
≡ mir̈i(t) (44)

where Fi is the net force the i:th particle is subject to and r̈i(t) is the acceleration of

the i:th particle due to Fi. This is Newton's second law of motion. In this inertial

reference, frame Newton's third law, stating that two directly interacting particles

exert equal and opposite forces on each other, will also hold. 4

Fij = −Fji (45)

4Generally, because the force �eld propagate with a �nite velocity (usually the speed of light),
forces will not be opposite. Therefore, Newton's third law is only approximate. However, in this
thesis, the magnitude of the particle velocities are taken to be su�ciently small when compared
to the relative absolute distances between particles so that the approximation errors are negligible
when the forces are taken as being instantaneous. [33, 34]

39

Otto Lindfors 4 A Second Experiment

This allows us de�ne the force as a function of the coordinates, and equation (44)

will correctly describe the motion of a single particle. [33]

For the machine learning model, this means that the motion of each particle i can be

modeled independently at every time step. Thus, only the forces Fij due to particles

i ̸= j need to be considered when modeling the trajectory of the i:th particle. Fur-

thermore, only the change in position of the i:th particle relative the other particles

a�ect the force Fij, making state pooling a reasonable method for describing a neigh-

borhood with many particles. Therefore, solving Newtonian many-body problems is

a suitable experiment for testing the machine learning model. By not programming

any domain knowledge about the de�nition of the particle-particle interactions Fij

into the model, other than that required by state pooling, the machine learning al-

gorithm is tasked with deriving some rules for the particle-particle interactions given

the trajectories rij(t).

4.2 Data Acquisition Using Velocity Verlet Integration

The simulated many-body systems consist of N interacting particles. The N par-

ticles are initialized in states with random positions ri, random velocities ṙi ≡ ∂r
∂t
,

random masses mi and additional system-speci�c randomly initialized variables, like

charge for example.

Simulating trajectories ri(t) is equivalent to numerically solving the equation of mo-

tion given by (44). Given initial conditions ri(t0) and ṙi(t0) for the position and

velocity respectively, an approximate solution at time t1 = t0 + ∆t is obtained by

assuming constant acceleration during the time interval ∆t.

ri(t1) ≈ ri(t0) + ṙi(t0)∆t+
1

2
r̈i(t0)∆t2 (46)

An approximate solution to the position at some arbitrary number of time steps ∆t

into the future is obtained by the following algorithm.

40

Otto Lindfors 4 A Second Experiment

1. Calculate the next position ri(tn+1) ≈ ri(tn) + ṙi(tn)∆t+ 1
2
r̈i(tn)∆t2

2. Calculate the next acceleration r̈i(tn+1) ≈ Fi(ri(tn+1))
tn+1

3. Calculate the next velocity ṙi(tn+1) ≈ ṙi(tn) +
1
2
(r̈i(tn) + r̈i(tn+1))∆t

4. Repeat from 1

This is the velocity Verlet method of numerically integrating (44) in order to solve for

ri(t). Examples of approximate solutions obtained by velocity Verlet integration are

shown in �gure 22. Solutions like these are used as training data in the experiments.

−3 −2

−0.5

0

0.5

(a)

2 3 4 5

0

1

2

(b)

−5 0 5

−5

0

5

(c)

Figure 22: Examples of particle trajectories used as training data. The
trajectories are obtained by solving Newton's equations of motion using
velocity Verlet integration. The particles interact through a force that is
inversely proportional to the square of the relative vector distance between
the particles.

4.3 Data Preprocessing

The simulated trajectories are saved as NumPy arrays in npy �les. A single simula-

tion produces an array of size Ts×N×F , where Ts is the simulation length in number

of time steps, N = 25 is the number of particles and F = 4 is the number of features.

The simulations were run for 1 000 000 iterations with a time step size of ∆t = 10−7

time units. The magnitude of 1 unit of time is arbitrary. Of the 1 000 000 time steps

only every 1000:th step was kept, since the step size used in the numerical integration

is very small (in order to give accurate solutions). The resulting sequences consist

of 1000 time steps with the coordinates, masses and charges of 25 particles at each

41

Otto Lindfors 4 A Second Experiment

time step.

Similar to the preprocessing described in section 3.2, an e�cient input pipeline that

creates pairs of shorter input and target sequences, and creates augmented copies by

random rotations is used. Additionally, at the beginning of the input pipeline only

every 20:th time step of a sequence is kept, thereby further reducing the sampling

frequency so that a complete simulation is reduced from 1000 steps to 50 steps. As

before a sliding window is used for sampling the input and target sequences from the

complete simulation sequence. The sliding window is shifted by 5 time steps between

each sampling to ensure that the samples are not too similar. Input sequence lengths

T = 5 and target sequence lengths T ′ = 30 are used. From each training sample

(sequence), 10 augmented copies were made. A total of 100 simulations make up the

training set and 20 simulations make up the validation set. Since modeling decisions

were made based on the result on the validation set, an additional 20 �les were set

aside as an unbiased test set. This results in the training set consisting of 20 000

samples, and the validation and test sets of 4000 samples each.

4.4 Model

The model predicts one time step at a time. At each time step the input is the

coordinates, charges and masses for all particles. The output is a set of Gaussian

probability density functions (see section 2.5) describing the predicted coordinates

one time step into the future. Each particle is described by a separate LSTM (state)

but all LSTMs share the same weights. Stacked state pooling is used with embedded

memory states, followed by a small CNN, followed by a single-layer perceptron (SLP).

The perceptron output is concatenated with a single particle's embedded features and

passed as input to the LSTM. The LSTM's updated memory state is transformed

by a small SLP into parameters for a Gaussian probability density. An overview of

the model is shown in �gure 23, and a conceptual description of the state pooling

module in �gure 24.

The model is iterated over an input sequence Xin = {x1, . . . ,xT} in order to pre-

42

Otto Lindfors 4 A Second Experiment

Input
Embedding

2D CNN

Dense

State
Embedding

N

xi
t {xj ̸=i

t } {hj ̸=i
t−1}

Hi
t

hi
t, c

i
t

hi
t

ŷi
t = {µi

t, σ
i
t, ρ

i
t} → xi

t+1

hi
t−1, c

i
t−1

Figure 23: A schematic description of how a single-particle prediction is
made at a single time step. The pooling tensor Hi

t is constructed from
the previous memory states and the current features (position) Xt ≡ Yt−1.
The LSTM (black disk) takes as input its particle's features xi

t, the result
of the pooling procedure, and the previous states.

43

Otto Lindfors 4 A Second Experiment

ŷj
t ,h

j
t

ŷi
t,h

i
t

ŷk
t ,h

k
t

ŷj
t+1,h

j
t+1

ŷi
t+1,h

i
t+1

ŷk
t+1,h

k
t+1

ŷi
t+2,h

i
t+2Hi

t Hi
t

Figure 24: A simpli�ed description of the model, showing how predictions
are made for a single particle i, two time steps into the future. The
predictions for the other particles are done similarly. At each time step
the layers (black disks) can share weights. For simplicity, no LSTM cell
states cit, only memory states hi

t, are shown.

pare the LSTM states (see section 2.5.2), after which an output sequence Y =

{yT , . . . ,yT+1} is produced in an iterative manner, as shown in �gure 25. The out-

puts are predictions of the particle positions Xtarget = {xT+1, . . . ,xT+T ′} and are

compared to these using the negative logarithmic likelihood as the error function

(see section 2.5).

{x1, . . .

ŷ1

h1

,xT}

{ŷT ,

hT

ŷT+1, . . .

hT+1

, ŷT+T ′}

hT+T ′

{xT+1, xT+2, . . . ,xT+T ′+1}

Figure 25: During the initialization phaze, the LSTM memory state hi
t

and cell state cit are accumulating information for T iterations, after which
the �rst prediction yT

The layer that embeds the memory states (state embedding) before the state pooling,

and the layer that embeds the i:th particle's features (input embedding) before they

44

Otto Lindfors 4 A Second Experiment

are passed to the i:th LSTM, are simple linear transformations

αi
t = Wαx

i
t (47)

βj ̸=i
t = Wβh

j ̸=i
t (48)

with an embedding dimension of 32. The stacked state pooling is implemented ac-

cording to section 2.3 using 4 separate pooling tensors that are summed together. The

pooling grids all have an identical 32× 32 shape, but each correspond to a di�erent

physical size, with the relative side lengths 1, 1
2
, 1
4
and 1

8
respectively. Speci�cally, he

largest pooling grid is chosen to have a side length of 11 length units, but this value

is speci�c to the data set and must be chosen on a case by case basis. The value of

11 length units is approximately the same distance as the largest distances between

any two particles seen in the data set, and it is equivalent with the smallest pooling

grid having a spatial resolution of approximately 0.04 length units, which is of the

same order of magnitude as some of the smallest inter-particle distances in the data

set. Using stacked state pooling reduces the required amount of computer memory

needed for training and also speeds up the calculations. As a comparison, training the

model using 4 stacked pooling tensors (multi-grid model) of shape 32× 32 took only

10 hours compared to the 17.5 hours needed for training the same model with only

a single pooling grid (mono-grid model) of shape 64× 64. 5 The errors were similar

between the two models, as shown in �gure 26, with the multi-grid model having a

more stable loss on the validation data set than the mono-grid model. Furthermore,

the mono-grid size was limited by the GPU memory, whereas the multi-grids are

only a 1
4
the size of the mono-grid. The multi-grid model is chosen because of the

performance and stability bene�ts, especially because of the memory bene�ts.

The two-dimensional CNN has 3 consecutive layers, each with a ReLU activation

function, and kernels with 16, 16, and 32 units respectively. Filters sizes of both

2 × 2 and 4 × 4 were tested on a limited data set. The performance of both were

identical, as shown �gure 27. The larger �lters were chosen in order to increase the

5Note that the performance bene�ts of a smaller state pooling tensor does not only come from
the pooling calculations but also from calculations in the layer(s) following the state pooling.

45

Otto Lindfors 4 A Second Experiment

0 10 20 30

−2

0

2

4

epoch

S loss
S val. loss
non-S loss
non-S val. loss

(a) Negative logarithmic likelihood

loss during training.

0 10 20 30

0.5

1

1.5

epoch

S mea
S val. mae
non-S mae
non-S val. mae

(b) Mean absolute error during train-

ing.

Figure 26: Comparison of using stacked (S) state pooling with four pool-
ing grids of size 32× 32, and a single pooling grid (non-S) of size 64× 64.
The multi-grid model uses less memory and is trained approximately twice
as fast as the mono-grid model.

"�eld of view" of the kernels.

The SLP that embeds the CNN output gi
t before it is passed to the LSTM is a

simple non-linear transformation, with an embedding dimension of 32, having a ReLU

activation function.

γi
t = relu(Wγg

i
t) (49)

The the output layer predicts parameters for a bivariate Gaussian distribution and

is thus a 5 unit SLP with several activation functions given by equations (21), (22)

and (23), as described in section 2.5. In the case of the mixture density model, 5

mixture components without correlation are used, see equation (16). For each mix-

ture a mixture (weighing) coe�cient as (31) must be predicted. Thus, the output

layer of the mixture density model has 25 units.

Because of the way the model is built to calculate single particle positions, and

because all particles should abide the same laws of motion, all layers share their

weights between all particle instances (in the same way as the LSTMs share their

weights).

46

Otto Lindfors 4 A Second Experiment

0 10 20 30
−2

0

2

4

epoch

4× 4 loss
4× 4 val. loss
2× 2 loss
2× 2 val. loss

(a) Negative logarithmic likelihood

loss during training.

0 10 20 30

0.5

1

1.5

epoch

4× 4 mea
4× 4 val. mae
2× 2 mae
2× 2 val. mae

(b) Mean absolute error during train-

ing.

Figure 27: Comparison of using di�erent sized �lters in the CNN layers.
There is no signi�cant di�erence in the errors.

4.5 Result

The model was trained for a maximum of 50 epochs with early stopping to reduce

over�tting. The input sequences were of length T = 5 steps and the target sequences

of length T ′ = 30 steps. Because of the shared layers, the model had merely 140 768

trainable parameters. The prediction error was minimized by stochastic gradient

descent using the Nesterov-accelerated adaptive moment estimation (Nadam) algo-

rithm with a learning rate η = 0.001, the decay rates µ = 0.9 and ν = 0.999, and

the small constant ε = 10−7 that is only used in divisions for numerical stability. [35]

With the single-density model an error, as given by equation (33), of −3.4332 and a

mean absolute error of 0.0681 were reached on the validation set. The training loop

was ended after 40 epochs when the smallest error had not improved in four epochs.

The errors are plotted in �gure 28. The mixture density model, su�ered from several

bugs that hindered it to be trained properly. It is therefore left as future work to

compare the performance of the mixture density model to the single-density model.

Theoretically, a mixture density model with a large number of components should

be able to model the trajectories better than a single-density model, as a mixture

density is a universal approximator [25, 26]. Though, how well the models (with a

limited number of mixture components) perform in practice on a speci�c and �nite

data set must be measured in experiments.

47

Otto Lindfors 4 A Second Experiment

0 10 20 30 40
−4

−2

0

2

epoch

val. loss
loss

(a) Negative logarithmic likelihood.

0 10 20 30 40

0.2

0.4

0.6

epoch

val. mae
mae

(b) Mean absolute error.

Figure 28: Early stopping terminated the training loop after 40 epochs.

Analyzing the paths that are predicted by the single-density model reveals how well-

behaved the model is. Looking at the less successful predictions indicates where

there is room for improvement. In this analysis more emphasis will therefore be set

on analyzing why the less successful predictions fail. The following analysis is done

using the unbiased data set that was set aside in section 4.3.

In �gures 29 - 30, predictions on the unbiased test set are compared to the corre-

sponding target trajectories. An overview of three di�erent regions in the many-body

systems are shown in �gure 29. A visual inspection of the regions con�rms that the

mean absolute error of approximately 0.01 correspond to overall good predictions. In

�gure 30, three (mainly) long-long range interactions are presented, long-range being

of the order of magnitude 1. The long-range interactions cause slow changes in the

direction of the particles velocity, meaning the trajectories make wide curves. These

interactions the model predicts well. Many times, the short-range interactions, as

shown in �gure 31, look physically realistic as if there only was a stronger attractive

force than what was used in the MD simulations, leading to steeper approaches in

the predicted trajectories. A closer inspection of more samples of close approaches

reveals another behavior. Particles that are attracted by each other may approach

too slowly or they may turn away from each other before they meet, see �gure 32.

The latter would be realistic if there was an attractive force proportional to r−1 an

48

Otto Lindfors 4 A Second Experiment

a repulsive force proportional to r−2, leading to the net force being attractive over

large distances and repulsive over small distances. However, this is not the case. The

simulated systems have a Coulomb force and a gravitational force, both which are

proportional to r−2. Thus, there must be something else causing these e�ects.

In �gure 33 a force driving the particles away from each other seem to exist although

no such force is present. 6 This is due to subsampling of the true trajectories as part

of the data input pipeline. As the particles' trajectories never appear to cross each

other, another level of di�culty is added to the modeling task. In the simulations

the particles' velocities have changed direction because the particles have "passed

by" each other when making a partial orbit. As this pass-by is not apparent in the

training samples, due to subsampling, the model must learn to correctly add a correc-

tion that accounts for this missing information, which adds another level of di�culty.

Based on the samples in �gures 32c, 33, 34b and 34c, this correction must be such

that when attractive particles approach each other, instead of making a partial orbit

as real (simulated) particles would, the particles make an early steeper curve, so that

they never meet, and so that the loss is minimized. This way the model would learn

to always make slightly steeper curves than in reality (e.g. by adding what may be

interpreted as a force component perpendicular to the velocity in the direction of the

focus of the current trajectory), and thus also leading to predictions like those seen

in �gure 33.

Despite the too sparse subsampling, the overall modeling accuracy is acceptable.

More frequent subsampling of the time series should be used when building the data

sets. In all examples given in �gures 29-34 the predicted likelihoods are signi�cantly

more localized (smaller standard deviations) before a close approach than after. This

pattern is present throughout all predictions. This could in part be a realization of

the limitations described in section 2.3.4 and in part a consequence of too sparse

subsampling. It could likely be improved by a combination of more frequent sub-

sampling and adjusting the relative sizes and resolutions of the state pooling grids.

6A repulsive force only in the direction of the line connecting the particles would not cause these
trajectories though.

49

Otto Lindfors 4 A Second Experiment

Additionally, proper hyperparameter tuning of the model should be performed in

order to quantify which hyperparameters are the best [36].

(a) (b) (c)

Figure 29: An overview of predictions in three di�erent regions over the
course of 30 steps. Target trajectories are white, predicted trajectories
are red, and predicted probability densities are represented with a color
gradient.

50

Otto Lindfors 4 A Second Experiment

(a) Long range interaction

(upper right) and short-

range interaction (lower

left)

(b) (c) Particles of di�erent

masses interacting. The

lower right particle is the

lighter of the two.

Figure 30: Some typical long-range interactions. 28b

(a) (b) (c)

Figure 31: As particles get close to each other, interactions that appear
as if the strength of the attractive force is overestimated are typically
observed.

51

Otto Lindfors 4 A Second Experiment

(a) (b) (c)

Figure 32: Predictions may have too slow velocity such that the travelled
distance is too short, as in 32a, or they may make premature changes in
the direction of travel.

(a) (b) (c)

Figure 33: Too infrequent subsampling make it seem as if the true particle
trajectories (white) never cross, even though they in reality do.

52

Otto Lindfors 4 A Second Experiment

(a) (b) (c)

Figure 34: Because of sub-optimal training data, the model has been
optimized to make incorrect trajectory corrections causing the particles
to never meet.

53

Otto Lindfors 5 Conclusions

5 Conclusions

The aim of this work was to explore if an LSTM-based machine learning model

can predict the surface properties of a drug carrying nanoparticle by modeling the

dynamics of the drug carrier's surface molecules. An initial attempt was made at

modeling the trajectories of the most important surface molecules. This attempt

failed due to the following possible reasons.

1. The approximation of large non-symmetric molecules as point-like particles

and limiting the observations to only two types of molecules obscures too many

important features.

2. There is no simple pattern to learn.

3. The model architecture is not suitable for the task and does not have the

capability of being trained to express the motion of the surface molecules.

A second approach was developed to address the shortcomings of the �rst. In this

approach the dynamics of a system of classical particles are modeled by explicitly

modeling the particle-particle interactions. For this, LSTM state pooling similar to

that used by Alahi et. al. [2] but with some key di�erences is used. Speci�cally the

following techniques are introduced to the state pooling.

1. Distance based �ltering. The pooling grid is made e�ectively circular by �lter-

ing the LSTM states (the particles) by their radial distance from the center of

the pooling grid. See section 2.3.3 and �gure 6.

2. Stacked state pooling. Multiple pooling tenors, all of the same N × N shape

but each corresponding to a di�erent physical size, are combined using a sum-

marizing statistic. In this thesis, that summarizing statistic is a simple sum.

See section 2.3.5 and �gure 8

3. A CNN is used for processing the pooled states (i.e. the pooling tensor Hi
t)

before using them as input to the LSTM.

Stacked state pooling showed that multiple small pooling grids give similar results as

using a single large pooling grid. Furthermore, using stacked state pooling, instead

54

Otto Lindfors 5 Conclusions

of a single large pooling grid, requires less GPU memory and reduced the training

time from 17.5 hours to 10 hours. See section 4.4

In order to test the model from the ground up, beginning from the lowest order

approximation of the charged particles, as described by section 2.6, the model is

tasked with solving the equations of motion for a many-body problem consisting

of gravitationally- and electrostatically-interacting monopolies . Overall the model

performs well and demonstrates the proof of concept the experiment was set up for.

Artifacts in the position predictions of closely approaching particles is observed. The

artifacts show patterns that indicate that the they are likely caused by too sparse

subsampling of the simulated particle trajectories when building the training data set.

Additionally, the predicted likelihood estimates for the future positions are signi�-

cantly less localized after close approaches than before. The conclusion is drawn that

this is likely due to a combination of �nite spatial resolution of the state pooling (see

section 2.3.4), which is used for modeling the particle-particle interactions, and too

sparse subsampling as described before.

5.1 Suggestions for Future Work

The following tasks are suggested, in no particular order, as future work.

1. Proper methodological hyperparameter optimization should be performed in

order to analyze the full potential of the model.

2. The Gaussian mixture model should be evaluated and compared to the results

of the non-mixture model presented in section 4.5.

3. The state pooling (section 2.3) should be expanded to tree spatial dimensions.

4. Experiments should be performed to evaluate the the model on tasks where

the monopoles are replaced by dipoles. The model must predict both positions

and orientations of the dipoles, thereby adding another level of di�culty.

55

Otto Lindfors 5 Conclusions

5. Lastly, if 4 is successful, the next step would be to model quadrupoles, before

moving to the original problem of modeling the surface molecules in a drug

carrying nanoparticle. The model presented in this thesis has no mechanism

speci�cally designed to consider inter-molecular bonds, such as those between

the ligands and drug molecules, that restrict the motion of a molecule. A

straightforward approach would be to use a simple hybrid model where the

ligands and the bulk of the nanoparticle are replaced by simple strands to

which the surface molecules are attached, as visualized in �gure 35. The ma-

chine learning model could be used to model the interaction between surface

molecules (and the solvent) and the strands could restrict the molecules radial

distance from the drug carrier's core by a simple damped restoring force, much

like a simple spring.

Figure 35: A simpli�ed drug carrier where the motion of the surface
molecules are restricted by simple damped restoring forces in the direc-
tions of a lines connecting the molecules to the drug carrier's center point.

56

Otto Lindfors 6 List of Abbreviations

6 List of Abbreviations

CNN, convolutional neural network

GPU, graphics processing units

LSTM, long short-term memory

MD, molecular dynamics

MLP, multilayer perceptron

ReLU, recti�ed linear unit

RNN, recurrent neural network

SASA, solvent accessible surface area

SLP, sinlge-layer perceptron

2D, two-dimensional

3D, three-dimensional

57

References

[1] Alex Graves. Generating Sequences With Recurrent Neural Networks.

arXiv:1308.0850 [cs], June 2014. arXiv: 1308.0850.

[2] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet,

Li Fei-Fei, and Silvio Savarese. Social LSTM: Human Trajectory Prediction in

Crowded Spaces. In 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 961�971, Las Vegas, NV, USA, June 2016. IEEE.

[3] Han Wang, Linfeng Zhang, Jiequn Han, and Weinan E. Deepmd-kit: A deep

learning package for many-body potential energy representation and molecular

dynamics. Computer Physics Communications, 228:178�184, 2018.

[4] Antti Pihlajamäki, Joonas Hämäläinen, Joakim Linja, Paavo Nieminen, Sami

Malola, Tommi Kärkkäinen, and Hannu Häkkinen. Monte carlo simulations of

au38(sch3)24 nanocluster using distance-based machine learning methods. The

Journal of Physical Chemistry A, 124(23):4827�4836, 2020.

[5] Nils Mönning and Suresh Manandhar. Evaluation of complex-valued neural

networks on real-valued classi�cation tasks. arXiv preprint arXiv:1811.12351,

2018.

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning, chapter 5.

MIT Press, 2016. http://www.deeplearningbook.org, accessed: 01-04-2019.

[7] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9:1735�80, 12 1997.

[8] Alex Graves, Abdel-rahman Mohamed, and Geo�rey Hinton. Speech recognition

with deep recurrent neural networks. In 2013 IEEE international conference on

acoustics, speech and signal processing, pages 6645�6649. Ieee, 2013.

[9] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning

with neural networks. arXiv preprint arXiv:1409.3215, 2014.

58

http://www.deeplearningbook.org

[10] Hasim Sak, AndrewW Senior, and Françoise Beaufays. Long short-term memory

recurrent neural network architectures for large scale acoustic modeling. 2014.

[11] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and

tell: A neural image caption generator. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 3156�3164, 2015.

[12] Parth Kothari, Sven Kreiss, and Alexandre Alahi. Human trajectory forecast-

ing in crowds: A deep learning perspective. IEEE Transactions on Intelligent

Transportation Systems, pages 1�15, 2021.

[13] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term depen-

dencies with gradient descent is di�cult. IEEE transactions on neural networks,

5(2):157�166, 1994.

[14] James Martens and Ilya Sutskever. Learning recurrent neural networks with

hessian-free optimization. In ICML, 2011.

[15] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning, chapter 10.

MIT Press, 2016. http://www.deeplearningbook.org, accessed: 01-04-2019.

[16] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget:

Continual prediction with lstm. Neural computation, 12(10):2451�2471, 2000.

[17] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning, chapter 9.

MIT Press, 2016. http://www.deeplearningbook.org, accessed: 01-04-2019.

[18] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. Imagenet classi�ca-

tion with deep convolutional neural networks. Advances in neural information

processing systems, 25:1097�1105, 2012.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into

recti�ers: Surpassing human-level performance on imagenet classi�cation. In

Proceedings of the IEEE International Conference on Computer Vision (ICCV),

December 2015.

59

http://www.deeplearningbook.org
http://www.deeplearningbook.org

[20] Coenraad Mouton, Johannes C. Myburgh, and Marelie H. Davel. Stride and

translation invariance in cnns. In Arti�cial Intelligence Research, pages 267�

281, Cham, 2020. Springer International Publishing.

[21] Aharon Azulay and Yair Weiss. Why do deep convolutional networks generalize

so poorly to small image transformations? arXiv preprint arXiv:1805.12177,

2018.

[22] Richard Zhang. Making convolutional networks shift-invariant again. In Inter-

national Conference on Machine Learning, pages 7324�7334. PMLR, 2019.

[23] V Dumoulin, F Visin, and GEP Box. A guide to convolution arithmetic for deep

learning. arxiv prepr. arXiv preprint arXiv:1603.07285, 2018.

[24] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning, chapter

19.4. MIT Press, 2016. http://www.deeplearningbook.org, accessed: 01-04-

2019.

[25] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning, chapter 3.

MIT Press, 2016. http://www.deeplearningbook.org, accessed: 01-04-2019.

[26] Christopher Bishop. Mixture density networks. Technical Report

NCRG/94/004, January 1994.

[27] John R. Reitz, Frederick J. Milford, and Robert W. Christy. Foundations of

Electromagnetic Theory (4th Edition). Addison-Wesley Publishing Company,

USA, 4 edition, 2008.

[28] J. J. Sakurai and Jim Napolitano. Modern Quantum Mechanics. Cambridge

University Press, 3 edition, 2020.

[29] Marina Kovacevic, Igor Balaz, Domenico Marson, Erik Laurini, and Branislav

Jovic. Mixed-monolayer functionalized gold nanoparticles for cancer treatment:

Atomistic molecular dynamics simulations study. Biosystems, 202:104354, 2021.

[30] D.A. Case, K. Belfon, I.Y. Ben-Shalom, S.R. Brozell, D.S. Cerutti, T.E.

Cheatham, III, V.W.D. Cruzeiro, T.A. Darden, R.E. Duke, G. Giambasu, M.K.

60

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Gilson, H. Gohlke, A.W. Goetz, R. Harris, S. Izadi, S.A. Izmailov, K. Kasava-

jhala, A. Kovalenko, R. Krasny, T. Kurtzman, T.S. Lee, S. LeGrand, P. Li, C.

Lin, J. Liu, T. Luchko, R. Luo, V. Man, K.M. Merz, Y. Miao, O. Mikhailovskii,

G. Monard, H. Nguyen, A. Onufriev, F.Pan, S. Pantano, R. Qi, D.R. Roe, A.

Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, C. Simmerling, N.R.Skrynnikov,

J. Smith, J. Swails, R.C. Walker, J. Wang, L. Wilson, R.M. Wolf, X. Wu, Y.

Xiong, Y. Xue, D.M. York and P.A. Kollman (2020). Amber 2020, university of

california, san francisco.

[31] Eric Pettersen Tom Goddard Greg Couch Elaine Meng Scooter Morris

Thomas Ferrin, Conrad Huang. Ucsf chimerax, developed by the resource for

biocomputing, visualization, and informatics at the university of california, san

francisco, with support from national institutes of health r01-gm129325 and the

o�ce of cyber infrastructure and computational biology, national institute of

allergy and infectious diseases.

[32] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms

for hyper-parameter optimization. In 25th annual conference on neural informa-

tion processing systems (NIPS 2011), volume 24. Neural Information Processing

Systems Foundation, 2011.

[33] G.R Fowles. Analytical Mechanics, Third Edition, chapter 2. Holt, Rinehart

and Wilson, 1977.

[34] J. J. Sakurai and Jim Napolitano. Modern Quantum Mechanics, chapter Quan-

tum Fields, Relativistic Quantum Mechanics. Cambridge University Press, 3

edition, 2020.

[35] Timothy Dozat. Incorporating nesterov momentum into adam. 2016. https:

//openreview.net/pdf?id=OM0jvwB8jIp57ZJjtNEZ, accessed 2021-06-06.

[36] James Bergstra, Daniel Yamins, and David Cox. Making a science of model

search: Hyperparameter optimization in hundreds of dimensions for vision ar-

chitectures. In Sanjoy Dasgupta and David McAllester, editors, Proceedings

61

https://openreview.net/pdf?id=OM0jvwB8jIp57ZJjtNEZ
https://openreview.net/pdf?id=OM0jvwB8jIp57ZJjtNEZ

of the 30th International Conference on Machine Learning, volume 28 of Pro-

ceedings of Machine Learning Research, pages 115�123, Atlanta, Georgia, USA,

17�19 Jun 2013. PMLR.

62

	Introduction
	Previous Work

	Theory
	A Note on Tensors
	Long Short-Term Memory
	Pooling the LSTM States of Spatially Nearby Particles
	A brief Motivation for using LSTM State Pooling
	Grid Based Sum Pooling
	Distance based filtering
	Limitations
	Stacked State Pooling - An Attempt to Overcome the Limitations in Resolution
	Motivation for using Sum Pooling from a Perspective of Physics

	Convolutional Neural Networks
	Probabilistic Predictions
	Mixture Density Network
	Recurrent Neural Networks and Probability Densities

	Multipole Expansion
	Monopole Approximation
	Dipole Approximation

	A First Experiment
	Data Exploration
	Data Preprocessing
	Model
	Result

	A Second Experiment
	Newtonian Many-Body Mechanics
	Velocity Verlet Integration
	Data Preprocessing
	Model
	Result

	Conclusions
	Suggestions for Future Work

	List of Abbreviations
	References

