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Abstract

A common characteristic of many datasets is the presence of outliers, items
that do not follow the same structure as the rest of the data. If the outliers are
not taken into account it will have negative consequences when the dataset is
used, such as leading to the wrong conclusions. The field of robust statistics
is concerned with finding and dealing with the outliers. This thesis introduces
a novel algorithm for robust regression called SLISE, Sparse LInear Subset
Explanations. SLISE is able to ignore outliers by finding the largest subset of
data items that can be represented by a linear model to a given accuracy.

In this thesis SLISE is compared to existing robust regression methods both
theoretically and empirically. We find that SLISE is as robust as state-of-the-
art methods and is faster on large datasets, which is important with regards
to the ever-growing sizes of modern datasets.

One of the most interesting applications for SLISE is to explain outcomes
from black box models. With the increased use of machine learning these kinds
of models become more and more prevalent, but in many situations the opaque-
ness limits their usefulness. Thus recently there have been a lot of research
into explaining outcomes from black box models. SLISE gives explanations in
the form of local explanations. Local explanations are only valid for one item
or a subset of all possible items but this enables the explanations to focus on
the important features for those specific items.

Similar to many other local explanation methods SLISE gives explanations
in the form of linear models that locally approximate the black box model.
An advantage with SLISE is that no new data or new outcomes are required
contrary to many existing methods that have data-specific mutation processes.
This allows SLISE to account for constraint and structures inherent to the data,

such as conservation laws in physical systems.
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Abbreviations

Anchors Local explanations based on rules [50] (Explainer)
C-Steps Concentration steps [54] (Optimisation)
CNN Convolutional Neural Network (Classifier)

EMNIST Extended MNIST [15]: Dataset of handwritten letters (Dataset)
F1-Score Measure of classification quality (Evaluation)

Fast-LTS Faster LTS [54] (Robust Regression)

FCGI Finnish Grid and Cloud Infrastructure [22] (Computer Cluster)
GDPR General Data Protection Regulation [3] (EU Regulation)
IMDB Internet Movie DataBase [41] (Dataset)

L1-Norm Sum of absolute values, ||z|; = >; |z;| (Regularisation)
L2-Norm Sum of squared values, |z|, = 3, 27 (Regularisation)

LAD Least Absolute Deviation (Regression)

LAD-LASSO LAD with LASSO regularisation [66] (Regression)

LASSO Least Absolute Shrinkage and Selection Operator [62]
(Regularisation)

LIME Local Interpretable Model-agnostic Explanations [49] (Explainer)

LORE LOcal Rule-based Explanations [27] (Explainer)

LR Logistic Regression (Classifier)

LTS Least Trimmed Squares [52] (Robust Regression)

M-Estimator Maximum likelihood type estimates (Robust Regression)
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MES Model Explanation System [63] (Explainer)
MM-Estimator Robust M-ESTIMATOR [67] (Robust Regression)

MM-LASSO MM-ESTIMATOR with LASSO regularisation [59]
(Robust Regression)

MNIST Dataset of handwritten digits [36] (Dataset)
NN Neural Network (Classifier)
OLS Ordinary Least-Squares (Regression)

Quasi-Newton Approximation of the Newton method (Optimisation)
S-Estimator ~ Robust estimates of scales [51] (Robust Regression)

SHAP SHapley Additive exPlanations [40] (Explainer)

SLISE Sparse LInear Subset Explanations [9] (Robust Regression)
Sparse-LTS ~ FAST-LTS with LASSO regularisation [4] (Robust Regression)

SVM Support Vector Machine [16] (Classifier)
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1. Introduction

Practically all real-world datasets contain outliers, items that do not adhere
to the same structure as the rest of the data. These outliers are problematic
when modelling or analysing the data, since even a single outlier can have a
large negative impact on the outcome [32]. It is thus important to use methods
that are robust to outliers. In this thesis I present a novel robust regression
method termed SLISE, Sparse LInear Subset Explanations. Specifically, SLISE
finds the largest subset of data items that can be represented by a linear model
to a given accuracy.

Modern datasets tend to be quite large, both in terms of the number of
items and in the number of variables. Efficient algorithms are crucial, espe-
cially for interactive use, and SLISE is able to outperform many of the existing
robust regression methods on large datasets (shown in Section 4.2). Having
many variables not only affects the running time, but also the interpretabil-
ity. Sparse models (models where some of the coefficients are zero) are easier
to interpret since the zero-coefficients can be ignored [38]. SLISE uses LASSO
regularisation [62] to produce sparse models.

Another feature of modern data science is the increased use of black box
models, such as neural networks. These kinds of models are used since they can
handle more complex data and thus provide better predictions. The downside
is that the inner workings of black box models are often incomprehensible.
Thus there is a growing need of explanations for what the models are doing.
The Ezxplanation part of the the name SLISE comes from that one of the most
interesting applications of SLISE is to explain outcomes from black box models.

Existing explanation methods usually aim for either explaining everything
the black box model might do (a global explanation, i.e., turn it into a trans-
parent model) or just explaining individual decisions (local explanations). The
explanations provided by SLISE are local and SLISE does not require any mod-
ifications to the black box models for it to work.

Existing methods in this niche usually work by perturbing the item being
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explained and then fitting a simpler model to this “neighbourhood”. The
simple model approximates the black box model (locally) and is presented as
the explanation. SLISE does not require the user to design “reasonable” data-
perturbations, but instead uses real data to fit the simple model. Specifically,
SLISE finds the largest subset of data items that can be approximated by a linear
model centred on a selected item. This has the added benefit that the subset
can be used to measure how widely applicable the same explanation is to

different items.

1.1 Disclosure

This thesis is based on a paper [9] where the SLISE algorithm was introduced
for the first time. I am the first author of that paper and have contributed
to all parts of both the paper and the algorithm. This includes the design,
the implementation, and the writing. This thesis is a new and stand-alone
text but it shares some content with the paper, namely some definitions, some
proofs, and some experimental results.

Compared to the paper [9] this thesis contains more theory and related
works for the two main domains, robust regression and opaque model expla-
nations. The thesis also includes improvements to the algorithm in the form
of more proofs and different initialisation alternatives (of at least one is more
robust). Furthermore the thesis extends the experiments with new parameter

experiments and more ways of utilising explanations.

1.2 Contributions and Structure

This thesis presents a novel robust regression method, SLISE, that can be used
for explaining black box decisions. The problem SLISE solves can be described
as finding the largest subset of data items that can be represented by a linear
model to a given accuracy. This problem is NP-hard but SLISE is able to
solve it with a constant approximation ratio. Empiric evaluations on both
real and synthetic datasets show that SLISE outperforms some state-of-the-art
robust regression methods. Furthermore SLISE provides sensible explanations
for black box models and extends existing explanation methods primarily in

the use of real data instead of mutations.
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Figure 1.1: Robust regression example. The outliers in the upper left corner
causes OLS regression to find a suboptimal model while SLISE is able to ignore

the outliers.

The introductory Chapter 1 gives a quick overview of the method and the
two primary domains. The introduction concludes with two example scenar-
ios where SLISE can be used. Chapter 2 introduces the background for these
two domains and discusses related works for both. The formal definition of
the problem follows in Chapter 3 together with the proof that the problem
is NP-hard. The same chapter also presents the algorithm and the numeri-
cal approximations required by the algorithm. SLISE is evaluated empirically
in Chapter 4, using both synthetic and real-world datasets. The goal of the
experiments is threefold, to select optimal parameters, to compare SLISE to
other robust regression methods, and to show how SLISE can be used for ex-
planations. This thesis ends with conclusions in Chapter 5 and a summary in
Swedish in Chapter 6.

1.3 Examples

Next follows two simple examples of using SLISE in the two domains. This not
only demonstrates the usefulness of SLISE but also introduces some topics that

will be expanded upon in the following chapters.

Robust Regression Figure 1.1 shows a two-dimensional dataset with outliers
in the top-left. These outliers causes ordinary least-squares (OLS) regression to
give a model that is a bad fit for most of the points. SLISE, on the other hand,
is largely unaffected by the outliers, by ignoring them, and finds a model that
fits a large subset of the data.

Explaining Black Box Models Table 1.1 shows the probabilities for having a
high income, in a toy dataset, according to a simple classifier. Assume that the

dataset consists of mostly people with a high education, for example, a faculty
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Education

Age low  high

young 0.07 0.31
old 0.22 0.61

Table 1.1: Explanation example. Probabilities of having a high income ac-

cording to a simple classifier.

of a university department. A local explanation task could be to determine
which factor is more important, age or education, for the classification of an
old professor according to the classifier.

Looking at only the class probabilities in Table 1.1 it appears that education
is more important, and this is indeed the explanation, e.g., the state-of-the-art
local explanation method LIME [49] finds. However, knowing the education
level for this person actually gives little information about the class since the
dataset contains almost only people with high education. Instead, in this
dataset, age is a better determinant of high income for the old professor, and
this is what SLISE returns.

The model in Table 1.1 is actually a simple logistic regression’. LIME finds
the largest coefficient in the logistic regression model, whereas SLISE finds the
behaviour of the model in the dataset. The interaction between the model and
the data is thus important, but can make the interpretation of even simple
models non-trivial if the data has complex structures.

This insight is significant because it suggests that one cannot always cleanly
separate the model from the data. An example of this is conservation laws in
physical systems. If the data is accurate then the observations will never vio-
late such laws and the model has no incentive to learn structures outside the
constraints. Thus predictions for data breaking the constraints must be con-
sidered either undefined or random. One may therefore find explanations that
violate the laws of physics if the explanation method does not adhere to the
constraints, or the data. SLISE satisfies these kinds of constraints automati-
cally, because the explanations are based on observing how the model behaves
in the dataset, instead of randomly sampling (possibly non-physical) points
around the item of interest (as in, e.g., [49, 50, 40, 27]).

'Probability of high income is given by p = o(—2.53 + 1.73 - education + 1.26 - age),

where o(x) = 1/(1+ e~ ) is a sigmoid function.
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2. Background

As described in the introduction SLISE is a sparse robust regression method
with applicability to explain decisions made by black box models. The next
chapter contains the in-depth definition of SLISE, while this chapter focuses on

the theory of those two fields, as well as related methods for both.

2.1 Robust Regression

Normal regression is concerned with finding the relationship between one or
more independent variables and one dependent variable. There are many ways
to accomplish this, but one of the most basic methods is ordinary least squares
regression (OLS). OLS regression finds a linear model by minimising the sum
of squared residuals. However it is very common for datasets to have samples
with divergent values, called outliers. The reason these outliers exists can be
anything from measurement errors to structures in the data that the regression
model cannot describe. By squaring the residuals OLS gives a lot of weight to
the outliers, which will affect the final model.

Robust regression methods are regression methods where the presence of
outliers does not affect the results (too much) [53]. This means robust regres-
sors minimise the effects the outliers have on the final model. The example in
Figure 1.1 from the previous chapter shows a clear difference between robust
and non-robust regression. OLS regression is not robust and thus the outliers
have a large impact on the final model. There are multiple possible ways of
accomplishing robustness, but normally the outliers are either de-emphasised
or outright ignored. How the outliers are detected also differs between robust
regression methods.

A popular measure of robustness is the breakdown value [32] which measures
how many of the samples in a dataset must be replaced by outliers in order

to cause an arbitrarily large change in the model. For OLS regression a single
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= = Region with Small Loss

Figure 2.1: Geometric interpretation of Lasso

outlier is enough to cause an arbitrarily large change, which corresponds to
a breakdown value of 1/n, where n is the number of samples [32]. The best
possible breakdown value is 1, but that implies that the model is independent
of the data, which is not very useful. In practise the best breakdown value is
0.5, since if more than half of the data is replaced then the there is no way of
telling which subset is the original one. But methods with smaller breakdown

values may also perform well if the data does not contain a lot of outliers.

2.1.1 Sparsity

Another feature of some regression methods, including SLISE, is the ability to
produce sparse models. Sparse models are models with some of the coefficients
being zero. This is especially useful for large datasets with many variables.
The sparsity makes the models more interpretable, since sparsity helps you
focus your attention on the variables that matter (those with coefficients other
than zero).

Sparsity is often accomplished using a L1-norm on the model coefficients
(llefly = Xilas|), which is also known as LASSO regularisation [62]. LASSO
(Least Absolute Shrinkage and Selection Operator) regularisation can either
be used as a constraint ||af|, < ¢ or by adding it to a loss function with a
Lagrange multiplier A||la||;. Here a is a vector that contains the coefficients
for the regression model and ¢, A\ > 0 are regularisation parameters.

The easiest way to show how LASSO regularisation produces sparse models
is through a geometric interpretation, shown in Figure 2.1. The square repre-
sents the allowed area where ||| <t and if the optimal non-sparse solution is
outside the constraint then the boundary of the low-loss region, exemplified by
the dashed-lines, is more likely to tangent the corners (sparse solutions) than

the sides [62]. This is in contrast to using a L2-norm (Tikhonov regularisation
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Method Robust Breakdown Sparse Outliers
OLS No 1/n No Emphasised
LASSO [62] No 1/n Yes Emphasised
LAD Maybe 1/n No De-emphasised
LAD-LASSO [66] Maybe 1/n Yes  De-emphasised
MM-ESTIMATOR [67] Yes 0.5 No Penalised
MM-LASSO [59] Yes 0.5 Yes Penalised
LTS [54] Yes 0.5 No Ignored
SPARSE-LTS [4] Yes 0.5 Yes Ignored
SLISE [9] Yes <0.5 Yes Ignored

Table 2.1: Summary of some related robust regression methods

/ Ridge regression) where the boundary |||, < ¢ is a circle and no point is

more likely to tangent than the rest.

2.1.2 Related Methods

Below follows descriptions for a couple of robust regression methods. They
are selected to be well known, but also representative of different ways of
handling outliers. The discussion naturally includes their breakdown value
and mentions variants which include LASSO regularisation in order to provide
sparsity. Table 2.1 shows a quick overview of some related methods (OLS,
LASSO and SLISE included for comparison). For a more in-depth survey see,
e.g., [53, 59].

Least Absolute Deviation Least Absolute Deviation (LAD) is very similar to
ordinary least squares but replaces the sum of squared residuals with a sum
of absolute residuals. By not squaring the errors LAD is in practise more
robust, which can be seen in, e.g., the robustness experiment in Section 4.2.2.
But LAD has the same breakdown value as OLS (1/n) so it is not robust in a
general case (also shown in Section 4.2.2). Using absolute values introduces
two complications. The solutions are not unique and LAD cannot be solved
analytically [2]. There are, however, multiple efficient iterative methods for
solving LAD, e.g., [56, 8].

Similarly to how OLS regression can be extended with LASSO regularisation

to create LASSO [62] (from where the name origins), LASSO regularisation can
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also be added to LAD to create the sparse LAD-LASSO algorithm [66].

MM-Estimator One of the earliest attempts at creating a robust regression
algorithm is the M-ESTIMATOR which avoids outliers based on maximum like-
lihood estimates. However, it was soon discovered that it has as low a break-
down value as OLS, which suggests that in theory it is not robust [31]. This
lead to the development of the S-ESTIMATOR [51] where the residual scales are
robustly estimated (with similar calculations to the ones in M-ESTIMATOR). S-
ESTIMATOR is a robust regression algorithm with a breakdown value of 0.5, but
it is inefficient [67]. There are many other proposed alternative M-ESTIMATORS
that address the robustness, some even quite recent ones [39, 11], but the most
well known is MM-ESTIMATOR [67]. By using ideas from S-ESTIMATOR for
initialisation MM-ESTIMATOR achieves the same breakdown value of 0.5, but
still keeps the efficiency of M-ESTIMATOR.

The application of LASSO regularisation to create sparse variants of algo-
rithms is something that continues with MM-ESTIMATOR, resulting in MM-

LASSO [59)].

Least Trimmed Squares  Least Trimmed Squares [52] (LTS) takes a different ap-
proach by working with a subset S, of a given size |S| = k where n/2 < k < n.
LTS finds the linear model with the least sum of squared residuals for k& samples
(the subset), the rest n — k samples are ignored. Since LTS considers a subset
of included items, rather than smoothly penalising outliers, it is a combina-
torial problem. LTS has no closed-form solution, but algorithms provide good
approximations. Another problem with (early) LTS was that the approxima-
tion was inefficient, but that was solved with the development of the FAST-LTS
variant [54].

FAST-LTS starts from a number of candidate subsets then iteratively im-
proves them with concentration steps (C-steps). For each step and candidate a
linear model is calculated for the subset using OLS, then the subset is updated
to contain the k samples with the least residuals. This procedure is guaran-
teed to converge since the candidates either remain the same or are improved.
When all candidates have converged (stopped improving) the best model is
selected.

FAST-LTS has also been further enhanced with sparsity by the addition of
LASSO regularisation to create SPARSE-LTS [4].
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2.2 Explaining Classifiers

A surprising application of SLISE is in the field of explaining black box models.
The phrase black box usually refers to machine learning models that are so
complex that it is infeasible to understand their inner workings. But it could
just as well be human experts refusing to offer motivations for their decisions.
This section focuses on answering why you would need explanation, what ques-
tions these explanations answer, and how a couple of existing methods work.

For a more detailed review see, e.g., [28, 45].

2.2.1 The Need for Explanations

The most obvious reason for explanations is to build trust. The name black
box in itself suggest that there is some opaque process going on, so one way
to increase trust is to give insight into what is happening. While trust and
understanding is important in general it is especially important in safety crit-
ical applications, such as in medicine [10]. Beside building trust there are also
some practical reasons for needing explanations.

The European Union recently enacted the General Data Protection Regu-
lation (GDPR [3]) which among other things stipulates the right for citizens
to get an explanation for algorithmic decisions [26]. This is not limited to
black box models, but obviously also covers them. The aim of this require-
ment is not only to increase transparency but also to avoid systematic biases
and discrimination. Discrimination is a known problem in machine learning
[37] and has real consequences, e.g., Amazon did not deploy a new hiring tool
after it showed signs of discrimination [17]. Methods exists for mitigating dis-
crimination [29], but explanations can play a key role in detecting such biases
(28, 49].

One popular type of black box models, deep learning, has been shown to
outperform humans on tasks normally requiring expert knowledge, e.g., in lung
cancer detection [19]. At the same time some established deep learning models
have been shown to be fragile, where imperceptible changes to the input can
cause drastically different results [60, 46, 25]. This would motivate a hybrid
approach with both a trained model and a human expert. This has been
successfully used in, e.g., [65, 42] where the breast cancer detection accuracy

increased from 92.5 % to 99.5 % by introducing a human expert. For the
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Interpretation
Globally Global Global
o Interpretable Post-hoc Model
% Model Explanation | Inspection
;o) Locally Local Local
Interpretable Post-hoc Model
Model Explanation | Inspection

Table 2.2: Explanation categories

hybrid approach to work the model has to share more information than just
the prediction. An explanation would naturally constitute such additional
information.

A black box that is able to give accurate predictions probably has some
internal representation of the data. Being able to extract that information
could help with verifying that what the models is doing is reasonable. Fur-
thermore, if the data is not fully understood then this information could be
used to extend human knowledge. Both of these phenomena could be really
beneficial in, e.g., scientific use-cases, such as when classifying particle-jets in

high energy physics [18, 33].

2.2.2 Types of Explanations

Explanation of opaque models is currently a hot research topic, so naturally
there are a lot of different approaches [28], but they can generally be categorised
based on what they are trying to explain and the scope of the explanations.
The categories are summarised in Table 2.2.

A natural start is to not create black boxes in the first place, and instead use
simpler, interpretable models. Examples of interpretable models would be all
kinds of simple models, such as decision trees and various nearest neighbours
algorithms, but also some more advanced, e.g., Super-sparse Linear Integer
Models [64], and Interpretable Decision Sets [34]. The big drawback with
interpretable models is the same as the reason why we use black boxes; complex
models can solve some (complex) problems better than interpretable models,
and some problems are not at all solvable with current interpretable models.

If you do not want to sacrifice accuracy by simplifying the model then the

next option is to use complex models and try to create explanations for the
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outcomes after training. Contrary to the interpretable models above these
explanations usually do not fit all data (global explanation), but rather focus
on a single outcome (local explanation) [49, 28]. Not requiring an explanation
for the whole black box might seem like a big limitation, but in many situation
it is actually the preferred problem to solve. Compare listing all the things that
might lead to cancer to listing the specific risk factors for a certain patient, if
you were that patient then you would most likely be more interested in your
personal factors, i.e., the local explanation.

Note that the explanation example from Section 1.3 uses a globally inter-
pretable model (logistic regression). But due to structures in the data the
variable with most weight in the global model was not the most important one
in all local cases. Thus local explanations are still valuable even if you have
a simple global model, especially if the local explanations are able to account
for structures in the data.

Post-hoc local explanations are usually created by either finding a saliency
map showing the important features or by approximating the complex model
with an interpretable one [28]. The disadvantage with post-hoc explanations is
that they are approximations (also applies to saliency maps), and the explana-
tions can only be as good and expressive as the approximations. Furthermore
when fitting approximations you often need a “neighbourhood” in which the
approximation is valid, and defining this “neighbourhood” is not trivial [45, 27].

It is possible to create explanations for black boxes without using approx-
imations, but they will naturally have more limited scope than any of the ap-
proaches above. Instead of explaining the outcomes model inspection focuses
on specific subprocedures of the black box (local or global). For example, Sen-
sitivity Analysis measures how sensitive the outcome is to changes in the input
variables [28], while Activation Maximisation [21] shows what kind of images
would maximally activate specific layers in a convolutional neural network.
For a survey of different ways of visualising layers in a convolutional neural
network see, e.g., [48].

This brings in a third dimension for the categories [28] (not shown in Ta-
ble 2.2); are the explanations model agnostic or model aware? Model agnostic
explanation methods can be used on any black box, even humans, while model
aware explanation methods uses some feature tied to specific types of models,
e.g., neural networks offer gradients while random forests do not. Interpretable
models can all be considered model aware (since the model is the explanation),

but there exists both agnostic and aware methods for post-hoc explanations
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and inspections. Explanation methods can also be be specialised on differ-
ent kinds of data, but that is largely independent of the categories mentioned

previously.

2.2.3 Interpretability

All of the categories mentioned in the previous section have the same goal,
transferring insights about the black box to a human. This requires the results
to be interpretable. It is impossible to give an exact definition of interpretabil-
ity, since it is subjective [38]. Generally a model is considered interpretable if
it is simple and small [28, 38|, e.g., linear models is easier to interpret than
neural networks but a linear model with thousands of coefficients is usually
not interpretable. The exact level of simplicity and size obviously depends
on the persons doing the interpretation and their expertise [24]. This makes
comparisons between model-families difficult.

Transparency is often used as a synonym to interpretability, and while
these two concepts are not exactly the same thing, transparency can give
additional tools for concretising interpretability. Transparency consists of three
concepts; simulatability, decomposability, and algorithmic transparency [38].
Simulatability refers to the ability for a human to apply a model without
the help of a computer, e.g., follow a decision tree. Decomposability states
that all components, e.g., variables and calculations, should have a natural
description and a reason for being used. Finally, Algorithmic Transparency
extends the transparency to the training of the model [38]. Intuitively, using
a black box model to create (transparent) explanations for another black box
model creates distrust. Algorithmic transparency is this intuition quantified
as a requirement.

Furthermore, the authors of [24, 38] note that the presentation also has
an impact on the interpretability and that the correct choice of presentation
depends on the context. However interpretability is not only about making the
transfer of information easy, but sometimes also about maximising the amount
of information transferred. For example, an expert might not trust too simple
explanations [35]. It is also important to consider how the explanations will
affect the behaviour of the humans seeing them. Seemingly good explanations
will raise the trust in the model, even if it is misplaced. This can lead to more
errors, such as obvious misclassifications, not being detected [47].

While there is much that requires consideration on a case by case basis, a
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couple of high-level properties that explanations preferably should have can be
found in, e.g., [28, 23, 38, 49]. Satisfying all of them at the same time might

not be possible, and selecting the best trade-off depends on the situation.

Interpretability Keeping in mind the discussion above about the difficulty of
measuring the interpretability, the target audience should at least be able to

interpret the explanations.

Accuracy/Fidelity The explanations should match the black box. In the case of
interpretable models this means fitting the data, while approximations should
imitate the black box model. Both cases can be measured with standard

accuracy measures, e.g., Fj-scores.

Informativeness The explanations should give as much information as possi-
ble, with the given representation. This definition is kept vague on purpose
since it depends on the interpreters skills and because this might contradict

the interpretability.

Stability/Generality Explaining similar samples should usually lead to similar
explanations. Furthermore local approximations should be applicable to more

samples than just the one being explained.

2.2.4 Related Methods

Following the categories outlined Section 2.2.2, SLISE creates model-agnostic,
local, post-hoc explanations. Thus all the related methods presented in this
section are from this niche. A quick summary of the methods can be seen
in Table 2.3. For a more complete review of explanations, including methods

from other categories, see, e.g., [28, 45].

LIME Local Interpretable Model-agnostic Explanations [49]. LIME creates a
neighbourhood by mutating the sample to be explained. The mutation is de-
pendent on the data-type, e.g., images are mutated by grouping similar pixels
into “super-pixels” (dimensionality reduction) and randomly replacing individ-
ual super-pixels with a neutral colour (grey). Then all mutations are evaluated
by the black box model and weighted according to the distance to the selected

sample. Finally LIME fits a weighted sparse linear model to the neighbourhood.
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Method Explanation Neighbourhood Generation
LIME [49] Sparse linear model ~Data-specific mutations

SHAP [40] Sparse linear model ~Data-specific mutations
ANCHORS [50] Rules Data-specific mutations

LORE [27] Rules Genetic algorithm

SLISE [9] Sparse linear subset Linear subset

Table 2.3: Summary of some related model-agnostic, local, post-hoc explana-

tion methods

Intuitively, changing the features the model uses for classification will cause a

change in the prediction, which LIME utilises in the explanation.

SHAP  SHapley Additive exPlanations [40]. SHAP generalises LIME and a couple
of other [7, 58| additive feature attribution methods. SHAP extends the previous
works by setting parameters based on theoretical Shapley values, rather than

heuristically. This leads to more stable and accurate explanations.

Anchors ANCHORS [50] addresses two of the issues with LIME; a linear model
is not suitable for all kinds of models and it is unclear if the explanations are
applicable to other samples than the one being explained. The name, AN-
CHORS, refers to the explanations that are in the form of rules constructed
such that almost all samples for which the rules hold have the same classifica-
tion. In the creation of the rules ANCHORS uses a similar mutation process to

the mutations in LIME.

LORE LOcal Rule-based Explanations [27]. The authors of LORE criticise
LIME, and similar methods, for having very uncontrolled mutations. LORE uses
a genetic algorithm for controlling the mutations, mostly by penalising muta-
tions far away from the explained sample according to a normalised Fuclidean
distance measure. This has the added advantage of letting LORE present coun-

terfactuals, i.e., the minimum alternation needed to change the classification.

Other The methods above is just a sample of local, model-agnostic, post-
hoc explainers and, e.g., MES [63] could replace ANCHORS since both give
explanations in the form of rules, but with different algorithms for finding
the rules. Furthermore by not requiring the methods to be model-agnostic

there are more features that the explainers can use, such as when [23] uses
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gradients from a neural network to find good perturbations of the data item
being explained. Finally the authors of [30] states that one needs to be careful
when interpreting linear models. This is especially important for users that
are not familiar with inference, since the model coefficients show how the
model uses the data to infer the outcome and not which (latent) features are
important for the outcome. [30] further offers a way of using the linear model

to find the important latent features.
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3. The SLISE Algorithm

SLISE is a robust linear regression method that finds the largest subset of data
items that can be represented by a linear model to a given accuracy. The
solution to this problem has applications to both global robust linear regression
and local linear regression that approximates the decision surface of a black
box model in the vicinity of a data item. The problem is formally defined in
Section 3.1.

Of the existing robust regression methods SLISE is most closely related to
LTS, and its variants. Both utilise a subset and derive their robustness from
ignoring outliers. However, there is a major difference; in LTS the size of the
subset is fixed a priori while in SLISE the size is dynamic. This breaks the
assumptions needed for the FAST-LTS algorithm and thus a novel algorithm

(SLISE) is developed in Section 3.2 and 3.3.

3.1 Problem Definition

Let (X € R4 Y € R") be a dataset that consists of n pairs {(x;,y:)}",
where z; (the predictor) denotes the ith d-dimensional item (row) in X and
y; (the response) denotes the ith element in Y. Furthermore let € > 0 be the
largest tolerable error and A > 0 be a regularisation coefficient. With this the

main problem can now be stated:

Problem 3.1. Given X € R™¢ Y € R", and non-negative €, \ € R, find the

regression coefficients o € R minimising the loss function

Loss(X,Y, e, \, ) = Z¢=1 H (52 - rf) (rf/n - 52> + Alle];, (3.1)
where the residual errors are given by r; = y; — Tx;, H(-) is the Heaviside
step function satisfying H(u) = 1 if w > 0 and H(u) = 0 otherwise, and
lall, = X%, |ou| denotes the Li-norm. If necessary, the data matriz X has

been augmented with a column of all ones to accommodate the intercept term
of the model.
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Note that this is a combinatorial problem in disguise where we try to find
the largest possible subset S. Using the short form [n] = {1,...,n} Equa-

tion 3.1 can be rewritten, in combinatorial form, as

Loss(X,Y,e, N\, a) =) (rf/n — e2> + M|all, where S = {i € [n] | r} < &%}
i€s (32)
The loss function of Equation 3.1 (and Equation 3.2) thus consists of three
parts; the maximisation of subset size ;. €® = |S|e?, the minimisation of the
residuals 3 ,cg77/n < €%, and the LAsSO-regularisation Al|a||,. The main goal
is to maximise the subset and this is reflected in the loss function, since any
decrease of the subset size has an equal or greater impact on the loss than all

the residuals combined. At the limit of ¢ — oo it follows that S = [n] and

Problem 3.1 becomes equivalent to LASSO [62].

3.1.1 Breakdown Value

In the beginning of this chapter it is mentioned that Problem 3.1 requires a

new algorithm, but it also requires a new proof for the breakdown value.

Theorem 3.1. The breakdown value of SLISE is |Sy|/(2n) < 0.5, where Sy is

the subset given by SLISE when the dataset contains no outliers.

Proof. Following the definition from [32, 53, 20] the breakdown value can be
found by starting with a uncorrupted dataset (Xo,Yy) with no outliers and
then adversarially change the values of a fraction v of the data items into
adversarial values. The breakdown value is the minimum v that can cause an
arbitrarily large deviation in the model.

The subset given by SLISE on (X, Yp) is Sy and on the corrupted dataset
(X,,Y,) the subset is S,. SLISE breaks down when S, consists of corrupted
items (|S,|/n = v). This can happen when |S,| > |Sy \ S,|.! Rearranging
yields v > [Sy \ Su|/n > [So]/2/n. O

The breakdown value for SLISE is thus dependent on the data. If, for
example, the second largest (independent) linear subset is larger than [Sy|/2
then the SLISE breaks down with v > |Sy|/(2n). However the breakdown value
is a measure of worst case, so the theorem still holds. SLISE achieves the largest

possible data-dependent breakdown value if the relation between X, and Yj

1S\ Sy ={ic[n]|icSoAid S}
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is linear (within an error tolerance of €). Then |Sy| = n and the breakdown

value becomes 0.5, which is the practical upper limit for robustness.

3.1.2 Explaining Classifiers

Local explanations require the model to be local to the data item being ex-
plained, (xy,yx) where k € [n]. This can be accomplished with SLISE by
adding an additional constraint to Problem 3.1, requiring that the linear model
passes through this item, ie., yp — o'z, = r, = 0. Centring the data on
this item by using y; — y; — yr and x; — x; — xp for all i € [n] causes
rr = (yp — yx) — @T(xp — x) = 0, which fulfils the constraint. Note that this
also eliminates any potential intercept by setting it to zero. Hence it is suf-
ficient to only consider Problem 3.1 for both finding global regression models
(robust regression) and local regression models (local explanations).

As noted in Section 3.1.1 SLISE works best if the relation between X and
Y is close to linear. Thus, in practise, if a classifier outputs class probabilities
P €10.0,1.0]" we transform them into linear values using a logit transforma-
tion, y; = log(pi/(1 — p;)), for all i € [n]. This yields the vector Y € R™ that
is used with SLISE (or Y — y; in the case of local explanations). Note that this
linear model is comparable to the linear model obtained using normal logistic
regression.

The explanations offered by SLISE thus consist of a linear/logistic regression
that approximates the black box model around the outcome being explained
(g, yx). This is comparable to many of the other local explanation methods
described in Section 2.2.4. Additionally, SLISE also offers a subset of the data
items where the approximation is valid, allowing for an error of maximally .

Further details and examples of explanations are given in Section 4.3.

3.1.3 Complexity

An algorithm approximating Problem 3.1 is developed in the following sections.
The approximation is needed when the number of items grows beyond a trivial

amount due to the complexity of Problem 3.1.
Theorem 3.2. Problem 3.1 is NP-hard and hard to approrimate.

Proof. This can be proven by a reduction to the MAXIMUM SATISFYING LIN-
EAR SUBSYSTEM problem [6, Problem MP10], which is known to be NP-hard.
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The MAXIMUM SATISFYING LINEAR SUBSYSTEM problem is defined as finding
a € Q7 such that as many equations as possible in Xa = y are satisfied, where
X € Z™9 and y € Z". This is equivalent to Problem 3.1 with ¢ = 0 and A = 0.
The MAXIMUM SATISFYING LINEAR SUBSYSTEM problem is not approximable

within n? for some v > 0, according to [5]. O

3.2 Numerical Optimisation

Since Problem 3.1 is NP-hard it has to, in practice, be solved approximately
for all but trivial datasets. The combinatorial Problem 3.1 is relaxed into
an optimisation problem by replacing the Heaviside function with a sigmoid
function o(x) = 1/(1 + e*) and a rectifier function ¢(u) ~ min (0, ). This

allows us to compute the gradient and find o by minimising

B-Loss(X,Y,e, A a) =37 o (8"~ D) & (ri/n—<*) + Allal,,  (33)

where the parameter 5 determines the steepness of the sigmoid. The rectifier
function ¢ is required in order to ensure that large residuals (> ne?) do not
affect the loss, since the sigmoid function never gives zeroes for finite values.
Furthermore the rectifier function needs to be continuous and differentiable,
and is defined as ¢(u) = u for u < —w, ¢(u) = —(v?/w+w)/2 for —w < u < 0,
and ¢(u) = —w/2 for 0 < u, where w > 0 is a small constant. Equation 3.3 is
a smoothed variant of Equation 3.1 (in Problem 3.1) and becomes equivalent

to Equation 3.1 when 8 — oo and w — 0.

3.2.1 Graduated Optimisation

The minimisation of Equation 3.3 is done using graduated optimisation. The
idea behind graduated optimisation is to iteratively solve a difficult optimisa-
tion problem by progressively increasing the complexity [44]. A natural way
to increase the complexity of Equation 3.3 is by gradually increasing the g
parameter. With § = 0 the problem is convex and equivalent to LASSO, while
with § — oo it corresponds to Problem 3.1, which is NP-hard. At each step
(of increasing [ values) the previous value of « is used as a starting point for
finding the new minimum of Equation 3.3.

It is important that consecutive solutions (with increasing [ values) are

close enough for graduated optimisation to work, which is why we derive an
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approximation ratio between solutions with different values of 3. The deriva-
tion starts with the observation that the minimisation of Equation 3.3 can
be rewritten as a maximisation of —f-Loss(X,Y,e,\,«). Furthermore the

L1-regularisation term is unaffected by 3 and is omitted for simplicity.

Theorem 3.3. Given (1,52 > 0, such that 51 < Ba, and the functions
£i(r) = —0(By (= = )6/ — £2), and Gyfa) = S0, f(rs) where

ri =vy; —aTx; and j € {1,2}. The inequality Go(as) < KGy(ay) always
holds where oy = argmax, G1(«a), ay = argmax, Ga(«), and

K = Gi(aq)/ (Ga(on) min, f1(r)/ fa(r)) is the approzimation ratio.

Proof. Let us first argue the non-negativity of f; and f,. The inequalities
o(u) > 0 and ¢(u) < 0 hold for all u € R, thus f;(r) > 0. Now, by definition,
G1(ag) < Gi(aq). We denote rf = y; — adx; and k = min, fi(r)/f2(r), which

allows us the rewrite and approximate:

Gilan) =30 Al =3 far)) ()] far]) = kGa(a).

Then GQ(OCQ) S Gl(ag)/k S Gl(@l)/k’ S GQ(Oél)Gl(Oél)/(k'Gz(Ckl)), and the
inequality from the theorem holds. O]

The approximation ratio K in Theorem 3.3 can be used to select the se-
quence of 3 values (8o = 0, 81, 52 ...). At each step the next 3 value is chosen so

that K stays within a bound specified by the parameter ry,, in Algorithm 3.1.

3.2.2 Stopping Criteria

[terating until f — oo is not possible, so at some point the algorithm has to
stop. The stop should trigger when o(S(e? — r?)) ~ H(e* — r?), i.e. the stop
is dependent on the shape of the sigmoid function. The shape is determined
by both g and . However ¢ is expected to change regularly so a stopping
shape that is independent of ¢ is needed.

The goal is to find a function for SB,.x that works with arbitrary values of
. Assume there exists a pair of values [,py and e, that results in an optimal
stopping shape for the sigmoid function. The two sigmoid functions have the
same relative shape if and only if o (Bnax(€* — (p€)?)) = o (Bopt (€25t — (PEopt)?))
for every value of p € R. The sigmoid function is strictly increasing and can
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trivially be removed from both sides

U(ﬁmaX(€2 - (p€)2)) = U(ﬁopt(‘ggpt - (pgopt)2)>
Brmaxe™ (1 — p?) = 50pt53pt(1 - pz) (3.4)

5max - 6opt5gpt/52 = C/527

where ¢ = Boptegpt is a constant. The actual value of c is empirically determined
in Section 4.1.2.

3.2.3 Approximation Ratio

Theorem 3.2 not only shows that Problem 3.1 is NP-hard, but also that it
is hard to approximate. Using the approximation ratio between two [-Losses
we derive a new approximation ratio between Equation 3.3 and Equation 3.1.
To do that we set By — oo so that fo(r) = —H(e* — r?)(r?/n — €%). Ad-
ditionally we introduce an £* such that fi(r) = —H(e** — 7?)(r?/n — ),
Gi(a) = X0, fo(yi —aTz;), and af = argmin, G5(«). This leads to a new

approximation ratio K «:

Lemma 3.1. The approzimation ratio between o and o is K.« =

Gi(a1)/ (G3(ar)kes) where ke = a(B1(e2 — %)) p(e*? /n — €2) /(e*? /n — £*2).

Proof. The proof is omitted since it exactly mirrors Theorem 3.3 with the
observation that k. = min, fi(r)/f;(r) = min,<.- — fi(r)/(r?/n — £**) which
leads to k.- = o (B1(e2 — *2))p(e*? /n — €2)/(e*?* /n — *2). O

The first goal is to find a value of £* such that the approximation ratio K.« is
minimised. This can be written as ¢* = argmin,. K. = argmax_. G5(ay)k.~,

which leads to

£* = argmax — zn: H(e* —r3)(r?/n— 5*2)U<ﬁ1(€2 _5*82777)/)¢(:22/n —<) (3.5)
& i=1 -

where r; = y; — ajx;. Thanks to the non-continuity of the Heaviside function
the maximum can be found at ¢* = r; for some j € [n]. Furthermore, with
a large large enough n, so that 1/n ~ 0, Equation 3.5 can be simplified to
e ~ argmax, i, H(r] —r7)o(Bi(e* —r7)). We can also assume, without
a loss of generality, that the residuals are sorted so that r? < 72 < ... < r2,
which means that 37, H(r} —r7) = j and €* ~ arg max, j-o(f (e —=17)).
We call o (the optimum for Problem 3.1 with £*) the matching solution.
If the data is subsampled to a constant size then Equation 3.3 has a constant

approximation ratio for the matching solution.
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Theorem 3.4. The matching solution satisfies the inequality

Gi(ad) < K*Gi(aq) where K* = O(logn) is the approzimation ratio.

Proof. By definition K,, > K.« where t € [n], K,, = Gi(a1)/(—= X0, H(r? —
r)(ri/n —ri)ky,), and ky, = o(Bi(e? = r}))¢ (n/n —€?)/(r{/n —r{). This
is the same as in Lemma 3.1. Assuming the residuals are sorted so that

r? <ri<...<r? (the same as above), K,, > K.+ can be rearranged as

o(Bi(e — 7)) < Gilaa)ke- /(= ZH )i /n = 1)o(ri fn — %)/ (ri/n —1{))

< Gi(an)ke /(—t(r} fn — 1§)o(ri /n — €%) [ (ri /n — 1]))
= —Gi(an)ke+/ (to(r /n — £%)).

Inserting this into GGy yields

Gr(a) = =307 (B = r])o(ri/n - <)
<=3 G*(al) /(ng( P/n—e"))e(ri/n — €%
~ Gylank Y,
< Gi(oq) ke~ (logn + 1).
And combined with K.« from Lemma 3.1 this leads to
Ko = Gy(0n)/(G3(n)ker) < Gi(n)her (log n+1)/(Gi(a)her) = lognt1. O

3.3 Algorithm

This section presents the algorithm, SLISE, that approximately solves Prob-
lem 3.1, using the approximations described above. Following the high-level
pseudocode in Algorithm 3.1, SLISE starts with selecting initial values for the
linear model « and the sigmoid steepness 3 (line 3). The second phase of SLISE

is the graduated optimisation (lines 4-7).

3.3.1 Initialisation

In total four alternative initialisation schemes are presented as pseudocode in
Algorithm 3.2 and 3.3. These are later compared empirically in Section 4.1.1.
The first initialisation alternative (Algorithm 3.2, lines 2-5) is to use LASSO-
regression. LASSO-regression is the non-robust counterpart to SLISE. It is also

straight forward to implement since it only requires § = 0 (LASSO is a convex
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1 Parameters: (1) Dataset X € R™4 Y € R",
(2) error tolerance ¢,
(3) regularisation coefficient A,
(4) maximum sigmoid steepness Spax,
(5) target approximation ratio ryax
2 Function SLISE(X, Y, &, A, Bumax, "max)
3 a, 3 < Initialise(X, Y, €, Tmax)
4 while 8 < [ do
5 a < OWL-QN(B-Loss, X, Y, &, A\, a)
L f < [’ such that AppoximationRatio(X, Y, ¢, 3, ', a) = rmax

7 a < OWL-QN(B-Loss, X, Y, &, A\, @)

8 Result: o

Algorithm 3.1: The SLISE algorithm.

problem so the initial o does not matter). However setting § = 0 removes all
notion of a subset, which has a major impact on the loss function.

With § > 0 the problem is no longer convex and the choice of o becomes
important. The second initialisation scheme (Algorithm 3.2, lines 6-9) uses
oLs-regression to find o and the approximation ratio (Theorem 3.3) to select
B (further explained below). However neither OLS nor LASSO is robust.

The third alternative (Algorithm 3.2, lines 10-13) is similar to the second,
but uses a constant « instead. The constant « consists of only zeros, i.e.
starting from a super-sparse solution. The [ is also chosen based on the
approximation ratio (Theorem 3.3).

The final alternative (Algorithm 3.3) is inspired by another robust regres-
sion method, FAST-LTS [54]. A number w,; of candidates are generated of
which the best one is selected. The candidates are generated by drawing ran-
dom subsets (Xg, Ys) and fitting linear models to them (using OLS-regression,
lines 6-7). The probability that at least one of the subsets is free from outliers

“ where o is the fraction of outliers, d the

is given by p =1 — (1 — (1 — 0)%)
number of dimensions, and u the number of candidates. If d is large then u
would also have to be large to compensate for the decreased probability. To
alleviate this issue we create smaller subsets (line 9) and fit the model using
PCA (line 10) when d is large. The best candidate is the one that minimises

the -Loss (lines 11-14).
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1 Parameters: (1) Dataset X € R™4 Y € R",
(2) error tolerance ¢,
(3) target approximation ratio 7pax
2 Function InitialiseLasso(X, Y)
3 « ¢ OrdinaryLeastSquares(X,Y)
4 B+ 0
5 Result: o, g

6 Function InitialiseOLS(X, Y, &, rmax)

7 « 4 OrdinaryLeastSquares(X,Y)

B + ' such that AppoximationRatio(X, Y, ¢, 0, B/, @) = Tmax
9 Result: «,

0]

10 Function InitialiseZeros(X, Y, €, rmax)

11 a+0

12 B+ [’ such that AppoximationRatio(X, Y, e, 0, 5, @) = ryax
13 Result: a, £

Algorithm 3.2: Deterministic initialisation schemes.

3.3.2 Optimisation

With the initial values for a and § we now perform graduated optimisation,
where we gradually increase the value of 5 until we reach fpax (Algorithm 3.1,
lines 4-6). At each iteration we find the o that minimises the -Loss from
Equation 3.3 using the current value of 5 (line 5). This optimisation is done
with OWL-QN [57] which is a quasi-Newton optimisation method with built-in
L1-regularisation. We then increase § (line 6) such that the approximation
ratio K from Theorem 3.3 between the new and old S equals r.c. The ap-
proximation ratio K is translated into code in Algorithm 3.4.

In Equation 3.3 we use the rectifier function ¢ to ensure negativity. This
function requires a constant w that we choose to have a magnitude less than
the smallest positive value that can be expressed with a floating-point num-
ber. This makes ¢(u) numerically equivalent to min(0,u), which is used in
Algorithm 3.4. A minor side-effect of this simplification is that lines 8-10 are
needed to avoid division by zero (which would not happen with the proper ¢).
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1 Parameters: (1) Dataset X € R™4 Y € R",
(2) error tolerance ¢,
(3) target approximation ratio 7pax,
(4) number of candidates iyt

2 Function InitialiseCandidates(X, Y, &, "max, Uinit)

3 a, 3,1+ 0,0,0

4 fori=1,... upy do

5 if d <12 then

6 Xs,Ys < RandomSubset (X, Y, size = d)

7 o/ < OrdinaryLeastSquares(Xg, Ys)

8 else

9 Xg,Ys < RandomSubset (X, Y, size = 10)

10 o/ < InversePCA(OrdinaryLeastSquares(PCA(Xg), Ys))
11 if f-Loss(X, Y, ¢, 0, o/) <! then

12 o+ o

13 f < [’ such that AppoximationRatio (XY, €,0,4,a) ="max
14 l+ p-Loss(X,Y, e 0, a)

15 Result: o, g

Algorithm 3.3: Non-deterministic initialisation scheme.

3.3.3 Complexity

The complexity of Algorithm 3.1 is different than the complexity of Prob-
lem 3.1 and can be derived from pseudocode above. The initialisation has
at most a complexity of O(nd®ui,;;) which is less than the complexity of the
optimisation. There are three main contributors to the complexity of the op-
timisation; the loss function, OWL-QN, and the graduated optimisation. The
evaluation of the loss function has a complexity of O(nd), due to the multi-
plication between the linear model o and the data-matrix X. OWL-QN has a
complexity of O(dp,), where p, is the number of iterations. Graduated optimi-
sation is also an iterative method O(p,), but it only adds the approximation
ratio calculation, which is not dominant O(nd). Combining these complexities
yields a complexity of O(nd?p) for SLISE, where p = p,+p, is the total number

of iterations.
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1 Parameters: (1) Dataset X € R™4 Y € R",
(2) error tolerance ¢,
(3) sigmoid steepness (31, (32,
(4) linear model a
2 Function AppoximationRatio(X, Y, ¢, (1, fa, )
3 | f+< function(r, B) : —o(B(e* —r?))
4 ¢ + function(r) : min(0,r*/n — &?)
5 k < minimize (f(r, £1)/f(r, B2), by adjusting r)

6 fori=1,...,ndo

7 | i Y alx;

8 if >, ¢(r;) =0 then

9 K [ B/ (S f(ri, B2) - k)

10 else

11 K= f i Bu)o(r) [ (5 f (i, B2) (i) - k)

12 Result: K

Algorithm 3.4: Approximation ratio calculation.
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4. Experiments

The experiments have three goals; find good default parameters, compare SLISE
to other robust regression methods, and show that SLISE can produce reason-
able explanations for black box models. This chapter is thus split into three
parts corresponding to those goals. In Section 4.1 suitable default values for
the parameters and a robust default initialisation method are determined em-
pirically. Section 4.2 demonstrates that SLISE is a robust regression method,
that it scales to large datasets better than competing methods, and that it
gives the best solution to Problem 3.1. Finally in Section 4.3 different ways of
utilising SLISE for explaining black box decisions are demonstrated, this also
includes a brief comparison to another local explanation method.

SLISE and all the experiments are implemented in R [43] (version 3.5.1).
The experiments were run on a high-performance cluster [22], where each job
were allocated 4 cores from an Intel Xeon E5-2680 processor running at 2.4 GHz
and 16 GB of RAM. The source code for SLISE and all the experiments is
released under an open source license and is available from

http://www.github.com/edahelsinki/slise.

Datasets The experiments use a combination of real and synthetic datasets.
The real datasets are handwritten digits (EMNIST [15]), movie reviews (IMDB
[41]), and particle jets (PHYSICS, [1]). SYNTHETIC datasets are used when
specific dimensions are needed and are generated as follows. The data matrix
X € R™4 ig created by sampling from a normal distribution with zero mean
and unit variance. The response vector Y € R" is created by y; +— aTx; plus
some normal noise with zero mean and 0.05 variance, where a € R? is one of
nine linear models drawn from a uniform distribution between —1 and 1. Each
of the nine model creates 10% of the Y-values, except one that creates 20%
of the Y-values. This larger chunk should enable robust regression methods
to find the corresponding model. An overview of all the datasets is shown in
Table 4.1.


http://www.github.com/edahelsinki/slise
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Dataset Items Dimensions Type Classifier
EMNIST 40 000 672 image CNN

IMDB 25 000 1000 text LR, SVM
PHYSICS 260 000 4 /324 tabular / image NN/ CNN
SYNTHETIC n d - -

Table 4.1: The datasets used in the experiments. The synthetic dataset can

be generated to any desired size.

Pre-Processing SLISE uses LASSO regularisation for both introducing sparsity
and regularisation. Since LASSO sums the absolute values of the coefficients it
is important that the variables have roughly the same magnitude [62]. Nor-
malising the variables also makes it easier to compare the relative importance
of values when interpreting the explanations. Thus the data matrices X for
all datasets have been normalised.

EMNIST images have 28 x 28 pixels and the values of the pixels are scaled
to be in the range [—1, 1]. Some of the pixels have the same value in all of the
images (mostly in the corners), these pixels are removed and the images are
flattened to vectors of length 672. The tabular version of the PHYSICS dataset is
normalised column-wise by subtracting the mean and dividing by the standard
deviation, while the image version of the PHYSICS dataset is flattened the same
way as the EMNIST dataset. The pipeline for the texts in the IMDB dataset
starts with case normalisation, removal of punctuation, removal of stop words
and stemming. Then, the 1000 most common words are used to form a bag-of-
words model. The obtained word frequencies are divided by the most common
word in each review to account for different review lengths.

The Y-vectors for all datasets are also normalised to allow for easier selec-
tion of error tolerance €. The values are linearly scaled to be approximately
within [—0.5,0.5] based on the distance between the 5% and 95" quantiles.
Note that this is only possible to do automatically if one can be absolutely
certain that less than 5% of the y-values have abnormally large or small values

(such as with classifiers giving probabilities from the range (0, 1)).

Classifiers Five high-performance classifiers have been fitted to the real-world
datasets (see Table 4.1). The classifiers are two convolutional neural networks
(ONN), a normal neural network (NN), a logistic regression (LR), and a support

vector machine (SVM). The outputs from these classifiers are used in every
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Dataset Task € A Subsampling
EMNIST explanation 0.1 2.0 Digits 2,4, 5,7, and 8
IMDB explanation 0.1 1.0 Subsampled to 10 000 x 1000

PHYSICS explanation 0.1 1.0 Subsampled to 10 000 x 4
SYNTHETIC regression 0.1 0.5 Size 1000 x 30

Table 4.2: The datasets used for the parameter experiments.

experiments involving the datasets, not only the explanations. The reason
for this is that regression (SLISE) works better if the response is real-valued
rather than categorical. Categorical values miss the nuances and additional
detail offered by spread-out real-values. As described in Section 3.1.2 the class
probabilities p; from the classifiers are transformed into real numbers using the

logit transformation y; = log(p;/(1 — p;))-

4.1 Parameters

The two most important parameters for SLISE are the error tolerance ¢ and
the sparsity coefficient \. These depend on the use-case and the dataset, and
therefore they must be manually adjusted. Most of the experiments in this
thesis use ¢ = 0.1, which can be seen as a 10 % error tolerance due to the scaling
of Y described above, and the default sparsity is A = 0, i.e. no sparsity.

The default values of the other parameters, and which initialisation scheme
to recommend, are selected based on empirical evidence. Specifically, the selec-
tion is based on the value of the loss function and the running time. Further-
more the datasets in Table 4.1 are randomly subsampled. The use of multiple
smaller datasets better captures the variability of the losses and the running
times with respect to different choices. The properties of the smaller datasets
are given in Table 4.2. For each parameter value the experiments have been

run 160 times (40 times for each of the 4 primary datasets).

4 1.1 Initialisation

In Section 3.3.1 four different schemes for selecting the initial values for the
linear model o and sigmoid steepness 3 are presented. Table 4.3 shows medians

along with the 5" and 95" quantiles for the loss and the running times for every
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Dataset Loss Time [s]
Method 5t Median 95 5t Median 95th
emnist

LASSO -45.18  -41.86 -38.43 95.24  118.59 182.60
OLS -45.22  -41.77  12.15 5.09  100.62 160.65
ZEROS -45.18  -41.79 -38.54 97.21 113.08 180.42

CANDIDATES -45.16 -41.87 -38.58 91.15 106.62 167.13

imdb

LASSO -45.80  -45.42 -44.50 144.68  187.65 314.81
OLS -45.86  -45.39 -44.81 119.51  148.57 203.66
ZEROS -45.78 4548 -44.71 131.66  183.28 282.87

CANDIDATES -45.84  -45.43 -44.69 134.85  171.77 278.32

physics

LASSO -6.88 -6.56  -5.71 0.05 0.09 0.34
OLS -6.90 -6.56  -5.71 0.04 0.07 0.13
ZEROS -6.88 -6.56  -5.71 0.05 0.08 0.18
CANDIDATES -6.90 -6.56  -5.71 0.11 0.15 0.22
synthetic

LASSO -3.95 -3.53  -3.33 0.10 0.13 0.35
OLS -3.95 -3.53  -3.33 0.10 0.12 0.15
ZEROS -3.95 -3.53  -3.33 0.10 0.12 0.14
CANDIDATES -3.95 -3.53  -3.33 0.30 0.33 0.50

Table 4.3: Comparing different initialisation methods for SLISE. Lower values

are better for both losses and times.

combination of dataset and initialisation scheme. No particular method stands
out, which indicates that the combination of graduated optimisation and OWL-
QN yields good performance overall. However, SLISE is an approximation and
can be only be guaranteed to find a local optima (in contrast to finding the
global optima), so knowing possible pitfalls is important when selecting the
initialisation.

Both 1L.ASSO and OLS are non-robust so even a single outlier can lead to
arbitrarily large deviations [32], which may lead to inescapable local optima.
This can be seen in Table 4.3 where the loss value for SLISE with the OLS

initialisation is positive (95 quantile). This is a clear indication of a bad
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local optima. Note that LASSO reduces to OLS with A = 0, so neither of these
initialisation schemes can be recommended as default.

Starting from a vector of ZEROS is more likely to end up in a sparse local
optima (since the starting point is super sparse). But with large enough A the
initial zero-vector becomes a local optima. This makes it easy to detect when
the optimisation has failed to escape a local optima (|||, = 0).

Another sign of a bad local optima is if the progression of growing s is
really short, i.e., if the optimum for the S-Loss with § ~ 0 is almost the
optimum for the -Loss with § ~ [unax. If the relation between X and Y
is very linear then this is not an issue, but otherwise this is usually a bad
local optima that the optimisation cannot escape. This can be detected by the
[-Loss being close to zero, or even positive, due to the subset being tiny.

The initialisation schemes above only provide a single starting point so
even if a bad local optima could be detected there is no solution. The idea
behind the CANDIDATES initialisation scheme is based on detecting very bad
local optima and trying to select the best of the generated CANDIDATES, based
on the $-Loss. But that criteria might not be the best indicator of optimality,
since the matching ¢* for all starting 8:s will be large (see Section 3.2.3) which
means that the local optima might be in a region better suited to a larger ¢.

The number of initial CANDIDATES is a parameter u,;. A larger number
increases the likelihood that a good candidate is found. The results in the
rightmost column of Figure 4.1 show that it is easy to find a sufficiently large
number. The default is to use ui, = 500 (the same as in FAST-LTS [54]), which
is large enough but still results in a reasonably low running time.

To summarise the findings in Table 4.3: When n > d all initialisation
schemes lead to the same result, but even with the high-dimensional datasets
no initialisation is significantly better than the others. The OLS and LASSO
initialisation schemes are non-robust. The CANDIDATES initialisation scheme
is non-deterministic and adds quite a bit of overhead to the small datasets,
but the running times for those are still well below one second. The ZEROS
initialisation is another viable option, but it cannot correct for clearly bad

initialisations. Thus we recommend the CANDIDATES initialisation scheme.

4.1.2 lterations

SLISE incorporates two iterative optimisation methods, OWL-QN and graduated

optimisation. Increasing the number of iterations leads to better results, but
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Figure 4.1: Losses and running times for different parameter values. The
values have been scaled dataset-wise to facilitate comparisons (division by the
maximum absolute value). In each graph all parameters are kept constant at
default values, and only the parameter being investigated is varied. Lower

values are better.

beyond a point there are clear diminishing returns. The number of iterations
in graduated optimisation is determined by the target approximation ratio
max > 1. A larger value results in fewer iterations, but it has to be small
enough to ensure that consecutive iterations have similar optima. However the
optima are found using OWL-QN which is powerful enough to tolerate larger
values of rpax.

The number of iterations in OWL-QN can be controlled by several different
convergence criteria, but the simplest one is to simply limit the number of
iterations i,.c. This has the advantage of ensuring an upper limit on the
number of iterations in the worst-case scenario. Additionally, since OWL-QN is
run multiple times on similar problems there will be a lot of wasted resources
if it is forced to converge each iteration.

The results in the second column of Figure 4.1 indicate that values larger
than rp. > 1.2 looses accuracy. However 7., has to be determined together
with 7, due to the interaction between the two optimisation methods. Fig-
ure 4.2 shows the results from an experiment varying both parameters. The
combination of ., = 1.15 and iy, = 200 yields good results while still being
quite time efficient. Note that the last OWL-QN optimisation (when = fpax)
is allowed to run for four times as many iterations as the optimisation with

smaller (3:s, since the result of that optimisation is the result of SLISE.
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Figure 4.2: Losses and running times for different values of the two parameters

that control the number of iterations. The values have been scaled dataset-wise

by dividing with the maximum absolute value. Lower values are better.

Stopping parameter The iterative optimisation ends when [ reaches a speci-
fied value. It is sufficient that this stopping parameter (., is large enough to
make the shape of the sigmoid function essentially equivalent to a Heaviside
function. As shown in Section 3.2.2, in order to make the shape of the sigmoid
only depend on Sy it has to be defined as Ba.x = ¢/e? where c is a constant.
The results in the leftmost column of Figure 4.1 show that the loss saturates

before Brax = 25/€2, and any larger value just adds running time.

4.1.3 Summary

Based on the empirical evaluations above, the CANDIDATES initialisation scheme
is the most robust one and is the recommended one for SLISE. The default
values for the parameters are SBpax = 25/€2, Tmax = 1.15, imax = 200, and

Uinit = D00. These defaults are used in all the experiments in this thesis.

4.2 Robust Regression

The goal of the regression experiments is to compare SLISE to other robust
regression methods and show that SLISE optimises Problem 3.1. The other
methods in the comparisons are introduced in Section 2.1, but a short summary

can be seen in Table 4.4. All methods are used with default settings, except
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Algorithm Robust Sparse R-Package
SLISE yes yes

FAST-LTS [54] yes no robustbase
SPARSE-LTS [4] yes yes  robustHD
MM-ESTIMATOR. [67] yes no MASS
MM-LASSO [59] yes yes pense
LAD-LASSO [66] maybe yes MTE

LASSO [62] no yes  glmnet

Table 4.4: Properties of the regression methods used in the experiments.

that the LTS variants are used with subsets of size n/2 for the largest possible
breakdown value. Not all methods methods support sparsity, and when they
do, finding an equivalent regularisation parameter, \, is difficult. Hence, unless

otherwise noted, all methods are used with almost no sparsity (A = 1079).

4.2.1 Scalability

First the scalability of the different methods is investigated. Most of the meth-
ods have the same theoretical complexity as SLISE O(nd?p), but even then the
number of iterations p varies wildly. Thus an empirical evaluation is merited.
The emphasis is on scaling to large datasets, since that is when the differences
start to show and matter.

The experiment uses the SYNTHETIC dataset with varying numbers of either
samples n or dimensions d while the other one is fixed. The methods that
support sparsity are used with different A € {0,0.01,0.1,0.5}. Each dataset,
parameter, and size combination is run five times and the mean running times
are presented. We use a time limit of 10 minutes so any so any calculation
that takes more than that, or more than 16GB of RAM, is cancelled.

In the left plot of Figure 4.3 the number of samples is varied (n € {500,
1 000, 5 000, 10 000, 50 000, 100 000}) and the number of dimensions is fixed
(d = 100). SLISE outperforms all robust regression methods except FAST-LTS
on large datasets. This is due to FAST-LTS being the only one to subsample the
data, keeping the running time constant when the number of samples increases.

Figure 4.3 (right) shows the result from varying the number of dimensions
(d € {10, 50, 100, 500, 1 000}) with a fixed number of samples (n = 10 000).

SLISE outperforms all other robust regression methods when d > 10 and is able
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Figure 4.3: Running times in seconds. Left: Varying the number of samples
n with a fixed number of dimensions d = 100. Right: Varying the number of
dimensions d with a fixed number of samples n = 10 000. The cut-off time is

shown using a dashed horizontal line at ¢ = 600 seconds.

to finish in less than 100 seconds, even for a massive 10 000 x 1 000 dataset

(none of the other robust regression methods finished within the time limit).

4.2.2 Robustness

The breakdown value from Section 2.1 gives theoretical values for robustness.
To test the robustness in practise the PHYSICS dataset is used. In the left
plot of Figure 4.4 a fraction of the items are corrupted by replacing the re-
sponse variable with random noise (uniformly distributed between min(Y") and
max(Y)). Each of the robust regression methods are trained on the corrupted
dataset and then the sum residuals for the uncorrupted dataset is calculated
for each model. If the method is robust then the sum of residuals will not
increase as the noise fraction increases, until the fraction becomes too large
and the method breaks down (as expected).

The Y-values in the PHYSICS dataset stem from a non-linear classifier,
which means that the linear robust regression methods might detect outliers
even before explicit outliers are added. This is the reason why the MM-methods
start breaking down before their theoretical 0.5 and why SLISE initially gives
larger residuals than the rest (since internally SLISE ignores some residuals).
Another interesting observation in the left plot of Figure 4.4 is that LAD-
LASSO seems to be quite robust, but this is due to the outliers having the same

magnitude as the non-outliers. SLISE is able to handle a larger noise fraction
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Figure 4.4: Robustness to outliers. The z-axis shows the fraction of noise
and the y-axis the sum of the residuals. Small residuals as the noise increases

indicate a robust method.

than any other method due to the varying size of the subset.

The left plot in Figure 4.4 showcases wertical outliers, i.e. changed Y-
values, but the literature also suggests other types of outliers, such as leverage
points [55] where the X-values are changed. In the right plot the X-values are
replaced with values sampled from a normal distribution with both the mean
and the standard deviation being 4. SLISE and LTS performs best, and both
break down slightly above 0.5. Figure 4.4 also shows why a worst case measure
such as the breakdown value is useful since LAD-LASSO breaks down almost

immediately with leverage points.

4.2.3 Optimality

The two experiments above demonstrate that SLISE is competitive with other
robust regression methods. Left to demonstrate is that SLISE finds a good
solution to Problem 3.1. Since the optimal solution is unknown SLISE is com-
pared to the other methods with the assumption that it provides a significantly
better solution. The experiment uses a SYNTHETIC dataset of size n = 1 000
and d = 30. All robust regression methods are fitted to this dataset and the
resulting models are evaluated using Equation 3.1 with different values of .
The results in Figure 4.5 are normalised with respect to the LASSO model (all
loss-values are divided by the corresponding LASSO-loss) and hence the loss for
LASSO appears constant. SLISE finds the best solutions for € = 0.1, which is
expected since that is the goal of the algorithm.
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Figure 4.5: Optimality of SLISE. Negative loss-values are shown, normalised
with respect to the corresponding loss for OLS. Higher values are better, espe-

cially for SLISE around ¢ = 0.1.

4.3 Explanations

One of the most interesting applications of SLISE is to explain outcomes from
black box models. As is outlined in Section 2.2 SLISE creates post-hoc local ex-
planations. Following a pattern from previous works the explanations are local
approximations of the complex model using a simple model. Two desired prop-
erties for these simple models are simplicity and smallness [38], which SLISE
accomplishes through sparse linear models. Setting SLISE apart from previous
works is the adherence to the data and the meaningful neighbourhoods in the
form of subsets.

The first experiment is a quick comparison to a state-of-the-art explana-
tion method to show that SLISE provides similar explanations, while the rest
of the experiments aim to demonstrate different ways of utilising SLISE for
explanations. The standard way of presenting local explanations would be to
show the approximating model, which allows the user to infer properties that
are important for the classification. With SLISE the demonstrations go beyond
that and also incorporate the subset and properties of the algorithm in order
to extract more information from the black box model.

The experiments use three different types of data; text, image, and tabular.
The previous works presented in Section 2.2.4 usually mutate the sample being
explained with mutations that are often specific to the data type, or even

dataset. In contrast, SLISE works the same way for any type of data, only
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lime Although it might [S€8ml a |bit bizarre to see a ...
simply [enjoy the [fun|. Mary is a street kid ... jolder| William ...
at the time & just on the cusp ... too much of the [plot ...

great| fun| to watch ... are very [good ... |street| scenes ...

slise  Although it might seem a bit bizarre to see a ...
simply |enjoy the [fun. Mary is a street kid ... older William ...
at the time & just on the cusp ... too much of the plot ...

great| fun| to watch ... are very good ... street scenes ...

Figure 4.6: Comparing the explanations from LIME (top) and SLISE (bottom)
on the IMDB dataset with a logistic regression classifier. Parts without any

weight from either model are left out for brevity.

requiring the samples to be turned into real-vectors. This allows for a more

consistent behaviour across data domains.

4.3.1 Classification of Text

The most cited post-hoc local explanation method is LIME [49], which also
provides explanations in terms of sparse linear models. Thus a comparison
between SLISE and LIME is the first step in showing the viability of SLISE
as an explanation method. The comparison uses the IMDB dataset and a
logistic regression classifier trying to determine whether the reviews are positive
or negative. Since both methods provide sparse linear models the sparsity
parameters have been chosen to approximately match (for SLISE A = 0.75 and
for LIME the number of features is 8).

Figure 4.6 show abbreviated explanations from both methods on a review
from the dataset. The explanations are quite similar and mainly highlight
the same words, but the LIME-explanation surprisingly shows that the word
street is important. Street actually has a positive coefficient in the logistic
regression model, but in the dataset the word is quite rare only occurring in
2.6% of the reviews. SLISE takes this into account and priorities more general
words such as enjoy, fun, and great. If the frequency of the word street
were to change (e.g. by adding or removing review with the word) SLISE could
adapt while the LIME explanation stays the same.

Figure 4.7 shows the SLISE explanation for another review. Since the data
is in a bag-of-words form the classifier, a support vector machine, is not able to

model the interaction between the words not and bad. This causes the SVM to
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slise ... in reality, Shemp wasn’t really that [bad. ...

At least he wasn’t as | bad as Joe Besser. ...

The slapstick gags are  hilarious, especially this one scene ...

Figure 4.7: SLISE explaining how the SvM does not model the phrase not bad

as positive.

Number of Samples

000 025 050 075  1.00
Class Probability

Figure 4.8: Left: The digit being explained. Middle: Salience map showing the
regression weights of the linear model found using SLISE. The instance being
explained is overlaid in the image. Purple colour indicates a weight supporting
positive classification of a 2, and orange colour indicates a weight not in support
of classifying the item as a 2. Right: Class probability distributions for the
full dataset and for the found subset S.

falsely classify this review as negative. The explanation is able to explain this
mistake by giving negative weight to the words wasn’t and bad in contexts

where the meaning is actually positive.

4.3.2 Classification of Images

The EMNIST dataset is both high-dimensional and complex while at the same
time easy to visualise (as images) since it consists of handwritten charac-
ters (of which only the digits are used in this thesis, matching the original
MNIST dataset [36]). With this motivation EMNIST is the primary dataset
when demonstrating different ways of utilising SLISE for explanations.

The black box providing the classifications is a simple convolutional neural
network with batch normalisation and max-pooling. Most experiments explain
the same digit, a 2 shown in Figure 4.8. This is done deliberately so that the
insights from every explanation can be compared to and added to previous
insights. SLISE is used with default parameters, € = 0.1, and A = 2. Further-
more the dataset is subsampled so that 50% of the images are 2s and 50% are
of other digits (0-1, 3-9).
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Approximation as explanation SLISE approximates the opaque model with a
sparse linear model. The model coefficients can be used to deduce which
features are important for the classification. The middle image in Figure 4.8
shows a saliency map where every pixel corresponds to a coefficient in the a-
vector. The colour of the saliency map indicate whether a black pixel supports
(purple) or opposes (orange) the classification as a 2. The saturation tells how
important the pixel is for classification (the relative weight in the a-vector).
The most striking feature in the saliency map is the horizontal line at the
bottom. This is indeed quite characteristic for 2s, so it is only natural if the
classifier uses it to detect 2s. The other feature in the saliency map is the
orange area from the middle left to the top right, where 2s tend to be mostly
empty. Note that this explanation is not applicable to all 2s, e.g., the small
orange area at the bottom slightly contradicts 2s with a straight bottom line.
In order to really be able to deduce features that distinguish one class
(e.g., 2) from others one need to verify that the subset given by SLISE contains
items from both classes (e.g., both 2s and other digits). The rightmost plot
in Figure 4.8 shows the class probability distribution for the dataset and for
the found subset, and the subset does indeed contain items from both classes.
All of the explanations shown in this paper have subsets that contain both
classes. In case that does not happen one can try increasing e, decreasing
A, or spreading out the Y-values, e.g., by applying a logit transformation to

probabilities (as described in Section 3.1.2).

Subset as explanation An unique feature of SLISE compared to other local
explanation methods is that the “neighbourhood”; or subset, consists of real
data items. It is thus interesting to examine how this subset can be used to
extract information. The approximation is valid for all items in the subset,
with an error tolerance of . Figure 4.9 shows six digits from the subset overlaid
on the saliency map. The 9 and the 8 are both clearly not classified as 2s (the
probabilities are 0.008 and 0.188) but the figure also shows why the classifier
considers the 8 to be more like a 2 than the 9 (less of the digit is orange and
more of it is purple).

Another interesting question is when is the approximation not valid, in
other words which images are not in the subset. Figure 4.10 shows a scatterplot
of images from the EMNIST dataset. The y-axis are probabilities given by the
classifier while the x-axis are predictions given by the model that SLISE found.

The item being explained is shown on a black background and the subset
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Figure 4.9: Exploring how the model given by SLISE interacts with other
digits in the subset (than the one being explained).

0.97

o
®
%

. Explained

Subset
In Lineup

4
o
@

Classifier Prediction
o
>

0.03

0.01 0.03 0.16 0.53 0.87
SLISE Approximation

Figure 4.10: Exploring how the approximating model found by SLISE interacts
with other digits, both inside and outside the subset (showing 100 digits from
the dataset). The diagonal represents samples well approximated by the linear
model, while those in the top left are undervalued and in the bottom right

overvalued.

lie within the corridor marked with dashed green lines around the diagonal
(where the classifier and approximation agrees). The data items in the top
left and bottom right are not part of the subset and the model is not a valid
approximation for these items. In particular Z-like 2s and L-like 6s are ill-suited

for this approximation.

Modifying the subset size The subset size controls how local the explanations
are. Large subsets lead to more general explanations while smaller subsets tend
to have models with features unique to the subset, which has similar effects to
overfitting. With SLISE the size of the subset controlled by ¢, a larger € leads to
a larger subset. Figure 4.11 shows a multiple saliency maps of approximations
with varying parameters in order of decreasing subset size. The explanations
have only have slight variations, since they all explain the same outcome using
the same dataset. This means the explanation is quite stable which is one
of the desired properties of explanations from Section 2.2.3. Note that when
€ — 00 SLISE becomes equivalent to logistic regression through the item being

explained.
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not 2
is 2

Figure 4.11: Exploring how the variation of parameters (primarily the error

tolerance ¢) affects the explanation.

Proportional Negative Loss

Proportional Negative Loss

Figure 4.12: Comparing the optimality of different epsilon values. Top: A
SYNTHETIC dataset of size n = 1000 and d = 30. Bottom: The EMNIST

dataset.

Another way of investigating the effect of € is with a plot similar to the
optimality experiment (Figure 4.5). Instead of different algorithms Figure 4.12
uses SLISE with different values for € (A = 0). Instead of using LASSO as a base-
line the mean loss at each point is used, i.e. the plots show the improvements
over the mean. This avoids the potentially erratic behaviour of LASSO at low
e-values. The expected behaviour is that models with larger ¢ will be more
general, meaning the peaks will be both wider and shallower. This is indeed
the case with SYNTHETIC data (the top plot).

The bottom plot of Figure 4.12 shows results from the EMNIST dataset.
The models with € > 0.2 are shallower than expected and the peaks are not
at the assigned ¢ values. The simplest reason for this is that the bulk of the
items in the subsets have residuals that are less than the value of the peak
and only a handful items have residuals larger than the peak (and less than

g). Thus the conclusion is that for this dataset ¢ < 0.2 would suffice and be
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Figure 4.13: Answering different questions by changing the dataset. Here we

see what differentiates this 2 from being a 3.

more robust.

Modifying the dataset The dataset used by SLISE has a big impact on the
explanation. This is a deliberate design choice with a motivating example in
Section 1.3. Modifying the dataset is thus also something that can be used to
extract additional information from the classifier. For example, restricting the
dataset to only 2s and 3s, as in Figure 4.13, shows what separates the 2 from
a 3. Compared to the saliency map from Figure 4.8, in this explanation the
bottom curve of 3s “splits” the bottom horizontal line of 2s and the middle

horizontal line of 3s is more emphasised.

Explaining internal layers Since SLISE only requires the data to be in vector-
form it is easy to combine SLISE with other methods. Of the categories from
Section 2.2.2 the model inspection methods are of particular interest, especially
those that visualise internal layers of a neural network. In Figure 4.14 SLISE is
combined with Activation Mazimisation [21]. Activation maximisation is used
to visualise what kind of images would cause the largest activations for the
nodes of an internal layer. This explains the first half of the CNN, up until the
fully connected layers, and SLISE explains the latter half (with A = 9). Note
that the digit being explained is not the same 2 as above but a 3, in order to
show that SLISE also works with different digits.

Activation Maximisation usually starts from random noise that is updated
through gradient descent to maximise the activation of specific nodes. The
CNN classifier contains pooling layers, which means that one can find multiple,
equally good, maximisations where the only difference is spatial shifts. This
is normally not an issue, but in order to make the explanation local to the
data item being explained we prefer to show the shift that is best aligned
with that item. This is accomplished without any alignment constraint on the

convergence by starting the descent from the image being explained with some
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Figure 4.14: Explanation by combining SLISE with activation maximisation
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that visualises nodes from an internal layer of the neural network.

added normal noise (with a variance of 0.05).

In Figure 4.14 the 3 being explained is shown as a outline on top of the
images that would maximally activate the internal nodes. Note that even if
the colour scheme is the same as above the meaning is slightly different, purple
means that the pixels should be filled in order to achieve a large activation while
orange marks pixels that should be empty. The plots below show how much the
3 activates the node, the weight given by SLISE, and the combined impact. The
impact is a multiplication of the node value and the SLISE weight and might
be a more intuitive representation, since a large negative value combined with
a large negative weight actually has a large positive effect (impact) on the
classification rather than the opposite (as seen with the third node).

The first and second node (from the left in Figure 4.14) check for the char-
acteristic empty spaces in 3s. The third node seems to check for a pattern that
is not at all related to 3s, which results in the 3 getting a negative activation
value and a negative weight in « (i.e. a positive value would indicate that
this is not a 3). The fourth node matches curves from 3s and 8s. The fifth
node does not perfectly fit the explained 3 (small value), but it is still useful
in distinguishing 3s from other digits (large weight).

The problem with these kinds of explanations is that one has to interpret
not only a linear model but also multiple saliency maps. In Figure 4.14 only
the nodes with an absolute impact larger than 5% of the total sum of absolute
impacts are shown, in order to reduce the amount of cognitive load required for
the interpretation. Furthermore, the nodes (and thus the saliency maps) might
be matching multiple features and a feature might require multiple nodes,
making the interpretation more difficult. However, Figure 4.14 at least shows

that the features the CNN finds and uses are reasonable.
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Pt QG_ptD QG_axis2 QG_ mult

Jet 1196 0.935 0.002 16
o 0.02 0.15 -0.09 0

Table 4.5: SLISE explanation for why a NN classifies this jet as 94% likely to
be a quark jet. The dataset is of size n = 100 000 and d = 4, and the sparsity

regularisation is A = 997.

4.3.3 Classification of Particle Jets

Some datasets follows a strict generating model that limits which samples are
possible. Explanation methods that do not adhere to the generating model
may produce explanations that also do not follow the generating model, which
would cause domain-experts to distrust the black box model. Furthermore,
the black box model is only trained on data that follows the generating model,
which means that the outcomes for randomly sampled data items will be more
or less random.

One such dataset is the PHYSICS dataset were the laws of physics must
not be violated. SLISE automatically adheres to this constraint by only using
real data to construct the explanations. The dataset contains particle jets
from simulated proton-proton collisions [13]. Jets are created when unstable
particles decay into multiple stable particles and the classification task is to
determine whether the initiating particle was quark or a gluon. Quark and
gluon jets are very similar, but there are some statistical differences [12]. Gluon
jets tend to be wider while quark jets tend to have fewer particles carrying the
most of the energy.

In the first experiment the jets are represented in tabular form with four
physically motivated variables; the number or particles QG_mult, the secondary
axis of an ellipse encompassing the jet QG_axis2, the energy distribution vari-
able QG_ptD, and the total transverse momentum Pt. Table 4.5 shows the local
explanation for a quark jet. The explanation has been confirmed by a particle
physicist to be supported by the underlying physical theory of quark and gluon
jets [9]. Note that a positive weight for QG_ptD means that increasing the value
makes the jet more quark-like while the negative weight for QG_axis2 means
that a small value makes the jet more quark-like. The zero-weight for QG_mult
demonstrates the ability of SLISE to create sparse explanations, but it is not

really needed with only four variables.
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Figure 4.15: Using SLISE to explain the decision of a CNN. The image is a
jet from the PHYSICS dataset where each pixel represents the energy passing
through it. The dataset is of size n = 100 000 and d = 18 x 18, and the sparsity

regularisation is A = 50.

Jets can be represented in multiple different ways. A representation that
has been successful for classification [14, 18, 33] is to map an image to a 2D
plane in a particle detector. The left image of Figure 4.15 shows one such
image where the value of each pixels is equal to the sum of the energies from
all the particles passing through it. The right image shows a saliency map as
the explanation. The explanation follows the reasoning above, gluon-jets tend

to be wider while quark jets tend to have a very energetic centre.
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5. Conclusion

This thesis introduces the SLISE algorithm, a novel robust regression method.
SLISE extends existing robust regression methods especially in terms of scal-
ability, which is important with large datasets. SLISE also introduces a novel
way of discarding outliers by finding a subset of variable size. Additionally
SLISE yields sparse solutions through L.ASSO-regularisation.

This thesis also demonstrates how SLISE can be used to find meaningful and
interpretable explanations for outcomes from black box models. During the
explanation process it is important to take the data distribution into account
and sometimes it is even crucial not to perturb the data, such as when the
data has a strict generating model. SLISE is able to handle both requirements
by only using real data for the explanations instead of relying on mutations.
Furthermore by using real data the interaction between the model and the
data can be accounted for. This is important because even simple models
might have non-trivial local explanations due to that interaction. Additionally,
SLISE works the same way for all data types. This simplicity is important as

it provides consistent operation across data domains.

5.1 Weaknesses and Mitigations

All robust regression methods have their own set of trade-offs that are more or
less appropriate depending on the situation. SLISE achieves robust regression
by ignoring outliers, but may end up also ignoring non-outliers if the value of
¢ is too small. SLISE is an approximative algorithm with a breakdown value
that is dependent on the data, although the experiments show that SLISE
consistently gives good solutions.

One of the advantages of SLISE when creating local explanations is the
inclusion of real data in the explanations, but it is also one of the biggest

weaknesses. If the data is skewed it will affect the explanations. This is
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mitigated in this thesis by subsampling the datasets so that both classes have
the same number of items. Dense clusters of data items are also problematic
and this is mitigated with the use of the logit transformation and additionally
the neural networks use label smoothing [61].

Another strength of SLISE is how well it scales, but it still has a complexity
of O(nd?p). The number of dimensions scales quadratically and can be prob-
lematic for sizes much larger than the 1000 dimensions (the IMDB dataset)
that are demonstrated in this thesis. To speed up such situations one could
use some kind of dimensionality reduction method. Or when explaining the
outcome from a neural network the explanation could start from an internal
layer with fewer dimensions (as demonstrated in Section 4.3.2).

Complex datasets pose an additional problem, SLISE is a robust linear
regression algorithm, which means that if response cannot be predicted by a
linear combination of the variables then SLISE is not applicable. Examples
of such datasets would be anything with a temporal and or spatial structure.
However, if these structures are handled by the data then SLISE could still
be used. This is, e.g., the case with EMNIST where there are clear spatial
structures, but since all images have been centred and scaled SLISE can still

be useful.

5.2 Future Work

There are a couple of directions that future research into SLISE could take.
Anecdotally it seems like the sparsity decreases during the graduated optimi-
sation. This would suggest that A\ is dependent on 3, but finding this depen-
dency is left to future work. The problem could also be solved by not using
the Lagrange multiplier A and instead use the constraint ||af|, < t.

In Section 3.1 it is shown how the loss function always prioritises max-
imising the subset over minimising the residuals, future work could see what
happens if this requirement is relaxed.

Currently SLISE finds one subset and one model, a prospective future gen-
eralisation would be to find multiple subsets with corresponding models. This
would create a completely new type of explanations, global explanations con-

sisting of multiple local explanations.
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5.3 Open Source

SLISE is implemented in R and released under an open source license. The
source code, and the code for all the experiments, is available from

http://www.github.com/edahelsinki/slise.


http://www.github.com/edahelsinki/slise
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6. Sammanfattning

Kannetecknande for manga datamangder ar utstickare, datapunkter som inte
foljer samma monster som resten av datamangden. Dessa punkter ar prob-
lematiska nar man anpassar matematiska modeller till dataméngden, efter-
som redan en utstickare kan leda till oanat stora avvikelser [32]. Losningen ar
att anvanda robusta metoder som kan hantera utstickare. Denna avhandling
presenterar en ny robust regressionsmetod kallad SLISE (Sparse LInear Subset
Explanations).

SLISE introducerades for forsta gangen i en artikel [9] dar jag &r den forsta
forfattaren. Avhandlingen bygger pa artikeln och anvénder sdledes delvis
samma definitioner och bevis. Avhandlingen &r dock en fristdende text som
gar djupare in pa detaljer samt inkluderar forbéattringar och tilligg utover vad

som finns i artikeln.

6.1 Robust regression

Robust regression skiljer sig fran vanlig regression genom forméagan att hantera
utstickare. En demonstration av detta visas i Figur 6.1. Olika robusta regres-
sionsmetoder hanterar utstickare pa olika satt, somliga later bli att prioritera
dem (t.ex. [66]), vissa bestraffar utstickare (t.ex. [51, 59]), och en del helt och
héllet ignorerar dem (t.ex. [52, 54, 4]).

SLISE hittar den storsta mojliga delméangd som bestar av datapunkter som
foljer samma linjara modell till en given precision. SLISE ignorerar saledes
alla punkter utanfér denna delméngd, som antas vara utstickare. SLISE skiljer
sig fran tidigare robusta regressions metoder som ocksa ignorerar utstickare
genom att storleken pa delméngden tillats variera istéllet for att vara given pa
forhand som i, t.ex., [52, 54, 4].



Anton Bjorklund 51

% °, s oLs

L]
/ SLISE
o4
r e . .

Figur 6.1: Utstickarna i ovre vanstra hornet gor att en minsta kvadratre-
gression (OLS) ger ett sdmre resultat 4n SLISE (som &r en robust regressions
metod).

6.2 Forklaringar

Ett av de mest intressanta anvandningsomradena for SLISE ar att forklara
resultat fran svarta lador. Med svarta lador menas maskininlarda modeller
som &r sa komplexa att en manniska inte kan forsta vad de gér. Anvandningen
av dessa modeller &r begriansad i manga situationer pa grund av avsaknaden av
transparens, bland annat for medicinska syften [10]. Detta kan hjalpas genom
forklaringar pa vad som leder till de givna resultaten. For en detaljerad 6versikt
over olika forklaringsmetoder se, exempelvis, [28].

SLISE ger lokala forklaringar for alla sorters modeller utan att andra pa
modellerna. Lokala forklaringar beskriver inte hela modellen, utan endast vad
som leder till enskilda resultat. Detta ar dock ofta vad som onskas, jamfor
exempelvis en lista pa allt som kan orsaka cancer till personliga riskfaktorer.
Andra metoder i denna nisch ér, t.ex., [49, 40, 27, 50].

SLISE forklarar svarta lador genom att approximera de komplicerade mod-
ellerna med en enkel linjar modell. Forklaringen ér giltig for de datapunkter
déar bade den komplexa och den enkla modellen ger samma resultat. Att ap-
proximera komplicerade modeller med enklare ligger som grund fér manga
forklaringsmetoder, t.ex. [49, 40, 27, 50]. Det som skiljer SLISE fran de an-
dra metoderna ar att approximeringarna bygger pa édkta data istéllet for att
muterad data. Fordelen ér att mutationer kan leda till oméjliga situationer,
exempelvis genom att bryta mot fysikens lagar, vilket gor sadana forklaringar

mindre palitliga.
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6.3 Algoritm

Givna en datamingd (X € R™4Y € R") bestdende av n par av {(z; €
R? y; € R)}™,, den maximala tillitna avvikelsen € > 0, samt en regulariser-
ingsparameter A > 0, kan problemet som SLISE loser formellt beskrivas som

att hitta den linjira modell o € R? som minimerar uttrycket

S H (=) (P =) 4 A Jal, (6.1)

dar r; = y; — aTx; ar residualer och H(-) ar Heavisidefunktionen (H(u) = 1
om u > 0 och H(u) = 0 om u < 0). Problemet bestar siledes av tre delar;
maximering av antalet r? < €% minimering av r? f6r de r? < &% och LASSO
[62] regularisering %, |a].

Detta problem ar NP-hart och maste saledes approximeras for icke-triviala
dataméngder. Approximeringen borjar med att ersitta Heavisidefunktionen
med en sigmoidfunktion o(u) = 1/(1 + ). Da kan problemet losas genom
gradvis optimering [44] som &r en iterativ metod som turvis optimerar den
linjara modellen « och turvis okar sigmoidfunktionens lutning, vilket gér den

allt mer lik Heavisidefunktionen.

6.4 Experiment

For den empiriska evalueringen av SLISE anvdnds bade riktiga datamangder
[15, 1, 41] och syntetiska dataméngder. I experimenten déir SLISE jamfors med
andra robusta regressionsmetoder [66, 51, 59, 54, 4] &r SLISE snabbare pa stora
datamangder é&n de andra, dessutom lyckas SLISE matcha de andras robusthet.

I forklaringsexperimenten anvéands bade olika typer av data och olika klas-
sifikationsalgoritmer. SLISE ger liknande forklaringar som andra metoder i
samma nisch och skillnaderna kommer fran att SLISE anvander riktig data
istallet for muterad data for att hitta forklaringarna. Detta leder inte endast
till att SLISE foljer alla begransningar i dataméngden (fysikexemplet frén ovan)
men ocksa att SLISE beaktar strukturer i datamangden. Tillsynes enkla mod-
eller, t.ex. logistisk regression, kan ge oviantat bra resultat for komplicerad
data genom att utnyttja dessa strukturer, sa om strukturerna inte beaktas i

forklaringarna forloras implicita delar av modellerna.
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Figur 6.2: Till hoger &r en prominenskarta som visar vikterna for de olika
pixlarna. Vikterna berdkna nér SLISE forklarar klassifikationen av siffran till
vanster. Lila pixlar innanfér konturen betyder att siffran &r mer lik en tvaa,
medan orangea pixlar innanfér betyder att siffran ar mindre lik en tvaa. De
flesta orangea pixlarna ar utanfér medan de flesta lila ar innanfor sa detta ar

hogst sannolikt en tvaa.

I Figur 6.2 visas ett exempel pa en forklaring, varfor ett faltningsnétverk
anser att siffran ar en tvaa. SLISE forklarar att natverket har identifierat att

tvaor brukar ha ett horisontellt streck i nedre kanten (markerat med lila).

6.5 Slutsatser

SLISE kan maéita sig med andra robusta regressionsmetoder, framférallt nér
det kommer till stora dataméangder. Dessutom ger SLISE meningsfulla fork-
laringar till resultat fran svarta lador och erbjuder ett nytt perspektiv i och
med att dataméngden tas i beaktande. Storsta svagheten med SLISE ar ocksa
beroendet av dataméngden, sa om dataméangden ar skev kommer det paverka
resultatet. Denna design ar dock ett medvetet beslut for att fanga strukturer
i dataméngden. Skevhet kan motverkas genom att balansera och normalisera
dataméngden pa forhand.

Kéllkoden for SLISE och alla experiment finns tillgdnglig som 6ppen kéllkod
fran http://www.github.com/edahelsinki/slise.


http://www.github.com/edahelsinki/slise
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