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Svensk sammanfattning

Låt H(D) beteckna mängden av alla analytiska funktioner f : D→ C definierade i den
öppna enhetsdisken

D =
{
z ∈C : |z| < 1

}
i det komplexa talplanet C. Avsikten med föreliggande avhandling har varit att under-
söka egenskaper hos vissa klassiska linjära operatorer T : X → Y som avbildar mellan
olika Banachrum X ,Y ⊂ H(D) av analytiska funktioner. Operatorerna som studerades
var viktade kompositionsoperatorer uCϕ samt generaliserade Volterra operatorer T ϕg . Dessa
definieras via givna funktioner u,ϕ,g ∈ H(D), ϕ(D) ⊂D, enligt

uCϕ(f )(z) = u(z)f (ϕ(z)), z ∈D, f ∈ H(D),

och

T
ϕ
g (f )(z) =

∫ ϕ(z)

0
f (ξ)g ′(ξ)dξ, z ∈D, f ∈ H(D).

I avhandlingen undersöktes hur operatorteoretiska egenskaper, såsom begränsning, kom-
pakthet, svag kompakthet, egenfunktioner och spektrum, för operatorena uCϕ och T ϕg
beror av funktionsteoretiska egenskaper hos de induserande symbolerna u,ϕ och g, för
olika val av funktionsrum X ,Y ⊂H(D).
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Chapter 1

Introduction

The collection of all analytic functions f : D→C on the open unit disc

D =
{
z ∈C : |z| < 1

}
in the complex plane C is denoted by H(D). Historically, one of the motivations for
confining the study of complex valued functions to those that are defined on the unit
disc is that, by the Riemann mapping theorem, any non-empty simply connected open
subset O of the complex plane such that O , C can be mapped bijectively onto D by
means of some analytic function whose inverse is also analytic.

The purpose of this thesis has been to investigate properties of certain classical linear
operators T : X → Y mapping between various Banach spaces X ,Y ⊂ H(D) of analytic
functions on the unit disc. Namely, we studied weighted composition operators uCϕ
and generalized Volterra operators T ϕg , focusing on operator theoretic properties such as
boundedness, compactness, weak compactness, eigenfunctions and spectrum. All these
notions, although certainly well-known to experts, will be defined and discussed in
detail in chapters 2 and 3 below, in addition to other relevant concepts such as predual
spaces and analytic selfmaps ϕ : D→D of the unit disc.

The text is organized as follows. In chapter 2 we recall some classical Banach spaces
of analytic functions considered in this thesis, and also present a framework consisting
of general axioms imposed on function spaces, as well as present some facts about pre-
dual spaces. Chapter 3 begins with an overview of basic operator theoretic properties,
whereafter we study analytic selfmaps of the unit disc. These selfmaps are then used
to define weighted composition operators, and the main results obtained in the papers
constituting this thesis related to these operators are presented. After that we discuss
the research conducted on the Königs eigenfunction, and finally our results obtained
on the generalized Volterra operator are presented.
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2 CHAPTER 1

1.1 List of publications

The thesis is based on the following publications. The mathematical ideas presented in
the papers I-IV were developed jointly with the co-authors, and the author of this thesis
is responsible for a significant part of the research in each of these.

Paper I T. Eklund, M. Lindström and P. Mleczko, Spectral properties of weighted compo-
sition operators on the Bloch and Dirichlet spaces, Studia Mathematica, Volume 232,
pp. 95-112, 2016.

Paper II T. Eklund, P. Galindo and M. Lindström, Königs eigenfunction for composition
operators on Bloch and H∞ type spaces, Journal of Mathematical Analysis and Ap-
plications, Volume 445, pp. 1300-1309, 2017.

Paper III T. Eklund, P. Galindo, M. Lindström and I. Nieminen, Norm, essential norm
and weak compactness of weighted composition operators between dual Banach spaces
of analytic functions, Journal of Mathematical Analysis and Applications, Volume
451, pp. 1-13, 2017.

Paper IV T. Eklund, M. Lindström, M.M. Pirasteh, A.H. Sanatpour and N. Wikman,
Generalized Volterra operators mapping between Banach spaces of analytic functions,
Monatshefte für Mathematik, pp. 1-19, 2018.
https://doi.org/10.1007/s00605-018-1216-5



Chapter 2

Banach spaces of analytic functions

2.1 Weights

Almost every classical Banach space of analytic functions on the unit disc is defined
via some growth restriction on the functions contained in the space. For some function
spaces, this growth is determined by a weight function. In the literature there are var-
ious definitions regarding which properties such a weight function should satisfy. In
this thesis however, a weight is defined to be a continuous and strictly positive function
v : D→ R such that lim|z|→1 v(z) = 0. In order to be able to prove more interesting re-
sults, one sometimes needs to equip the weights with additional regularity properties.
The weight v is called normal if it is radial, in the sense that v(z) = v(|z|) for every z ∈D,
almost decreasing with respect to |z| and satisfies the conditions

inf
n∈N

v(1− 2−n−1)
v(1− 2−n)

> 0 and inf
k∈N

limsup
n→∞

v(1− 2−n−k)
v(1− 2−n)

< 1. (2.1.1)

Recall that a function f : [a,b]→ R is called almost increasing if there exists a constant
C > 0 such that f (x) ≤ Cf (y) whenever a ≤ x < y ≤ b, and almost decreasing if the same
holds when a ≤ y < x ≤ b. The concept of normality was introduced by Shields and
Williams in the paper [46], where they stated that a radial weight v is normal if there
exist numbers α > β > 0 and 0 < r0 < 1 such that

v(r)
(1− r)α

↗∞ and
v(r)

(1− r)β
↘ 0 as r0 ≤ r < 1 and r→ 1−.

Shields and Williams later on extended their definition of a normal weight in [47],
where they defined a radial weight v to be normal if there are constants α > β > 0
such that the function r 7→ v(r)

(1−r)α is almost increasing and the corresponding function

r 7→ v(r)
(1−r)β is almost decreasing on [0,1). In [18, Lemma 1], Domański and Lindström

showed that this original definition of normal weights is equivalent to the one given in
(2.1.1), under the assumption that the radial weight v is almost decreasing. The two
conditions in (2.1.1) thus ensure that the weight v does not, in some sense, tend too
slowly nor too rapidly to zero at the boundary of the unit disc. The standard weights

3



4 CHAPTER 2

vα(z) := (1 − |z|2)α with α > 0 are clearly normal, whereas for example the weights
vexp,α(z) = exp

(
−1/(1− |z|2)α

)
and vlog,α(z) =

(
1− log(1− |z|2)

)−α
for α > 0 are not. The

weight vexp,α fails to satisfy the first condition in (2.1.1) and vlog,α does not fulfill the
second requirement for normality, see [18, Section 3].

2.2 Classical function spaces

In this section we briefly discuss some basic properties of the classical Banach spaces
of analytic functions on the unit disc considered in this thesis, and provide references
for more detailed information on these spaces. To begin with, the Hardy spaces Hp for
1 ≤ p <∞ consist of all functions f ∈ H(D) such that

‖f ‖Hp = sup
0≤r<1

[
1

2π

∫ 2π

0
|f (reiθ)|pdθ

]1
p

<∞,

and the space H∞ of bounded analytic functions on the unit disc is equipped with the
supremum norm

‖f ‖∞ = sup
z∈D
|f (z)|.

The Hardy spaces are decreasing in size as the exponent grows, meaning that Hq ⊂ Hp

whenever 1 ≤ p ≤ q ≤∞. If f ∈Hp for 1 ≤ p <∞, then one has the pointwise estimate

|f (z)| ≤
‖f ‖Hp

(1− |z|2)
1
p

, z ∈D. (2.2.1)

Every function f ∈Hp has radial limit

f ∗(ζ) = lim
r→1−

f (rζ)

at almost every boundary point ζ ∈ ∂D = {z ∈ C : |z| = 1}, with respect to Lebesgue
measure, and the original function can be recovered from its boundary values f ∗ by
means of the Poisson integral

f (z) = 1
2π

∫ 2π

0
f ∗(eiθ)Pz(θ)dθ, z ∈D,

where Pz(θ) is the Poisson kernel

Pz(θ) =
1− |z|2

|1− zeiθ |2
.

The books [19] by Duren, [26] by Garnett and [32] by Koosis serve as good references
for the Hardy spaces. The weighted Bergman spaces Apα for 1 ≤ p < ∞ and −1 < α < ∞
consist of all analytic functions in the Lebesgue space Lp(D,dAα), where

dAα(z) = (α + 1)(1− |z|2)αdA(z)
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and dA(z) = 1
πdxdy is the normalized area measure on D. We also write Ap for the

unweighted Bergman space Ap0. The norm of f ∈ Apα is given by

‖f ‖Apα =
[
(α + 1)

∫
D
|f (z)|p(1− |z|2)αdA(z)

]1
p

,

and comparing the Hardy and Bergman norms one finds that ‖f ‖Ap ≤ ‖f ‖Hp for every
f ∈ Hp and 1 ≤ p < ∞, showing that Hp ⊂ Ap. As for the Hardy spaces, the weighted
Bergman spaces are also decreasing in size as the power p grows, and if f ∈ Apα then a
corresponding pointwise estimate holds:

|f (z)| ≤
‖f ‖Apα

(1− |z|2)
2+α
p

, z ∈D. (2.2.2)

For more information on Bergman spaces, see the books [20] by Duren and Schuster,
[29] by Hedenmalm, Korenblum and Zhu, and [51] by Zhu. The Dirichlet space D,
treated for example in [25], consists of all functions f ∈ H(D) with derivative f ′ belong-
ing to the Bergman space A2, and the norm is defined as

‖f ‖D =
[
|f (0)|2 +

∫
D

|f ′(z)|2dA(z)
] 1

2

.

The space D is a dense subspace of the Hardy Hilbert space H2, but is not closed in H2.
However, the Dirichlet space can be turned into a Hilbert space by defining the inner
product as

〈f ,g〉D = f (0)g(0) +
∫
D

f ′(z)g ′(z)dA(z), f ,g ∈ D.

Among the most central spaces for this thesis are the weighted Banach spaces of analytic
functions H∞v and H0

v , defined by

H∞v =
{
f ∈ H(D) : ‖f ‖H∞v := sup

z∈D
v(z)|f (z)| <∞

}
,

H0
v =

{
f ∈H∞v : lim

|z|→1−
v(z)|f (z)| = 0

}
,

where v : D → R is a given weight. These growth spaces were first studied by Rubel
and Shields in 1970, see the paper [42]. When dealing with these spaces one sometimes
needs to consider the corresponding associated weights

ṽ(z) =
(
sup

{
|f (z)| : f ∈H∞v and ‖f ‖H∞v ≤ 1

})−1
,

which are in fact weights themselves. In the paper [8], Bierstedt, Bonet and Taskinen
clarified the connection between the associated weights and the growth spaces. Among
other things, they showed that if the weight v is replaced by its associated weight ṽ,
then the spaces H∞v and H∞ṽ are isometrically isomorphic, and so are the spaces H0

v and
H0
ṽ . Moreover, Lusky [35] has shown that H∞v ≈ `∞ and H0

v ≈ c0 for a large class of
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weights including the normal weights. By X ≈ Y we mean that the spaces X and Y are
isomorphic, meaning that there exists a bijective linear map from X onto Y .

The Bloch-type spaces B∞v and B0
v are given by

B∞v =
{
f ∈ H(D) : ‖f ‖B∞v := |f (0)|+ sup

z∈D
v(z)|f ′(z)| <∞

}
,

B0
v =

{
f ∈ B∞v : lim

|z|→1−
v(z)|f ′(z)| = 0

}
.

The classical Bloch space B∞v1
is denoted by B and the little Bloch space B0

v1
by B0. If the

weight v is normal then, by a result of Lusky [34] and using the weightw(z) = (1−|z|)v(z),
one can identify H∞v = B∞w and H0

v = B0
w. This result can be seen as a generalization of

the well-known result by Hardy and Littlewood on the growth of a function and the
growth of its derivative, stating that for any f ∈ H(D) and α > 0 it holds that

f (z) = O
(
(1− |z|2)−α

)
if and only if f ′(z) = O

(
(1− |z|2)−(α+1)

)
, as |z| → 1−.

Finally, the disc algebra A(D) is the space of functions analytic in the unit disc that
extend continuously to the boundary ∂D.

Common for all the spaces presented above is that their norm topologies are finer
than the compact open topology (H(D), co), which is defined to be the smallest topology
on H(D) containing all sets of the form{

f ∈ H(D) : f (K) ⊂U
}
,

where K ⊂D is compact andU ⊂C is open. Convergence in the compact open topology
is equivalent to uniform convergence on compact subset of the unit disc. Hence, if
{fn}∞n=1 is a sequence in any of the Banach spaces X above and ‖fn‖X → 0 then fn

co−−→ 0,
in the sense that

lim
n→∞

sup
z∈K
|fn(z)| = 0

for any compact subset K ⊂D. The compact open topology can be induced by a metric,
or in other words, it is metrizable, see for example [45, Chapter 2, Exercise 7]. This
means for example that it is enough to consider sequences instead of nets when studying
concepts such as continuity of functions or compactness of sets in this topology. The
spaces discussed above also have other properties in common, which is the topic of the
next section.

2.3 General axioms

When studying operators mapping between Banach spaces of analytic functions one
often only needs to use some of the properties that the spaces possess. Many of the
spaces discussed in the previous section, as well as other types of function spaces, have
certain general properties in common, and the calculations can therefore be performed
in a general framework. To introduce the framework used in the papers constituting
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this thesis, let X ⊂H(D) be a Banach space of analytic functions on the unit disc and let
‖ · ‖X denote its norm. The closed unit ball of X will be denoted by

BX =
{
x ∈ X : ‖x‖X ≤ 1

}
.

For any z ∈ D, the point evaluation functional δz : X → C is defined as δz(f ) = f (z) for
f ∈ X . The first assumption adopted is that X contains the constant functions, and
hence all δz are non-zero. We also considered different combinations of the following
conditions on the space X (see [14] or [22]). Below the notation A . B is used to indicate
that there is a positive constant c, not depending on properties of A or B, such that
A ≤ cB. We will also write A � B whenever both A . B and B . A hold.

(I) The closed unit ball BX ofX is compact with respect to the compact open topology.

(II) The point evaluation functionals δz : X → C satisfy lim|z|→1 ‖δz‖X→C
=∞.

(III) The linear operator Tr : X → X mapping f 7→ fr , where fr (z) := f (rz), is compact
for every 0 < r < 1.

(IV) The operators Tr in (III) satisfy sup0<r<1 ‖Tr‖X→X <∞.

(V) The pointwise multiplication operator Mu : X → X satisfies ‖Mu‖X→X . ‖u‖∞ for
every u ∈H∞.

(VI) For every f ∈ X and z ∈D it holds that (1− |z|2)|f ′(z)| . ‖f ‖X ‖δz‖X→C
.

Condition (I) holds for all the spaces mentioned in section 2.2, except forH0
v , B0

v and
A(D). If some space X satisfies condition (I), then the identity map

id:
(
X ,‖·‖X

)
→

(
X , co

)
is continuous and hence the norm topology of X is finer than the compact open topol-
ogy. Another consequence of this is that the point evaluation functionals are continu-
ous with respect to the norm topology on X , or in other words, each δz ∈ X ∗. More-
over, since the functionals δz are co-continuous and (BX , co) is compact, we have for
every z ∈ D that the norm ‖δz‖X→C

is attained at some fz ∈ X with ‖fz‖X ≤ 1, that
is, ‖δz‖X→C

= |fz(z)|. Condition (I) also ensures the existence of a predual space ∗X ,
to be explained in more detail in the next section. The Hardy and Bergman spaces
Hp and A

p
α satisfy all conditions (I)-(VI) for 1 ≤ p < ∞ and α > −1. For example,

from (2.2.1) and (2.2.2) one obtains the functional norms ‖δz‖Hp→C
= (1 − |z|2)−

1
p and

‖δz‖Apα→C
= (1 − |z|2)

−2−α
p , from which we see that (II) is satisfied. However, condition

(II) is not satisfied in H∞ since ‖δz‖H∞→C
= 1. The growth spaces H∞v also satisfy all

conditions (I)-(VI) if the weight v is normal and equivalent to its associated weight
ṽ(z) = ‖δz‖−1

H∞v →C
. The classical Bloch space B and the Dirichlet space D are examples

of spaces which fail condition (V). If some space X does satisfy condition (V), then
H∞ ⊂ X . For more detailed information on the conditions (I)-(VI), see for example [14,
Section 2] or [22, Section 2].
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2.4 The predual space ∗X

Every normed space X can be thought of as a subset of its second dual space X ∗∗. This
natural embedding is carried out by the evaluation map Q(x) = x̂ : X → X ∗∗, where
x̂(`) = `(x) for x ∈ X and ` ∈ X ∗. The evaluation map is always injective, since it is
isometric, but not necessarily surjective. If Q does map X onto X ∗∗, then the space X is
called reflexive and can thus be identified with its second dual. For example each finite-
dimensional normed space is reflexive, and so is every Hilbert space because they are
selfdual due to the Riesz representation theorem. However, usually the Banach spaces
considered in functional analysis are not reflexive, in which case X ∗ is not a predual of
X . To remedy this situation for Banach spaces X ⊂ H(D), one can instead consider the
subset of the dual space X ∗ given by

∗X =
{
` ∈ X ∗ : `|BX is co-continuous

}
. (2.4.1)

If X satisfies condition (I) of the previous section then, by the Dixmier-Ng theorem [38],
∗X becomes a Banach space endowed with the norm induced by the dual space X ∗, and
the evaluation map ΦX : X → (∗X )∗, defined as the restriction ΦX (f ) = f̂

∣∣∣∗X , turns out to
be an onto isometric isomorphism. The space ∗X can thus be thought of as a predual of
X . Moreover, it follows from the Hahn-Banach theorem that the linear span of the set
of all point evaluation functionals is contained and norm dense in ∗X , that is

∗X = spanX
∗{
δz : z ∈D

}
.

See for example [10] for a proof of this fact. The existence of preduals is actually true in
a more general setting than merely Banach spaces of analytic functions on the unit disc.
Kung-Fu Ngs simplification of Jacques Dixmiers original theorem reads as follows:

Theorem 2.4.1. Let (X ,‖·‖X ) be a normed space with closed unit ball BX . Suppose there
exists a (Hausdorff ) locally convex topology τ for X such that BX is τ-compact. Then X itself
is a Banach dual space, that is, there exists a Banach space V such that X is isometrically
isomorphic to the dual space V ∗of V (in particular, X is complete).

Since (H(D), co) is a locally convex topology, one is allowed to apply the Dixmier-Ng
theorem to Banach spaces X ⊂ H(D) satisfying condition (I). The predual space V is
defined in the proof of the theorem above as

V =
{
` ∈ X ∗ : `|BX is τ-continuous

}
,

in resemblance with (2.4.1). We end this section with identifications of the preduals of
the spaces H∞v and B∞v , which are especially important in the context of this thesis.

Lemma 2.4.2. [9, Example 2.1] The closed unit ball of H0
v (respectively B0

v ) is co-dense in
the closed unit ball of H∞v (respectively B∞v ) for any radial weight v.

Proof. The proof of the Bloch case is similar to the H∞v case, so we only prove the latter.
Choose f ∈ BH∞v arbitrarily, let {rn}∞n=1 be some sequence in (0,1) such that rn → 1 as
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n→∞ and define fn(z) := f (rnz). Obviously fn ∈H∞ ⊂H0
v for every n ∈N. To show that

the sequence {fn}∞n=1 is contained in the closed unit ball of H0
v , notice that for each z ∈D

there exists a number λz ∈ ∂D such that |f (rnz)| ≤ |f (λzz)| for every n ∈N. This follows
from the maximum modulus theorem. Hence, by the radiality of v, we have that

‖fn‖H∞v = sup
z∈D

v(z)|f (rnz)| ≤ sup
z∈D

v(λzz)|f (λzz)| ≤ ‖f ‖H∞v ≤ 1,

showing that {fn}∞n=1 ⊂ BH0
v
. To finish the proof we need to show that fn

co−−→ f , so let
K ⊂ D be an arbitrary compact set, let ε > 0 and choose a radius 0 < rK < 1 such that
K ⊂ D(0, rK ). Since f in particular is uniformly continuous on any compact subset of
the unit disc, there exists some number δε,K > 0 such that |f (z) − f (w)| < ε whenever
z,w ∈D(0, rK ) and |z−w| < δε,K . Now if nε ∈N is such that (1− rn)rK < δε,K when n > nε,
then for these integers n it also holds that

sup
z∈K
|fn(z)− f (z)| ≤ sup

|z|≤rK
|f (rnz)− f (z)| < ε,

and the proof is complete.

Theorem 2.4.3. If the weight v is normal, then the predual spaces ∗H∞v and ∗B∞v are both
isomorphic to the sequence space `1.

Proof. By Lemma 2.4.2 and [9, Theorem 1.1 (b)], the restriction map % : ∗H∞v → (H0
v )∗,

mapping ` 7→ `|H0
v , is an isometric isomorphism. Since H0

v ≈ c0 for normal weights v,
we conclude that ∗H∞v ≈ `1. The proof of ∗B∞v ≈ `1 is similar, see for example the proof
of [22, Theorem 5.1].





Chapter 3

Operators on function spaces

This chapter contains the most central results on weighted composition operators, on
the Königs eigenfunctions related to them, as well as on generalized Volterra operators
obtained in the papers constituting this thesis. In order to discuss these topics, we first
recall some basic operator theoretic properties such as compactness, weak compactness
and spectrum, and also study analytic selfmaps of the unit disc which are used to define
the mentioned operators.

3.1 General operator theoretic properties

Let X and Y be normed spaces and let L(X ,Y ) denote the space of all continuous linear
operators mapping from X into Y . We also denote L(X ) := L(X ,X ), with similar abbre-
viation for other collections of operators on the same space X . It is a well-known fact
that a linear operator T : X → Y is continuous if and only if it is bounded, in the sense
that the image T (B) of any bounded subset B of X is a bounded subset of Y , which in
turn is precisely the same as stating that the operator norm

‖T ‖X→Y = sup
{
‖T (x)‖Y : ‖x‖X ≤ 1

}
is finite. In fact, L(X ,Y ) is a normed space equipped with this operator norm, and
furthermore a Banach space if the target space Y itself is a Banach space. In the same
manner, an operator T : X →Y is said to be bounded below if there is some constant c > 0
such that ‖T (x)‖Y ≥ c ‖x‖X for every x ∈ X . The null space of T ∈ L(X ,Y ) is the closed
subspace of X given by

N (T ) =
{
x ∈ X : T (x) = 0

}
and the range of T is denoted by

R(T ) =
{
T (x) : x ∈ X

}
.

If dimR(T ) is finite then the operator T : X → Y is said to have finite rank, and the
collection of all such operators is denoted by F (X ,Y ).

11
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When working with operators mapping between Banach spaces of analytic functions
on the unit disc, one usually only needs to check that the operators are well-defined in
order to ensure that they are bounded.

Theorem 3.1.1. Let X ,Y ⊂H(D) be Banach spaces with norm topologies finer than the com-
pact open topology and assume that T : H(D)→H(D) is a co-co continuous linear operator.
Then T ∈ L(X ,Y ) if and only if T (X ) ⊂ Y . In other words, T : X → Y is bounded precisely
when it is well-defined.

Proof. Assume that T : X → Y is well-defined and let {fn}∞n=1 ⊂ X be a sequence such
that fn → f in X and T (fn) → g in Y . By the assumption on the norm topologies we
then have that fn

co−−→ f and T (fn)
co−−→ g. But since also T (fn)

co−−→ T (f ), we must have that
T (f ) = g and hence T : X →Y is bounded by the closed graph theorem.

An operator T ∈ L(X ,Y ) is compact if the image T (B) is a relatively compact subset
of Y , meaning that the closure T (B) is compact, whenever B is a bounded subset of
X . The set K(X ,Y ) of compact operators mapping from X into Y is a closed subspace
of L(X ,Y ), and hence one can gather operators T ∈ L(X ,Y ) into equivalence classes
T +K(X ,Y ) via the quotient space L(X ,Y )/K(X ,Y ), thus identifying operators differing
only by a compact operator. The essential norm of a bounded linear operator T : X → Y
is defined to be the quotient norm

‖T ‖e,X→Y = ‖T +K(X ,Y )‖L(X ,Y )/K(X ,Y ) = inf
{
‖T −K‖X→Y : K ∈ K(X ,Y )

}
.

As the last expression suggests, the essential norm gives the distance from T to the
compact operators. Notice that sinceK(X ,Y ) is closed in L(X ,Y ), an operator T : X →Y
is compact if and only if ‖T ‖e,X→Y = 0. When the considered spaces X and Y are Banach
spaces, one has the following equivalent characterizations of compact operators. Recall
that a subset of a metric space is totally bounded if for every ε > 0 there exists a finite
number of balls with radius equal to ε covering the set.

Theorem 3.1.2. Let X and Y be Banach spaces and assume that T ∈ L(X ,Y ). Then the
following conditions are equivalent:

(a) The operator T : X →Y is compact.

(b) The image T (B) of any bounded subset B of X is totally bounded in Y .

(c) Every bounded sequence {xn}∞n=1 in X has a subsequence {xnk }
∞
k=1 for which the image

sequence {T (xnk )}
∞
k=1 converges in Y .

Every finite rank linear operator is obviously compact. A Banach space X is said
to have the approximation property if for every Banach space Y the set of finite rank
operators F (X ,Y ) is dense in K(X ,Y ). Alexander Grothendieck described these spaces
in 1955 as the ones on which the identity operator can be uniformly approximated on
compact subsets by finite rank operators:
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Theorem 3.1.3. A Banach space X has the approximation property if and only if for every
compact subset K ⊂ X and every ε > 0 there exists a finite rank operator TK,ε : X → X such
that

sup
x∈K

∥∥∥TK,ε(x)− x
∥∥∥X < ε.

A stronger condition on the space X is the λ-metric approximation property for a
fixed constant λ > 0, where one requires the same thing as in Theorem 3.1.3, but also
that

∥∥∥TK,ε∥∥∥X→X ≤ λ. The sequence spaces c0 and `p for 1 ≤ p ≤∞ have the 1-metric ap-
proximation property, see [27, Section 18.5]. As a consequence, for example the growth
space H∞v has the λ-metric approximation property for some scalar λ > 0 if the weight
v is normal, because then H∞v ≈ `∞. The reason why one cannot choose λ = 1 here is
that the mentioned isomorphism is not necessarily isometric.

The weak topology of a normed space X is the topology σ (X ,X ∗) induced by the dual
space X ∗ as the topologizing family. It is thus the smallest topology on X with respect
to which every element in X ∗ is continuous. A net {xα} in X is said to converge weakly to
x ∈ X , denoted by xα

w−→ x, if limα `(xα) = `(x) for every ` ∈ X ∗. Using this weak topology,
one defines an operator T ∈ L(X ,Y ) to be weakly compact if the image T (B) is a relatively
weakly compact subset of Y , in the sense that T (B) is weakly compact, whenever B is a
bounded subset of X . The collection of weakly compact operators T : X →Y is denoted
byW (X ,Y ), and since obviously all compact operators are weakly compact it holds that

K(X ,Y ) ⊂W (X ,Y ) ⊂ L(X ,Y ).

As in the compactness case, weak compactness of operators can also be characterized
using sequences. The fact that one is allowed to consider sequences instead of nets is
due to the Eberlein-Šmulian theorem.

Theorem 3.1.4. Let X and Y be Banach spaces and assume that T ∈ L(X ,Y ). Then the
following conditions are equivalent:

(a) The operator T : X →Y is weakly compact.

(b) Every bounded sequence {xn}∞n=1 in X has a subsequence {xnk }
∞
k=1 such that the image

sequence {T (xnk )}
∞
k=1 converges weakly in Y .

When considering operators mapping between Banach spaces of analytic functions
on the unit disc, one can under very general assumptions think of compactness and
weak compactness of operators as properties that strengthen uniform convergence on
compact subsets of the unit disc into norm respectively weak convergence in the target
space.

Lemma 3.1.5. [15, Lemma 3.3] Let X ⊂ H(D) be a Banach space satisfying condition (I)
and Y ⊂ H(D) be a Banach space such that point evaluation functionals on Y are bounded.
Assume that T : X → Y is a co-co continuous linear operator. Then T : X → Y is compact
(respectively weakly compact) if and only if {T (fn)}∞n=1 converges to zero in the norm (respec-
tively in the weak topology) of Y for each bounded sequence {fn}∞n=1 in X such that fn → 0
uniformly on compact subsets of D.



14 CHAPTER 3

The concepts of boundedness, compactness and weak compactness transfere natu-
rally to the situation of dual spaces. Namely, to any operator T ∈ L(X ,Y ) there corre-
sponds a dual operator T ∗ : Y ∗→X ∗, defined for ` ∈ Y ∗ and x ∈ X as

T ∗(`)(x) = `(T (x)),

which preserves the mentioned properties. This is stated in Theorem 3.1.6 below, of
which part (b) is due to Juliusz Schauder (1930) and part (c) is also known as the Gant-
macher theorem after Vera Gantmacher (1940).

Theorem 3.1.6. Let X and Y be Banach spaces and let T : X →Y be a linear operator. Then
it holds that

(a) T ∈ L(X ,Y ) if and only if T ∗ ∈ L(Y ∗,X ∗).

(b) T ∈ K(X ,Y ) if and only if T ∗ ∈ K(Y ∗,X ∗).

(c) T ∈W (X ,Y ) if and only if T ∗ ∈W (Y ∗,X ∗).

The weak* topology of the dual X ∗ of a normed space X is the topology σ (X ∗,X )
induced by the image X̂ := Q(X ) = {x̂ : x ∈ X} of X under the canonical embedding
Q : X → X ∗∗ as the topologizing family. It is the smallest topology on X ∗ with respect
to which every element in X̂ is continuous. A net {`α} ⊂ X ∗ converges weak* to ` ∈ X ∗ if
it converges in the topology σ (X ∗,X ), meaning that `α(x)→ `(x) for every x ∈ X . The
weak* topology σ (X ∗,X ) is always included in the weak topology σ (X ∗,X ∗∗) of the dual
space X ∗, which in turn is included in the norm topology of X ∗. Banach spaces X such
that weak and weak* convergence of sequences in X ∗ coincide are called Grothendieck
spaces. For example `∞ has this property. One benefit of using topologies containing
less open sets is that it enables more sets to become compact, as demonstrated by the
Banach-Alaoglu theorem.

Theorem 3.1.7. The closed unit ball BX ∗ of the dual of a normed space X is weak* compact.

Using the weak* topology one can relate weak compactness of operators T ∈ L(X ,Y )
to their dual operators in the following way:

Theorem 3.1.8. Let X and Y be Banach spaces and assume that T ∈ L(X ,Y ). Then the
following conditions are equivalent:

(a) The operator T : X →Y is weakly compact.

(b) The dual operator T ∗ : Y ∗→X ∗ is σ (Y ∗,Y )− σ (X ∗,X ∗∗) continuous.

(c) The range of the second dual operator satisfies T ∗∗(X ∗∗) ⊂ Ŷ .

Again returning to the unit disc, and recalling the predual spaces ∗X discussed in
section 2.4, one can prove the existence of a predual operator S = ∗T under very general
assumptions. The name comes from the fact that the operator (∗T )∗ can be identified
with T since (∗T )∗ = ΦY ◦ T ◦Φ−1

X , as seen below.
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Lemma 3.1.9. Let X ,Y ⊂ H(D) be Banach spaces satisfying condition (I). If the operator
T : X →Y is bounded and the restriction T |BX is co-co continuous, then the operator

ΦY ◦ T ◦Φ−1
X : (∗X )∗→ (∗Y )∗

is σ ((∗X )∗, ∗X ) − σ ((∗Y )∗, ∗Y ) continuous, and consequently there exists a bounded operator
S : ∗Y → ∗X such that T = Φ−1

Y ◦ S
∗ ◦ΦX .

Proof. Choose an arbitrary net {`γ = ΦX (fγ )} ⊂ (∗X )∗ such that `γ
w∗−−→ 0, where each

fγ ∈ X , and let u ∈ ∗Y . We have that u ◦T ∈ ∗X , since if {hn}∞n=1 ⊂ BX is such that hn
co−−→ 0

then T (hn)
co−−→ 0 by assumption, and hence

lim
n→∞

u(T (hn)) = ‖T ‖X→Y lim
n→∞

u

(
T (hn)
‖T ‖X→Y

)
= 0

because u|BY is co-continuous and∥∥∥∥∥∥ T (hn)
‖T ‖X→Y

∥∥∥∥∥∥Y ≤ ‖hn‖X ≤ 1.

Now from (
(ΦY ◦ T ◦Φ−1

X )(`γ )
)
(u) =

(
(ΦY ◦ T ◦Φ−1

X )(ΦX (fγ ))
)
(u)

=
(
ΦY ◦ T (fγ )

)
(u) = u(T (fγ ))

=
(
ΦX (fγ )

)
(u ◦ T ) = `γ (u ◦ T )

it follows that
(ΦY ◦ T ◦Φ−1

X )(`γ )
w∗−−→ 0,

and hence ΦY ◦ T ◦Φ−1
X : (∗X )∗ → (∗Y )∗ is w∗-w∗ continuous. The last statement of the

lemma follows from [36, Theorem 3.1.11].

Now we turn to discuss some basic spectral theory of linear operators. A bounded
linear operator T : X → Y between normed spaces X and Y is said to be invertible in
L(X ,Y ) if there exists an operator T −1 ∈ L(Y ,X ) such that T ◦ T −1 = IY and T −1 ◦ T =
IX , where IX denotes the identity operator on the space X . If such an operator T −1

exists then it has to be unique and is called the inverse operator of T . Using the open
mapping theorem, and assuming thatX and Y are Banach spaces, one can show that T ∈
L(X ,Y ) is invertible if and only if it is both injective and surjective, or in other words,
bijective. It is a well-known fact that operators mapping between finite dimensional
vector spaces V andW are surjective precisely when they are injective. Such operators
can also be viewed as matrices, and if T ∈ L(V ) then one can study its eigenvalues, that is,
the numbers λ ∈ C such that T (v) = λv for some non-zero vector v ∈ V . The concept of
eigenvalues is generalized to the situation of arbitrary Banach spaces X by defining the
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spectrum of an operator T ∈ L(X ) to be the non-empty, compact subset of the complex
plane given by

σX (T ) =
{
λ ∈C : T −λIX is not invertible in L(X )

}
.

The corresponding spectral radius

rX (T ) = max
{
|λ| : λ ∈ σX (T )

}
is the radius of the smallest disc centered at the origin that contains the spectrum, and
it can be computed using the Gelfand formula

rX (T ) = lim
n→∞
‖T n‖

1
n
X→X = inf

n∈N
‖T n‖

1
n
X→X ,

from which one sees that rX (T ) ≤ ‖T ‖X→X . The complement ρX (T ) = C \ σX (T ) of
the spectrum is called the resolvent set and on this one defines the resolvent function
RX : ρX (T )×L(X )→L(X ), mapping (λ,T ) 7→ (T −λIX )−1, which can be expanded into a
Neumann series

RX (λ,T ) = (T −λIX )−1 = −
∞∑
n=0

λ−(n+1)T n

converging in operator norm for |λ| > rX (T ). The resolvent function plays a central role
in functional calculus when defining arbitrary functions f (T ) of operators T ∈ L(X ).
Namely, let FX (T ) be the collection of all complex-valued functions that are analytic in
some open set containing the spectrum σX (T ). Then one defines the image of T under
f ∈ FX (T ) via the Cauchy-type integral

f (T ) = − 1
2πi

∫
Γ

f (λ)RX (λ,T )dλ,

where the integration is performed along some Jordan curve Γ surrounding σX (T ) that
is contained in the domain of analyticity of f . The development of this theory results
for example in the spectral mapping theorem.

Theorem 3.1.10. Let X be a Banach space and assume that T ∈ L(X ). Then for every
f ∈ FX (T ) it holds that

σX (f (T )) = f (σX (T )) =
{
f (λ) : λ ∈ σX (T )

}
.

As an application of the spectral mapping theorem, we have the following result
that might be useful if one for example is about to prove that some spectrum takes the
form of an annulus.

Corollary 3.1.11. Let X be a Banach space and T ∈ L(X ). If µ ∈ C is a number such that
|µ| = rX (T ) and rX (T +µIX ) ≥ 2rX (T ), then µ ∈ σX (T ).
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Proof. By the spectral mapping theorem applied to the function f (z) = z+µ it holds that

σX (T +µIX ) =
{
λ+µ : λ ∈ σX (T )

}
,

and hence one can choose λo ∈ σX (T ) such that |λo + µ| = rX (T + µIX ) = 2rX (T ), where
the last equality follows from the assumptions on the spectral radii. Using the triangle
inequality one gets that |λo| = rX (T ), and since also |µ| = rX (T ) and |λo + µ| = 2rX (T ) we
must have that µ = −(−λo) = λo ∈ σX (T ).

When studying the spectrum σX (T ) it is sometimes useful to divide it into separate
parts, depending on how the operator T −λIX fails to be invertible. The point spectrum

σp,X (T ) =
{
λ ∈ σX (T ) : T −λIX is not injective

}
consists of the eigenvalues of T , and for the values of λ ∈ σX (T ) for which the operator
T − λIX is injective but not surjective one distinguishes between the cases when it has
dense range or not, to obtain the continuous spectrum

σc,X (T ) =
{
λ ∈ σX (T ) \ σp,X (T ) : (T −λIX )(X ) = X

}
and the residual spectrum

σr,X (T ) =
{
λ ∈ σX (T ) \ σp,X (T ) : (T −λIX )(X ) , X

}
.

By definition the sets σp,X (T ), σc,X (T ) and σr,X (T ) are pairwise disjoint and

σX (T ) = σp,X (T )∪ σc,X (T )∪ σr,X (T ).

Another way to look at the spectrum is to write it as the not necessarily disjoint union

σX (T ) = σa,X (T )∪ σr,X (T ),

where the approximate point spectrum

σa,X (T ) =
{
λ ∈C : T −λIX is not bounded below

}
consists of all numbers λ ∈ C for which there exist some sequence {xn}∞n=1 ⊂ X of unit
vectors such that T (xn) −λxn → 0 in the norm of X as n→∞. For this reason they are
also known as approximate eigenvalues, and we obviously have that σp,X (T ) ⊂ σa,X (T ),
and also σc,X (T ) ⊂ σa,X (T ). The approximate point spectrum is interesting partly be-
cause it is a closed set containing the boundary of the spectrum, that is ∂σX (T ) ⊂
σa,X (T ).

As an important example of computing the spectrum, we give the spectrum for com-
pact operators. As mentioned before, compact operators can be thought of as general-
izations of finite rank operators, which is also illustrated through the simplicity of their
spectrum.
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Theorem 3.1.12. Let X be an infinite dimensional Banach space and assume that the op-
erator T ∈ L(X ) is compact. Then the spectrum of T is a countable set given by σX (T ) =
{0}∪σp,X (T ). If the spectrum is countably infinite, say σX (T ) = {λn : n ∈N}, then λn→ 0 as
n→∞.

Now let X be a Banach space and consider the quotient space C(X ) := L(X )/K(X ),
also known as the Calkin algebra, and the corresponding quotient map πX : L(X ) →
C(X ), mapping T 7→ T +K(X ). The algebraic operations in C(X ) are defined for S,T ∈
L(X ) and λ ∈C as follows:

πX (S) +πX (T ) = πX (S + T ), λ ·πX (T ) = πX (λT ) and πX (S)πX (T ) = πX (S ◦ T ),

and the element πX (IX ) serves as the unit of the Calkin algebra. An operator T ∈ L(X )
is said to be essentially invertible if πX (T ) is invertible in C(X ), or equivalently if there
exists an operator S ∈ L(X ) such that both S ◦T − IX ∈ K(X ) and T ◦S − IX ∈ K(X ). It can
be proven that if T ∈ L(X ) is essentially invertible, then the dimension of the null space
N (T ) is finite and there exist a closed subspace V and a finite dimensional subspaceW
of X such that

N (T )⊕V = X = R(T )⊕W .

The restriction T |V : V → R(T ) is bijective, and the operator T is hence in some sense
close to being an isomorphism. The essentially invertible operators actually coincide
with the Fredholm operators, which are defined through the requirements that the nullity
n(T ) := dimN (T ) and defect d(T ) := dimX /R(T ) are both finite.

Using the Calkin algebra, one defines the essential spectrum of an operator T ∈ L(X )
to be the spectrum of πX (T ) in C(X ). In other words, it is the non-empty, compact subset
of σX (T ) given by

σe,X (T ) =
{
λ ∈C : πX (T −λIX ) is not invertible in C(X )

}
,

thus consisting of the numbers λ ∈C such that T −λIX is not a Fredholm operator. The
essential spectral radius

re,X (T ) = max
{
|λ| : λ ∈ σe,X (T )

}
can be computed in a similar fashion as the spectral radius by iterating the operator and
taking limits

re,X (T ) = lim
n→∞
‖T n‖

1
n
e,X→X = inf

n∈N
‖T n‖

1
n
e,X→X ,

and hence it holds that re,X (T ) ≤ ‖T ‖e,X→X , and obviously also re,X (T ) ≤ rX (T ). Points
λ ∈ σX (T ) such that |λ| > re,X (T ) are necessarily eigenvalues of the operator T as the
following result shows.

Theorem 3.1.13. Let T : X → X be a bounded linear operator on a complex Banach space
X and assume that λ ∈ σX (T ) \ σe,X (T ). If there is a path lying outside of σe,X (T ) joining λ
with a point in the resolvent set ρX (T ), then λ is an isolated point of the spectrum and hence
belongs to σp,X (T ).
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For more thorough treatments of linear operators mapping between Banach spaces,
see for example the books by Abramovich and Aliprantis [1], Megginson [36] and Müller
[37]. A good reference for operator theory in function spaces is the monograph [51] by
Zhu.

3.2 Analytic selfmaps of the unit disc

One of the main objects of study in this thesis are composition operators, which are
defined via analytic selfmaps ϕ of the unit disc. As the name itself tells, we are requiring
that such a function satisfies ϕ ∈ H(D) and ϕ(D) ⊂ D. In this subsection we discuss
some basic properties of these selfmaps, mainly focusing on their iterative behaviour.
To begin with, recall that the bijective analytic selfmaps ϕ : D→D, also known as au-
tomorphisms of the unit disc, are given precisely by the linear fractional transformations
of the form

z 7→ λψp(z),

where p ∈D and |λ| = 1 are given constants and

ψp(z) =
p − z

1− pz
. (3.2.1)

The automorphism ψp is particularly useful because it is selfinverse, that is ψ−1
p = ψp,

and interchanges the points 0 and p in the sense that ψp(0) = p and ψp(p) = 0. The
collection of disc automorphisms will be denoted by Aut(D). Every non-constant linear
fractional transformation, of the form

z 7→ az+ b
cz+ d

where a,b,c,d ∈ C are constants such that ad − bc , 0, has at least one and at most two
fixed points in the extended complex plane C∪{∞}, except for the identity map id(z) = z
which of course fixes every point. The non-trivial elements of Aut(D) are classified
based on their fixed point configuration as follows: ϕ ∈ Aut(D)\{id} is called elliptic if it
has a fixed point in D and another fixed point in the extended complex plane outside of
the closed unit disc D, parabolic if it has only one fixed point that lies on the boundary
∂D, and hyperbolic if it has two fixed points on the unit circle ∂D. These are the only
possibilities for automorphic selfmaps. The mentioned fixed points will be discussed in
more detail in connection with the Denjoy-Wolff theorem, which is presented at the end
of this section, see Theorem 3.2.3.

The situation becomes more complicated when the analytic selfmap ϕ : D→ D is
not assumed to be bijective. However, there are still much that can be said in this
general case. For example, the analytic selfmaps are always contractive in the pseudo-
hyperbolic metric

%(z,w) = |ψw(z)| =
∣∣∣∣ w − z1−wz

∣∣∣∣ ,
as shown by the Schwarz-Pick inequality.
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Theorem 3.2.1. If ϕ : D→D is an analytic selfmap of the unit disc, then for every z,w ∈D
we have that

%(ϕ(z),ϕ(w)) ≤ ρ(z,w),

where equality holds for some pair z , w if and only if ϕ is an automorphism.

The pseudohyperbolic metric has proven to be the appropriate distance measure
for studying selfmaps of the unit disc. Among other things, it is a central tool in the
machinery used to prove the Julia-Carathéodory theorem, given in Theorem 3.2.2 below.
In order to state this result, we need some additional terminology. For a given boundary
point ζ ∈ ∂D and angle 0 < α < π, we define the non-tangential approach region Ω(ζ,α)
to be the convex hull

Ω(ζ,α) = conv
(
D
(
0,sin

(
α
2

))
∪ {ζ}

)
,

which is a subset of the unit disc that forms a sector with angle α at the vertex ζ.
A function f : D → C is said to have non-tangential limit L at ζ ∈ ∂D, denoted by
∠ limz→ζ f (z) = L, if the limit

lim
z→ζ,z∈Ω(ζ,α)

f (z)

exists and equals L for every angle 0 < α < π. An analytic selfmap ϕ of the unit disc is
defined to have angular derivative ϕ′(ζ) at a boundary point ζ ∈ ∂D if the non-tangential
limit

ϕ′(ζ) = ∠ lim
z→ζ

ϕ(z)− η
z − ζ

(3.2.2)

exists for some η ∈ ∂D. An obvious necessary condition for the limit (3.2.2) to exist is
that ∠ limz→ζϕ(z) = η, and hence there is no ambiguity in the definition of the deriva-
tive ϕ′(ζ). The existence of angular derivatives is clarified by the Julia-Carathéodory
theorem.

Theorem 3.2.2. Let ϕ : D→D be an analytic selfmap of the unit disc and let ζ ∈ ∂D. Then
the following statements are equivalent:

(1) The limit infimum d(ζ) := liminfz→ζ
1−|ϕ(z)|

1−|z| , where z approaches ζ unrestrictedly in
the unit disc, is finite.

(2) The angular derivative ϕ′(ζ) = ∠ limz→ζ
ϕ(z)−η
z−ζ of ϕ exists at ζ for some η ∈ ∂D.

(3) Both ϕ and ϕ′ have non-tangential limits at ζ, and ∠ limz→ζϕ(z) ∈ ∂D.

When these conditions hold, then ∠ limz→ζϕ(z) = η and

∠ lim
z→ζ

ϕ′(z) = ϕ′(ζ) = ∠ lim
z→ζ

ϕ(z)− η
z − ζ

= d(ζ)ζη,

where d(ζ) also can be obtained as the non-tangential limit

d(ζ) = ∠ lim
z→ζ

1− |ϕ(z)|
1− |z|

.
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When dealing with selfmaps ϕ : D→ D, it is customary to denote the n-fold com-
position of ϕ with itself by ϕn, that is

ϕn := ϕ◦n = ϕ ◦ϕ ◦ · · · ◦ϕ︸          ︷︷          ︸
n times

, n ∈N,

with ϕ0 representing the identity map. This convention will only be adopted for the
symbol ϕ, otherwise subscripts are used for standard enumeration of sequences. The
characterization of angular derivatives above has played a key role in the study of the
asymptotic behaviour of the sequence {ϕn}∞n=0. It turns out that the iterations of almost
any analytic selfmap of the unit disc, except for the elliptic automorphisms discussed
earlier, converge to some fixed point in D, even uniformly on compact subsets of the
unit disc provided that ϕ is not the identity map, as the Denjoy-Wolff theorem below
summarizes. For a proof, see the book by Shapiro [45, Chapter 5]. With a boundary fixed
point of ϕ we mean a point ζ ∈ ∂D such that ∠ limz→ζϕ(z) = ζ.

Theorem 3.2.3. Suppose ϕ is an analytic selfmap of D that is not the identity map nor an
elliptic automorphism.

(1) If ϕ has a fixed point p ∈D, then it is unique, |ϕ′(p)| < 1 and ϕn
co−−→ p.

(2) If ϕ has no fixed point in D, then there is a unique point ω ∈ ∂D, called the Denjoy-
Wolff point of ϕ, such that ϕn

co−−→ ω. Furthermore, ω is a boundary fixed point of ϕ
and the angular derivative exists at ω with 0 < ϕ′(ω) ≤ 1.

(3) If ω ∈ ∂D is the Denjoy-Wolff point of ϕ and ϕ′(ω) < 1, then the sequence {ϕn(z)}∞n=0
of iterates converges non-tangentially to ω for each z ∈D.

By means of the Denjoy-Wolff theorem, one can actually say more about the fixed
points of parabolic and hyperbolic automorphisms discussed earlier. Namely, if ϕ ∈
Aut(D) is parabolic, then the unique fixed point ω on the unit circle ∂D is actually the
Denjoy-Wolff point of ϕ, and for this it holds that ϕ′(ω) = 1. The iterations {ϕn(z)}∞n=0
approach ω along an oricycle, that is, along the boundary circle of a horodisc

H(ω,λ) =D
( ω

1 +λ
,
λ

1 +λ

)
,

which is contained in D and tangent to the unit circle at ω. Here λ > 0 is some constant
determined by the initial point of the iteration. If ϕ is a hyperbolic automorphism, with
Denjoy-Wolff point ω ∈ ∂D and the other fixed point γ ∈ ∂D, then 0 < ϕ′(ω) < 1 and
ϕ′(γ) = 1/ϕ′(ω). In this case, ω is also called the attractive fixed point and γ the repulsive
fixed point of ϕ, and the convergence of iterations to ω is described in Theorem 3.2.3
(3). When it comes to elliptic automorphisms ϕ, the iteration sequences {ϕn(z)}∞n=0 are
never convergent, except when starting at the fixed point p ∈D. Instead, the iterations
wander around this fixed point on the boundary of a pseudohyperbolic disc

∆(p,r) =
{
z ∈D : %(z,p) < r

}
,
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with orbit either being a finite or dense subset of this boundary. The radius r of the
pseudohyperbolic disc above is again determined by the starting point of the iteration.

As an application of the Julia-Carathéodory and Denjoy-Wolff theorems, we end the
discussion on selfmaps of the unit disc with a useful limit formula, which for example
is valid for parabolic and hyperbolic automorphisms. The proof is borrowed from [16].

Lemma 3.2.4. If ϕ is an analytic selfmap of D with Denjoy-Wolff point ω ∈ ∂D then

lim
n→∞

(
1− |ϕn(a)|

) 1
n = ϕ′(ω),

for any given starting point a ∈D.

Proof. Since the Denjoy-Wolff point ω in particular is a boundary fixed point of ϕ, we
have by the Julia-Carathéodory theorem applied with ζ = η =ω ∈ ∂D that

ϕ′(ω) = liminf
z→ω

1− |ϕ(z)|
1− |z|

= ∠ lim
z→ω

1− |ϕ(z)|
1− |z|

. (3.2.3)

Now if 0 < ϕ′(ω) < 1, then the iterates {ϕk(a)}∞k=0 converge non-tangentially to ω by
Theorem 3.2.3 (3). Hence, using the limit in (3.2.3) we see that the sequence {zk}∞k=1,
defined as

zk = log
(

1− |ϕk(a)|
1− |ϕk−1(a)|

)
= log

(
1− |ϕ(ϕk−1(a))|

1− |ϕk−1(a)|

)
, (3.2.4)

converges to logϕ′(ω), and so does the corresponding sequence of arithmetic means.
Using this one obtains the desired limit

lim
n→∞

(
1− |ϕn(a)|

) 1
n = lim

n→∞

 n∏
k=1

1− |ϕk(a)|
1− |ϕk−1(a)|


1
n

= lim
n→∞

e
1
n
∑n
k=1 zk = elogϕ′(ω) = ϕ′(ω).

If on the other hand ϕ′(ω) = 1, then by (3.2.3) it holds that

1 = ϕ′(ω) = liminf
z→ω

1− |ϕ(z)|
1− |z|

≤ liminf
k→∞

1− |ϕk(a)|
1− |ϕk−1(a)|

.

Let {zk}∞k=1 again denote the sequence in (3.2.4). From the above estimate, and the obvi-
ous fact that 1− |ϕn(a)| < 1 for every n ∈N, it follows that

1 ≥ limsup
n→∞

(
1− |ϕn(a)|

) 1
n ≥ liminf

n→∞

(
1− |ϕn(a)|

) 1
n

= eliminfn→∞
1
n
∑n
k=1 zk ≥ eliminfk→∞ zk = liminf

k→∞

1− |ϕk(a)|
1− |ϕk−1(a)|

≥ 1,

showing that

lim
n→∞

(
1− |ϕn(a)|

) 1
n = 1 = ϕ′(ω),

and the proof is complete.
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3.3 Weighted composition operators

The first main object of study in this thesis is the weighted composition operator uCϕ ,
which is a linear operator onH(D) defined by a given function u ∈ H(D) and an analytic
selfmap ϕ : D→D of the unit disc as

uCϕ(f ) = u · (f ◦ϕ).

The choise ϕ(z) = z leads to the multiplication operator Mu , whereas letting u ≡ 1 one
obtains the composition operator

Cϕf = f ◦ϕ.

Among the earliest research related to unweighted composition operators Cϕ are the
papers written by Hardy, Littlewood and Riesz in the beginning of the 20th century. As
an example, one can use the Littlewood subordination theorem in [33] to study bounded-
ness of composition operators on the Hardy spaces. In fact, the operator Cϕ : Hp→ Hp

is always bounded for any analytic selfmap ϕ of the unit disc, as seen below.

Theorem 3.3.1. Let ϕ : D→ D be an analytic selfmap of the unit disc and let 0 < p < ∞.
Then for every f ∈Hp it holds that∫ 2π

0
|f (ϕ(eiθ))|pdθ ≤

1 + |ϕ(0)|
1− |ϕ(0)|

∫ 2π

0
|f (eiθ)|pdθ.

From the theorem above one gets the following estimate of the operator norm

∥∥∥Cϕ∥∥∥Hp→Hp ≤
(

1 + |ϕ(0)|
1− |ϕ(0)|

) 1
p
. (3.3.1)

However, the precise computation of the norm
∥∥∥Cϕ∥∥∥Hp→Hp is still today an open prob-

lem, which reflects the degree of difficulty that questions related to composition op-
erators might have. Of course, there are good estimates of this operator norm, and in
special cases even exact formulas. For example, Eric Nordgren proved that one has
equality in (3.3.1) if ϕ is an inner function, see [39]. This paper, entitled Composition
operators and written by Nordgren in 1968, might be seen as the starting point of the
systematic study of composition operators. To mention another milestone in the history
of composition operators, Joel Shapiro gave a complete characterization of the compact
composition operators on the Hardy space H2 in 1987 by proving the essential norm
formula ∥∥∥Cϕ∥∥∥e,H2→H2 = limsup

|z|→1

√
Nϕ(z)

log 1
|z|
,

where

Nϕ(z) =


∑

w∈ϕ−1(z)
log 1

|w| , if z ∈ ϕ(D)

0, if z ∈D \ϕ(D)
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is the Nevanlinna counting function, see [44]. For general information of composition
operators on classical spaces of analytic functions the reader is referred to the mono-
graphs by Cowen and MacCluer [17] and Shapiro [45]. Among other things, it is easy
to see after iterating the weighted composition operator n ∈N times that

(uCϕ)nf (z) = u(z)u(ϕ(z)) · · ·u(ϕn−1(z))f (ϕn(z)), f ∈ H(D), z ∈D,

which also can be stated as
(uCϕ)n = u(n)Cϕn ,

where u(0) ≡ 1 and

u(n)(z) :=
n−1∏
j=0

u ◦ϕj (z), n ∈N, z ∈D.

These formulas are important for example when investigating spectral properties of
uCϕ , such as computing spectral and essential spectral radii which requires iteration
of the operator. When it comes to compactness characterizations, one can use Lemma
3.1.5 due to the following result.

Lemma 3.3.2. Let u ∈ H(D) and ϕ be an analytic selfmap of D. If {fn}∞n=1 ⊂ H(D) and

fn
co−−→ 0, then uCϕ(fn)

co−−→ 0. In other words, uCϕ : H(D)→H(D) is co-co continuous.

Proof. This follows immediately from the estimate

sup
z∈K

∣∣∣uCϕ(fn)(z)
∣∣∣ = sup

z∈K
|u(z)fn(ϕ(z))| ≤max

z∈K
|u(z)| · sup

z∈ϕ(K)
|fn(z)|,

which is valid for any compact subset K ⊂D.

When studying weighted composition operators uCϕ : X →Y mapping between Ba-
nach spaces X ,Y ⊂H(D), one usually tries to characterize operator theoretic properties,
such as boundedness, compactness and spectrum, in terms of function theoretic proper-
ties of the inducing symbols u and ϕ. In the first paper [23] constituting this thesis, we
studied the spectrum of invertible weighted composition operators uCϕ acting on the
classical Bloch space B and the Dirichlet space D. Previously, Hyvärinen, Lindström,
Nieminen and Saukko had carried out a similar study on a very general class of Banach
spaces of analytic functions, see [31] and in particular section 2.2 therein containing
their axioms. However, the Bloch and Dirichlet spaces are not contained in this class
since the bounded analytic functions H∞ are not contained in the multiplier space

M(X ) :=
{
u ∈ H(D) :Mu : X →X is bounded

}
when X is B or D, or in other words, these spaces do not satisfy condition (V) as noted
previously in section 2.3. In the Bloch case for example, one has that u ∈ M(B) if and
only if u ∈H∞ and

sup
z∈D

(
1− |z|2

)
|u′(z)| log

e

1− |z|2
<∞,

see [40]. As a tool when working with invertible operators uCϕ on the Bloch and Dirich-
let spaces, one has the following description by Bourdon from [12, Corollary 2.3].
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Theorem 3.3.3. Assume that X is either the Bloch space B or the Dirichlet space D, and let
uCϕ : X → X be a bounded weighted composition operator on X . Then uCϕ is invertible on
X if and only if u ∈ M(X ), u is bounded away from zero on D and ϕ is an automorphism
of D. In such a case the inverse operator of uCϕ : X → X is also a weighted composition
operator, given by (

uCϕ
)−1

=
1

u ◦ϕ−1Cϕ−1 .

The investigation of the spectrum of invertible weighted composition operators uCϕ
has to be divided into three cases, depending on the type of the automorphic symbol ϕ,
that is, one has to treat the parabolic, hyperbolic and elliptic automorphisms separately.
In [13], Chalendar, Gallardo-Gutiérrez and Partington gave complete characterizations
of the spectrum σD(uCϕ) for invertible operators uCϕ : D → D on the Dirichlet space
when the automorphism ϕ is parabolic or elliptic, and also provided the following in-
clusion in the hyperbolic case:

σD(uCϕ) ⊂
{
λ ∈C : min{|u(ω)|, |u(γ)|}µ ≤ |λ| ≤max{|u(ω)|, |u(γ)|} 1µ

}
,

where ω,γ ∈ ∂D are the fixed points of ϕ, and 0 < µ < 1 is such that ϕ is conjugate to
the automorphism

ψ(z) =
(1 +µ)z+ (1−µ)
(1−µ)z+ (1 +µ)

.

In our paper [23], we improved this inclusion and computed the spectral radius:

Theorem 3.3.4. [23, Theorem 5.2] Suppose that the operator uCϕ : D→D is invertible on
the Dirichlet space and assume that the automorphism ϕ is hyperbolic, with attractive fixed
point ω ∈ ∂D and repulsive fixed point γ ∈ ∂D. If u ∈ A(D), then

rD(uCϕ) = max{|u(ω)|, |u(γ)|}

and
σD(uCϕ) ⊂

{
λ ∈C : min{|u(ω)|, |u(γ)|} ≤ |λ| ≤max{|u(ω)|, |u(γ)|}

}
.

For the Bloch space B, our results are summarized below:

Theorem 3.3.5. [23, Theorems 4.3, 4.5 and 4.8] Suppose that the weighted composition
operator uCϕ : B →B is invertible on the Bloch space and assume that u ∈ A(D).

(1) If the automorphism ϕ is parabolic, with the unique fixed point ω ∈ ∂D, then

σB(uCϕ) =
{
λ ∈C : |λ| = |u(ω)|

}
.

(2) If the automorphism ϕ is hyperbolic, with the attractive fixed point ω ∈ ∂D and the
repulsive fixed point γ ∈ ∂D, then rB(uCϕ) = max{|u(ω)|, |u(γ)|} and

σB(uCϕ) ⊂
{
λ ∈C : min{|u(ω)|, |u(γ)|} ≤ |λ| ≤max{|u(ω)|, |u(γ)|}

}
.
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(3) If the automorphism is elliptic, with the unique fixed point p ∈ D, and if ϕn , id for
every n ∈N, then

σB(uCϕ) =
{
λ ∈C : |λ| = |u(p)|

}
.

If in the elliptic case (3) there does exist a positive integer n such that ϕn = id, then letting m
be the smallest such integer and assuming only boundedness of uCϕ : B →B, we have

σB(uCϕ) =
{
λ ∈C : λm = u(m)(z) for some z ∈D

}
.

Among the central ingredients in the proofs of Theorems 3.3.4 and 3.3.5 are Corol-
lary 3.1.11, Lemma 3.2.4 and the fact that iteration sequences {ϕn(a)}∞n=0 for any given
starting point a ∈ D are interpolating for H∞ if the automorphism ϕ is parabolic or
hyperbolic, see [16, Proposition 4.9] and [17, Theorem 2.65]. The complete characteri-
zation of the spectrum of invertible operators uCϕ in the hyperbolic case is still an open
problem both on the Bloch and Dirichlet space, but we believe the obtained inclusions
actually are equalities. One fact that points in that direction is [23, Theorem 4.6], in
which the mentioned equality is established for the Bloch space under the assumption
that |u(ω)| = |u(γ)|.

Turning to another subject, in our paper [22] we also studied norms and essential
norms of weighted composition operators mapping into the spaces H∞v and B∞v for very
general domain spaces X , using the axioms discussed in section 2.3. This work was
inspired by the paper [14], where Colonna and Tjani carried out a similar investigation,
but assuming among other things reflexivity of the space X , meaning that our frame-
work is much broader. Also, we found a mistake in the proof of Theorem 3.4 in [14],
which forced us to choose another approach and led to the application of predual oper-
ators. Namely, by a slight modification of the proof of [6, Theorem 3] one can show that
the essential norm of any bounded operator can be used to estimate the corresponding
essential norm of its dual operator.

Lemma 3.3.6. Let X and Y be Banach spaces and assume that X ∗ has the λ-metric approxi-
mation property for some λ > 0. If T : X →Y is any bounded operator, then

1
1+λ‖T ‖e,X→Y ≤ ‖T

∗‖e,Y ∗→X ∗ ≤ ‖T ‖e,X→Y .

Applying this estimate on the predual operator ∗T : ∗Y → ∗X guaranteed by Lemma
3.1.9 one arrives at the following useful result, see the proof of [22, Theorem 4.2].

Lemma 3.3.7. Assume that X ,Y ⊂ H(D) are Banach spaces satisfying condition (I), and
suppose that Y has the λ-metric approximation property for some λ > 0. If the operator
T : X →Y is bounded and the restriction T |BX is co-co continuous, then

‖T ‖e,X→Y � inf
{∥∥∥T −Φ−1

Y ◦K
∗ ◦ΦX

∥∥∥X→Y : K : ∗Y → ∗X is compact
}
.

Using Lemma 3.3.7 and Carlesons interpolation theorem, we obtained this corrected
and generalized version of the above mentioned Theorem 3.4 in [14].
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Theorem 3.3.8. [22, Corollary 3.2 and Theorem 4.3] Assume that X ⊂ H(D) is a Banach
space satisfying condition (I). Then the operator norm of uCϕ : X →H∞v is given by∥∥∥uCϕ∥∥∥X→H∞v = sup

z∈D
v(z)|u(z)|‖δϕ(z)‖X→C

.

If the space X in addition satisfies conditions (II)-(V) and the operator uCϕ : X → H∞v is
bounded, then ∥∥∥uCϕ∥∥∥e,X→H∞v � limsup

|ϕ(z)|→1
v(z)|u(z)|‖δϕ(z)‖X→C

.

For the corresponding results on norms and essential norms of the weighted compo-
sition operator uCϕ mapping from a general space X ⊂H(D) into the Bloch-type space
B∞v , the reader is referred to the paper [22] and Corollary 3.3 and Theorem 4.4 therein.

3.4 Königs eigenfunction

Computing the point spectrum σp,X (Cϕ) of a composition operator Cϕ : X →X on some
Banach space X ⊂ H(D) constitutes of finding scalars λ ∈ C with corresponding non-
zero functions f ∈ X such that

f ◦ϕ = λf . (3.4.1)

This eigenvalue equation is known as Schröder’s functional equation after Ernest Schröder
who studied it in the early 1870’s, see [43]. In 1884 Gabriel Königs solved equation
(3.4.1) under the assumptions that the analytic selfmap ϕ is non-automorphic and has a
fixed point p ∈D, allowing any solutions f ∈ H(D). If ϕ′(p) = 0 then the only solution is
λ = 1, with f equal to some constant function. In the interesting case when the deriva-
tive ϕ′(p) is non-zero, Königs showed that the eigenvalues of Cϕ : H(D) → H(D) are
precisely the numbers {ϕ′(p)n}∞n=0, where each eigenvalue has multiplicity one. More-
over, if σ ∈ H(D) is the unique eigenfunction with σ ′(p) = 1 for the eigenvalue λ = ϕ′(p),
then σn spans the eigenspace for the eigenvalue λ = ϕ′(p)n for every positive integer n.
The function σ is called the Königs function for ϕ or the principal eigenfunction of Cϕ .
When proving the existence of the Königs function it is actually enough to assume that
the fixed point of ϕ is p = 0, because otherwise one can use the involutive automor-
phism ψp in (3.2.1) and consider the new selfmap φ = ψp ◦ϕ ◦ψp, which has zero as its
fixed point. The main step in the proof is then to show that the sequence of normalized
iterates

σn =
ϕn

ϕ′(0)n
(3.4.2)

converges uniformly on compact subsets of the unit disc, since the analytic limit σ will
then satisfy equation (3.4.1) for λ = ϕ′(0) due to the relation σn ◦ϕ = ϕ′(0)σn+1, which
is valid for every n ∈N. For a proof of the convergence, see [45, pp. 91-92]. The Königs
function σ also plays a central role in connection with the point spectrum of weighted
composition operators, as seen below.
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Theorem 3.4.1. Let ϕ : D→ D be an analytic selfmap of the unit disc such that ϕ(0) = 0
and 0 < |ϕ′(0)| < 1. Let u ∈ H(D) and assume that u(0) , 0. Then there exists a unique
function v ∈ H(D) such that v(0) = 1 and for every z ∈D

u(z)v(ϕ(z)) = u(0)v(z).

Moreover, the eigenvalues of the weighted composition operator uCϕ : H(D) → H(D) are
given by {u(0)ϕ′(0)n}∞n=0, where each eigenspace is one-dimensional. The eigenspace for the
eigenvalue λ = u(0)ϕ′(0)n is spanned by the function vσn, where σ is the Königs function for
ϕ.

This generalization of Königs’s theorem is proved for example in [30], where the
function v is obtained as the co-limit of the sequence {vn}∞n=1 of functions

vn(z) =
u(n)(z)

u(0)n
=
u(z)u(ϕ(z)) · · ·u(ϕn−1(z))

u(0)n
.

Under the given assumptions on the inducing symbols u and ϕ, Theorem 3.4.1 above
completely characterizes the eigenvalues of weighted composition operators considered
on H(D). However, if the operator uCϕ : X → X is considered on some Banach space
X ⊂ H(D), then the point spectrum σp,X (uCϕ) might be smaller than the whole se-
quence {u(0)ϕ′(0)n}∞n=0, since some eigenfunction vσn might not belong to the space X .
Therefore it is of interest to determine when for example the Königs function σ belongs
to different function spaces, in terms of function theoretic properties of the inducing
symbol ϕ. To address this problem, notice that if |ϕ′(0)| > re,X (Cϕ) then ϕ′(0) is an
eigenvalue of Cϕ : X → X by Theorem 3.1.13, and hence σ ∈ X . A natural follow-up
question is whether the opposite implication holds, that is, whether it is true that

σ ∈ X ⇐⇒ |ϕ′(0)| > re,X (Cϕ). (3.4.3)

A more well-posed question would be for which spaces X the above equivalence holds.
In the paper [11], Bourdon showed that condition (3.4.3) holds for the space H0

vα with
α > 0, and since B0

vα+1
=H0

vα for these values of α, we also have that

σ ∈ B0
vα ⇐⇒ |ϕ

′(0)| > re,B0
vα

(Cϕ)

whenever α > 1 and Cϕ : B0
vα →B

0
vα is bounded. The starting point of our paper [21] was

to investigate if (3.4.3) also holds for the classical Bloch space B. However, by studying
the lens map

ϕ(z) =
φ(z)t − 1
φ(z)t + 1

,

where φ(z) = 1+z
1−z and 0 < t < 1, we found that the Königs function σ (z) = log 1+z

1−z belongs
to B even though re,B(Cϕ) = |ϕ′(0)|, contradicting (3.4.3), see [21, Example 2.9]. In the
mentioned paper [21], we continued studying the relationship of the Königs function
to other Bloch- and H∞-type spaces, obtaining the following characterization.
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Theorem 3.4.2. [21, Theorem 2.7] Assume that the weight v is radial and non-increasing
with respect to |z|. Then the Königs function σ belongs to H∞v if and only if the sequence
{σn}∞n=1 of normalized iterates in (3.4.2) is bounded in H∞v . The same statement holds for the
spaces B∞vα when α > 1, and H∞.

However, it is still an open problem to characterize when the Königs function be-
longs to the Bloch-type spaces B∞vα for 0 < α ≤ 1, among these the classical Bloch space
B. In the case of bounded analytic functions, one can actually say more. Namely, Zheng
has proven that the essential spectral radius re,H∞(Cϕ) of Cϕ : H∞ → H∞ is either 0 or
1, see [50]. In the former case, the Königs function belongs to H∞, whereas in the lat-
ter case it cannot be bounded on the unit disc. We end this section with the complete
description.

Theorem 3.4.3. [21, Theorem 3.1] The following statements are equivalent:

(1) σ ∈H∞.

(2) σn ∈H∞ for all n ∈N.

(3) σn ∈H∞ for some n ∈N.

(4) There is a positive integer n such that ‖ϕn‖∞ < 1.

(5) The essential spectral radius re,H∞(Cϕ) = 0.

(6) The sequence {σn}∞n=1 is bounded in H∞.

3.5 Generalized Volterra operators

The second main object studied in this thesis, in addition to weighted composition op-
erators, is the generalized Volterra operator T ϕg defined for a fixed function g ∈ H(D) and
analytic selfmap ϕ : D→D as

T
ϕ
g (f )(z) =

∫ ϕ(z)

0
f (ξ)g ′(ξ)dξ, z ∈D, f ∈ H(D). (3.5.1)

The classical Volterra operator

Tg (f )(z) =
∫ z

0
f (ξ)g ′(ξ)dξ, z ∈D, f ∈ H(D),

obtained by choosing ϕ(z) = z in (3.5.1), has been extensively studied on various spaces
of analytic functions during the past decades, starting from the paper [41] by Pom-
merenke. Aleman, Cima and Siskakis continued this investigation in the papers [3],
[4] and [2], completing the characterization of boundedness and compactness of the
Volterra operator on the Hardy spaces. They proved that Tg : Hp → Hp is bounded for
0 < p <∞ if and only if the inducing symbol g belongs to BMOA, and compact precisely
when g ∈ VMOA. Among the open problems related to the classical Volterra operator is
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the description of all functions g ∈ H(D) that induce bounded operators Tg : H∞→H∞.
The study of this problem was begun in the paper [5], where Anderson, Jovovic and
Smith conjectured that the set

T [H∞] =
{
g ∈ H(D) : Tg : H∞→H∞ is bounded

}
would coincide with the space of functions analytic in D with bounded radial variation

BRV =
{
f ∈ H(D) : sup

0≤θ<2π

∫ 1

0
|f ′(reiθ)|dr <∞

}
.

It is easily seen that BRV ⊂ T [H∞], but the reverse inclusion was proven to be false
due to a counterexample by Smith, Stolyarov and Volberg in [48]. In the same paper
however, the authors showed that the conjecture is true if the inducing symbol g is
univalent, that is

T [H∞]∩
{
g ∈ H(D) : g is univalent

}
= BRV. (3.5.2)

The proof of (3.5.2) leans heavily on the following approximation result. Given positive
constants β and r, let B

(
Ωr
β

)
denote the class of all functions F, analytic in the open

sector

Ωr
β :=

{
z ∈C : 0 < |z| < r and− β2 < arg(z) < β

2

}
,

such that

CF := sup
z∈Ωr

β

∣∣∣zF′(z)∣∣∣ <∞.
In the approximation theorem below ũ denotes the harmonic conjugate of u with ũ

(
1
2

)
=

0.

Theorem 3.5.1. [48, Theorem 1.2] Let 0 < γ < β < π and ε > 0. Then there is a number
δ(ε) > 0 such that for each F ∈ B

(
Ω

1/2
γ

)
there exists a harmonic function u : Ω1

β → R with
the properties

(1) |Re(F(x))−u(x)| ≤ ε, for x ∈ (0,δ(ε)],

(2) |ũ(z)| ≤ C(ε,γ,β,CF) <∞, for z ∈Ω1
β .

In our paper [24], we generalized the boundedness result (3.5.2) to Volterra oper-
ators Tg : H∞vα → H∞ for 0 ≤ α < 1, giving the following description in the univalent
case:

Theorem 3.5.2. [24, Theorem 2.2] If g ∈ H(D) is univalent and 0 ≤ α < 1, then Tg : H∞vα →
H∞ is bounded if and only if

sup
0≤θ<2π

∫ 1

0

|g ′(reiθ)|
(1− r2)α

dr <∞.
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The reason why the remaining parameter values α ≥ 1 were not considered is that
Contreras, Peláez, Pommerenke and Rättyä had already shown earlier in [15, Section
2.2] that the only operator Tg : H∞vα → H∞ that can be bounded for those values of α is
the zero operator, regardless of whether g is univalent or not.

Naturally, since the boundedness of the operator Tg : H∞ → H∞ still remains as an
unsolved problem in the general case for non-univalent symbols g, also the compactness
is an open problem. In the mentioned paper [5], the authors suggested that the space

BRV0 =
{
f ∈ H(D) : lim

t→1−
sup

0≤θ<2π

∫ 1

t
|f ′(reiθ)|dr = 0

}
of functions analytic in the unit disc with derivative uniformly integrable on radii
would be the right candidate for the set of functions g ∈ H(D) inducing compact opera-
tors Tg : H∞→H∞. In our paper [24], we gave the following partial answer, confirming
the conjecture in the univalent case.

Theorem 3.5.3. [24, Theorem 2.3] If g ∈ H(D) is univalent and 0 ≤ α < 1, then Tg : H∞vα →
H∞ is compact if and only if

lim
t→1−

sup
0≤θ<2π

∫ 1

t

|g ′(reiθ)|
(1− r2)α

dr = 0.

The proof is based on the approximation Theorem 3.5.1, and uses the compactness
characterization in Lemma 3.1.5, which can be applied to the Volterra operator due to
the following result.

Lemma 3.5.4. Let g ∈ H(D) and ϕ be an analytic selfmap of D. If {fn}∞n=1 ⊂ H(D) and

fn
co−−→ 0, then T ϕg (fn)

co−−→ 0. In other words, T ϕg : H(D)→H(D) is co-co continuous.

Proof. Assume that fn
co−−→ 0 and choose an arbitrary compact subset K ⊂ D. Then the

image ϕ(K) is contained in a closed discD(0, rK ) centered at the origin with some radius
0 < rK < 1. Since the mapping z 7→

∫ z
0 |g
′(ξ)|d|ξ | is continuous on D and

sup
z∈K
|T ϕg (fn)(z)| = sup

z∈K

∣∣∣∣∣∣
∫ ϕ(z)

0
fn(ξ)g ′(ξ)dξ

∣∣∣∣∣∣ ≤ sup
z∈ϕ(K)

∫ z

0
|fn(ξ)||g ′(ξ)|d|ξ |

≤ sup
ω∈D(0,rK )

|fn(ω)| sup
z∈ϕ(K)

∫ z

0
|g ′(ξ)|d|ξ |,

it follows that T ϕg (fn)
co−−→ 0.

In order to see how the situation changes when the target space of the operator Tg
changes from the space of bounded analytic functions H∞, as in Theorems 3.5.2 and
3.5.3 above, to a weighted Banach space H∞v , we also studied the generalized Volterra
operator T ϕg : X →H∞v using the axioms discussed in section 2.3 on the space X . Since
the differentiated Volterra operator D ◦T ϕg = (g ◦ϕ)′Cϕ is a weighted composition oper-
ator, one can apply our results from Theorem 3.3.8 to get the following estimates of the
norm and essential norm.
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Theorem 3.5.5. [24, Theorems 3.1 and 3.5] Let X be a Banach space of analytic functions
on D satisfying condition (I) and assume that the weight v is normal and that ϕ(0) = 0. Then

‖T ϕg ‖X→H∞v � sup
z∈D

(1− |z|)v(z)|(g ◦ϕ)′(z)|‖δϕ(z)‖X→C
.

If the space X in addition satisfies conditions (II)-(V) and the operator T ϕg : X → H∞v is
bounded, then

‖T ϕg ‖e,X→H∞v � limsup
|ϕ(z)|→1

(1− |z|)v(z)|(g ◦ϕ)′(z)|‖δϕ(z)‖X→C
.

For the rest of this section we explained in more detail how to obtain the equiva-
lences in [24, Corollary 3.12], which generalizes [7, Theorem 2] by Basallote et.al. and
concludes this thesis. The first result stated below can be proven using the essential
norm estimate of Theorem 3.5.5.

Theorem 3.5.6. [24, Theorem 3.10] Assume that X ⊂ H(D) is a Banach space satisfying
conditions (I)-(V), let v be a normal weight and assume that ϕ(0) = 0. Then the operator
T
ϕ
g : X →H∞v is compact if and only if T ϕg : X →H0

v is compact.

Using the predual operator S from Lemma 3.1.9 one can show that compactness
and weak compactness coincide for a large class of operators mapping from H∞v into
a Banach space Y ⊂ H(D). The proof relies on the fact that the predual space ∗H∞v is
isomorphic to the Schur space `1 by Theorem 2.4.3.

Theorem 3.5.7. [24, Theorem 3.3] Let v be a normal weight and assume that the Banach
space Y ⊂ H(D) satisfies condition (I). If the restriction T |BH∞v is co-co continuous then
T : H∞v →Y is compact if and only if it is weakly compact.

The next lemma, where P denotes the set of all complex polynomials on D, is a
slight generalization of [15, Proposition 2.1].

Lemma 3.5.8. Let X ⊂ H(D) be a Banach space containing the disc algebra and satisfying
conditions (I) and (IV). Let Y ⊂ H(D) be a Banach space satisfying condition (I). If the
operator T : H(D)→H(D) is co-co continuous, then the following statements are equivalent:

(1) T : X →Y is bounded,

(2) T : P X →Y is bounded,

and so are the operator norms: ‖T ‖X→Y � ‖T ‖PX→Y .

Proof. Clearly (1) implies (2). Conversely, assume that the operator T : P X → Y is
bounded, choose f ∈ X and let {rn}∞n=1 ⊂ (0,1) be a sequence such that rn→ 1 as n→∞.

Then frn
co−−→ f , and hence T (frn )

co−−→ T (f ). Also, since X contains the disc algebra, we
have that

frn ∈ A(D) = P ‖·‖A(D) ⊂ P X ,
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showing that the sequence {T (frn )}∞n=1 is contained in Y . In fact, it is even bounded in
Y , since by condition (IV) for X it holds that

‖T (frn )‖Y = ‖T (Trn(f ))‖Y ≤ ‖T ‖PX→Y ‖Trn‖X→X ‖f ‖X

≤ ‖T ‖PX→Y sup
0<r<1

‖Tr‖X→X ‖f ‖X .

This implies that the sequence {T (frn )}∞n=1 belongs to the closed ball BY (0,R) with radius
R = ‖T ‖PX→Y sup0<r<1 ‖Tr‖X→X ‖f ‖X . Thus, since Y satisfies condition (I), there exist

g ∈ BY (0,R) and a subsequence {T (frnk )}
∞
k=1 such that T (frnk )

co−−→ g. Therefore T (f ) =
g ∈ Y , meaning that T : X → Y is well-defined and hence bounded by the closed graph
theorem. Moreover, since g ∈ BY (0,R), we have

‖T (f )‖Y = ‖g‖Y ≤ R = ‖T ‖PX→Y sup
0<r<1

‖Tr‖X→X ‖f ‖X ,

which implies that ‖T ‖X→Y . ‖T ‖PX→Y and completes the proof.

Remark 3.5.9. Lemma 3.5.8 above can for example be applied to the generalized Volterra

operator T ϕg : X →Y when X =H∞v , in which case P X =H0
v .

Recall from Lemma 2.4.2 that the closed unit ball of H0
v is co-dense in the closed

unit ball of H∞v if the weight v is radial, and hence the restriction map % : ∗H∞v → (H0
v )∗,

mapping ` 7→ `|H0
v , is an isometric isomorphism by Theorem 2.4.3. Using the evaluation

map ΦH∞v : H∞v → (∗H∞v )∗ one then obtains an isometric isomorphism Λ : H∞v → (H0
v )∗∗

by defining

Λ(f ) :=
(
f̂ H

∞
v
∣∣∣∗H∞v )

◦ %−1. (3.5.3)

Here we use the notation f̂ X to emphasize which space X the evaluation map is acting
on, that is, f̂ X ∈ X ∗∗ whenever f ∈ X .

Lemma 3.5.10. Let v be a radial weight, w be any weight and T : H(D)→H(D) be a co-co
continuous linear operator. If T : H0

v → H∞w is weakly compact, then for every f ∈ H∞v it
holds that

T ∗∗(Λ(f )) = ̂T (f )
H∞w ,

where Λ : H∞v → (H0
v )∗∗ is given by (3.5.3).

Proof. Assume that T : H0
v → H∞w is weakly compact, choose a function f ∈ H∞v not

identically zero and define g := f
‖f ‖H∞v

∈ BH∞v . Note that the operator T : H∞v → H∞w is

bounded by Lemma 3.5.8 (see Remark 3.5.9), so the equality about to be proven makes
sense. Since the mapping Λ : H∞v → (H0

v )∗∗ is an isometric isomorphism, we have by
Goldstine’s theorem that

Λ(g) ∈ B(H0
v )∗∗ = B

Ĥ0
v

w∗
.
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Hence, there exists a net
{
ĝ
H0
v

γ

}
⊂ B

Ĥ0
v
, where every gγ ∈ BH0

v
, such that ĝH

0
v

γ
w∗−−→ Λ(g) in

(H0
v )∗∗. Moreover, since %−1(`)|H0

v = ` for every ` ∈ (H0
v )∗, we have that

Λ(gγ ) =
(
ĝ
H∞v
γ

∣∣∣∗H∞v )
◦ %−1 = ĝH

0
v

γ ,

and thus Λ(gγ )
w∗−−→ Λ(g) in (H0

v )∗∗. For any z ∈ D, δz ∈ ∗H∞v and %(δz) ∈ (H0
v )∗, which

gives that
gγ (z) = Λ(gγ )(%(δz))→Λ(g)(%(δz)) = g(z).

Furthermore, {gγ } is an equicontinuous family because ‖gγ‖H∞v ≤ 1 for every γ , so we

actually have that gγ
co−−→ g, and since T is co-co continuous we get T (gγ )

co−−→ T (g).
On the other hand, since T : H0

v →H∞w is weakly compact, T ∗ : (H∞w )∗→ (H0
v )∗ is also

weakly compact, and hence T ∗∗ : (H0
v )∗∗→ (H∞w )∗∗ is w∗-w continuous by Theorem 3.1.8.

We thus have that
̂T (gγ )

H∞w = T ∗∗
(
ĝ
H0
v

γ

) w−→ T ∗∗(Λ(g)), (3.5.4)

where the first equality holds because

̂T (gγ )
H∞w (`) = `(T (gγ )) = T ∗(`)(gγ ) = ĝH

0
v

γ (T ∗(`)) = T ∗∗
(
ĝ
H0
v

γ

)
(`)

for any ` ∈ (H∞w )∗. The left-hand side of (3.5.4) is contained in Ĥ∞w for every γ , which
gives that

T ∗∗(Λ(g)) ∈ Ĥ∞w
w

= Ĥ∞w
‖·‖(H∞w )∗∗

= Ĥ∞w ,

and hence there exists h ∈H∞w such that T ∗∗(Λ(g)) = ĥH
∞
w . Now since obviously

̂T (gγ )
H∞w w∗−−→ ĥH

∞
w

and δz ∈ (H∞w )∗ for any z ∈D, it follows that T (gγ ) converges pointwise to h on the unit
disc. Hence, we must have that h = T (g), showing that

T ∗∗(Λ(g)) = �T (g)
H∞w
,

which also holds when g is replaced by f = ‖f ‖H∞v g due to linearity, and the proof is
complete.

Corollary 3.5.11. [24, Corollary 3.12] Let v and w be normal weights and assume that v is
equivalent to its associated weight ṽ. If ϕ(0) = 0 then the following statements are equivalent:

(1) T ϕg : H∞v →H∞w is compact.

(2) T ϕg : H∞v →H∞w is weakly compact.

(3) T ϕg : H∞v →H0
w is compact.

(4) T ϕg : H∞v →H0
w is weakly compact or equivalently bounded.
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(5) T ϕg : H0
v →H0

w is compact.

(6) T ϕg : H0
v →H0

w is weakly compact.

(7) T ϕg : H0
v →H∞w is compact.

(8) T ϕg : H0
v →H∞w is weakly compact.

(9) lim|ϕ(z)|→1(1− |z|)|(g ◦ϕ)′(z)| w(z)
v(ϕ(z))

= 0.

Proof. We begin by justifying the equivalence within statement (4). If T : H∞v → H0
w is

any bounded operator and {`n}∞n=1 ⊂ B(H0
w)∗ , then there is a w∗-convergent subsequence

{`nk }
∞
k=1 with some limit ` ∈ B(H0

w)∗ . This follows from the Banach-Alaoglu theorem,
since the topology (B(H0

w)∗ ,σ ((H0
w)∗,H0

w)) is metrizable due to the separability ofH0
w. This

gives that T ∗(`nk )
w∗−−→ T ∗(`), but H∞v ≈ `∞ is a Grothendieck space meaning that we

actually have weak convergence of T ∗(`nk ) to T ∗(`), and hence both T ∗ : (H0
w)∗ → (H∞v )∗

and T : H∞v →H0
w are weakly compact.

The statements (1) and (2) are equivalent by Theorem 3.5.7 and the equivalence
between (1) and (3) follows from Theorem 3.5.6. If the operator T ϕg : H0

v →H∞w is weakly
compact, then (T ϕg )

∗∗
: (H0

v )∗∗ → Ĥ∞w is weakly compact, and hence, if Q : H∞w → Ĥ∞w is
the canonical embedding Q(f ) = f̂ , we have by Lemma 3.5.10 that

Q−1 ◦ (T ϕg )
∗∗ ◦Λ = T ϕg : H∞v →H∞w

is weakly compact, and therefore (8) implies (2). Finally, (1) is equivalent to (9) by
Theorem 3.5.5, and the rest of the implications are obvious.
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