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Abstract 

We use elections data in which a large number of ties in vote counts between 

candidates are resolved via lottery. We benchmark non-experimental RDD estimates 

of personal incumbency advantage against the estimate produced by this experiment 

that takes place exactly at the cutoff. The experimental estimate suggests that there is 

no personal incumbency advantage. In contrast, standard local linear RDD estimates 

suggest a moderate and statistically significant effect. Bias-correction and under-

smoothing procedures however bring the RDD estimate(s) in line with the 

experimental estimate. Therefore, careful implementation of RDD can meet the 

replication standard in the context of close elections. 
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1 Introduction 
 

A non-experimental empirical tool meets a very important quality standard if it can 

reproduce the results from a randomized experiment (LaLonde 1986, see also Fraker 

and Maynard 1987). In a regression discontinuity design (RDD), individuals are 

assigned dichotomously to a treatment if they cross a given cutoff of an observable 

and continuous forcing variable, whereas those who fail to cross the cutoff form the 

control group (Thistlethwaite and Campbell 1960, Lee 2008, Imbens and Lemieux 

2008). Provided that the conditional expectation of the potential outcome is 

continuous in the forcing variable at the cutoff, correctly approximating the regression 

function above and below the cutoff and then comparing the values of the regression 

function for the treated and control groups at the cutoff gives the RDD treatment 

effect. We study whether standard implementation of RDD can reproduce an 

experimental estimate that we obtain by utilizing data from electoral ties between two 

or more candidates in recent Finnish municipal elections.1  

The unique feature of our data is that the ties were resolved via a lottery and that 

the random assignment occurs right at the cutoff. This means that if RDD works, it 

should deliver a treatment effect estimate that exactly matches our experimental 

estimate. To explore whether this is the case, we utilize a data set that includes nearly 

200 000 candidates that run for a seat in municipal councils in local Finnish elections 

every fourth year during 1996–2012. The elections were organized in a shared 

institutional environment and allow us to study whether there is a personal 

                                                            
1 Investigating the performance of RDD in an electoral setting seems particularly important, as 
numerous applications of RDD in economics and political science have used close elections to estimate 
the effects of electoral results on a variety of economic and political outcomes (see, e.g., Lee et al. 2004, 
DiNardo and Lee 2004, Ferreira and Gyourko 2009, Gerber and Hopkins 2011 and Folke and Snyder 
2012).  
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incumbency advantage, i.e., extra electoral support that an incumbent politician of a 

given party enjoys when she runs for re-election, relative to her being a non-

incumbent candidate from the same party and constituency (see, e.g., Erikson and 

Titiunik 2015). Our experimental estimate of the personal incumbency advantage is 

estimated from data on 1351 candidates for whom the (previous) electoral outcome 

was determined via the random seat assignment.2 The experimental estimate provides 

no evidence for a personal incumbency advantage: It is close to zero and quite 

precisely estimated. As we explain later, this null finding is neither surprising nor in 

conflict with the prior evidence when interpreted in the context of local proportional 

representation (PR) elections. 

Since the seminal paper on RDD by Hahn, Todd and van der Klaauw (2001), non-

parametric local linear regression has been used widely in applied work to 

approximate the regression function near the cutoff (see also Porter 2003). The 

standard implementation of the local linear regression calls for estimating a linear 

regression function separately above and below the cutoff in a neighborhood that is 

determined by a choice of a bandwidth. The bandwidth defines how close to the cutoff 

the estimation is implemented and various methods have been proposed for selecting 

it (e.g., Ludwig and Miller 2007, Imbens and Kalyanaraman 2012, Calonico et al. 

2014a). For example, a mean-squared-error (MSE) optimal bandwidth trades off the 

bias due to not getting the functional form completely right for wider bandwidths with 

the increased variance of the estimate for narrower bandwidths. We find that when 

                                                            
2 Use of lotteries to solve electoral ties is not unique to Finland. For example, some US state elections 
and many US local elections have used lottery-based rules to break ties in elections (see, e.g., UPI 
14.7.2014, The Atlantic 19.11.2012, and Stone 2011). Lotteries have been used to determine the winner 
in case of ties also in the Philippines (Time 17.5.2013), in India (The Telegraph India 7.2.2014), in Norway 
as well as in Canada and the UK (http://en.wikipedia.org/wiki/Coin_flipping#Politics). 
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RDD is applied to our elections data and implemented in the standard fashion using 

the local linear approximation and the often used (cross-validated or MSE optimal) 

bandwidths, the estimates suggest a statistically significant positive personal 

incumbency advantage. 

The disparity between the experimental and RDD estimates may at first glance be 

seen as a piece of bad news for RDD. A major finding of this paper is, however, that the 

disparity is actually in line with the recent theoretical econometric work on RDD (see, 

e.g., Calonico et al. 2014a, Card et al. 2014). There are two primary reasons why the 

experimental estimate and the estimate that our standard implementation of a close 

election RDD generates might not match. First, the key RDD assumption that the 

conditional expectation of the potential outcome is continuous at the cutoff may be 

violated. A typical close election RDD analysis relies on the presumption that the 

political candidates, who get elected at the margin, win because of random factors 

(chance) and are therefore, on average, comparable to the barely losing candidates. 

Second, it is possible that the standard implementation of RDD, using the local linear 

approximation and the optimal bandwidths, is deficient. We find no clear signs of the 

key RDD assumption being violated using covariate balance checks. However, we can 

provide novel evidence that the standard implementation of RDD is deficient, precisely 

in the way(s) that the recent econometric work on RDD suggest.  

Our evidence is the following: First, all nonparametric methods may produce biased 

estimates if the parametric specification is not a good approximation of the true 

regression function within the bandwidth. If the bias is relatively large when for 

example the local linear regression is used, the MSE optimal bandwidth does not 

provide a reliable basis for inference, as it then produces confidence intervals that 
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have incorrect asymptotic coverage (see, e.g., Imbens and Lemieux 2008, Calonico et 

al. 2014a, Card et al. 2014). We find that the often used solution to this problem (see, 

e.g., Imbens and Lemieux 2008), the under-smoothing procedure of using smaller 

(than MSE-optimal) bandwidths, works as predicted. It allows us to recover the 

experimental estimate in the sense that with under-smoothing, the null hypothesis of 

no personal incumbency advantage is no longer rejected. Second, we find that the 

curvature of the regression function matters. Using richer local polynomial 

specifications within the bandwidth optimized for the linear specification can eliminate 

the bias. However, when higher order local polynomials are used and the bandwidths 

are accordingly optimized, the bias typically remains. This implies that in our case, MSE 

optimal bandwidths may be problematic more generally (somewhat in contrast with 

the findings of Card et al. 2014). Third, the bias-correction and robust inference 

method introduced recently by Calonico et al. (2014a) works well, too, provided that 

one does not allow for a too wide pilot bandwidth.  

In sum, our findings provide a word of caution to practitioners, since the local linear 

regression with optimal bandwidths, which is often used in applied work, appears to 

lead to an incorrect conclusion. However, standard bias-correction and under-

smoothing procedures bring the RDD estimate(s) in line with the experimental 

estimate. Thus, our results show that careful implementation of RDD can meet the 

replication standard in the context of close elections.  

Our findings also bear on three other strands of the literature. First, it has been 

argued that in close elections, the conditions for randomization (and covariate 

balance) around the cutoff do not necessarily hold, especially in post-World War II U.S. 

House elections (Snyder 2005, Caughey and Sekhon 2011, and Grimmer et al. 2012). 
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Eggers et al. (2015) convincingly challenge this conclusion.3 We contribute to this 

ongoing debate by showing whether and when the close election RDD, as it is currently 

often implemented, is capable of replicating the experimental estimate. Second, there 

is an emerging literature on within-study comparisons of RDDs (see e.g., Black et al. 

2007, Cook and Wong 2008, Green et al. 2009, and Shadish et al. 2011, Wing and Cook 

2013) that explores how the performance of RDD depends on the context in which it is 

used.4 We contribute to this literature, because no within-study comparison on how a 

close election RDD performs appears to exist and because typically the randomized 

experiment does not take place exactly at the cutoff (meaning that it may identify a 

treatment effect different from the one that RDD targets).5 Finally, as we discuss later 

in the paper, our findings add to the accumulating evidence on limited personal 

incumbency advantage in PR systems (see, e.g., Dahlgaard 2013, Golden and Picci 

2015, Lundqvist 2011, Kotakorpi et al. 2013 and Redmond and Regan 2015). 

The rest of this paper is organized as follows: In Section 2, we describe the 

institutional environment and our data. The experimental and non-experimental 

results are reported and compared in Section 3. We discuss the validity and robustness 

of our findings in Section 4. Section 5 concludes. A large number of additional analyses 

are reported in an online appendix that supplements this paper.  
                                                            
3 The criticism on the close election RDD builds on the observation that outright fraud, legal and political 
manipulation and/or sorting of higher quality or better positioned candidates may naturally characterize 
close elections. However, Eggers et al. (2015) show that post-World War II U.S. House elections are a 
special case and that there is no imbalance in any of the other elections that their dataset on 40 000 
close political races cover. Eggers et al. do not find evidence for imbalance in any other elections either 
in the U.S. or in other countries, nor in the U.S. House at times other than the post-World War II era. On 
the other hand, Vogl (2014) shows that in U.S. city elections in the South, black candidates seem to have 
an advantage in close races compared to white candidates.  
4 See also Cook et al. (2008). The terminology that is used to refer to these types of comparative studies 
is not entirely settled across the various disciplines. The current view of this literature appears to be that 
RDD is able to reproduce - or at least to approximate - experimental results in most, but not in all, 
settings (see in particular Cook et al. 2008 and Shadish et al. 2011). 
5 Black et al. (2007) seem to come closest, because their experiment targets a population within a small 
bandwidth around the cutoff. See also Cook and Wong (2008).  
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2 Institutional context and data 

2.1 Institutional environment 
 

Finland has a two-tier system of government, consisting of a central government and a 

large number of municipalities at the local level.6 Finnish municipalities have extensive 

tasks and considerable fiscal autonomy. In addition to the usual local public goods and 

services, municipalities are responsible for providing most of social and health care 

services and primary and secondary education. Municipalities are therefore of 

considerable importance to the whole economy.7  

Municipalities are governed by municipality councils. The council is by far the most 

important political actor in municipal decision making. For example, mayors are public 

officials chosen by the councils and can exercise only partial executive power. 

Moreover, municipal boards (i.e., cabinets) have only a preparatory role. The 

presentation in the boards follows the same proportional political distribution as the 

presentation in the council.  

Municipal elections are held simultaneously in all municipalities. All municipalities 

have one electoral district. The elections in our data were held on the fourth Sunday of 

October in 1996, 2000, 2004, 2008 and 2012. The four year council term starts at the 

beginning of the following year. The seat allocation is based on proportional 

representation, using the open-list D’Hondt election rule. There are three (1996-2004 

elections) or four (2008-2012 elections) major parties, which dominate the political 

landscape of both the municipal and national elections, as well as four other parties 

                                                            
6 In 1996, Finland had 436 municipalities and in 2012, 304.  
7 Municipalities employ around 20 percent of the total workforce. The most important revenue sources 
of the Finnish municipalities are local income taxes, operating revenues, such as fees, and funding from 
the central government.  
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that are active both locally and nationally. Moreover, some purely local independent 

political groups exist. In the elections, each voter casts a single vote to a single 

candidate. One cannot vote for a party without specifying a candidate. In this setting, 

voters (as opposed to parties) decide which candidates are eventually elected from a 

given list, because the number of votes that a candidate gets determines the 

candidate’s rank on her party’s list.  

The total number of votes over the candidates of a given party list determines the 

votes for each party. The parties’ votes determine how many seats each party gets. 

The procedure is as follows: First, a comparison index, which equals the total number 

of votes cast to a party list divided by the order (number) of a candidate on the list, is 

calculated for all the candidates of all the parties. The candidates are then ranked 

according to the index and all those who rank higher than (S+1)th (S being the number 

of council seats) get a seat.  

An important feature of this election system is that in many cases, there is an exact 

tie in the number of votes at the margin where the last available seat for a given party 

list is allocated. This means that within a party, the rank of two or more candidates has 

to be randomly decided. For example, it is possible that a party gets k seats in the 

council and that the kth and (k+1)th ranked candidates of the party receive exactly the 

same number of votes. For them, the comparison index is the same. The applicable 

Finnish law dictates that in this case, the winner of the marginal (kth) seat has to be 

decided using a randomization device. Typically, the seat is literally allocated by 

drawing a ticket (name) from a hat. The procedure appears to be very elementary: One 

of the (typically female) members of the municipal election committee wears a 
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blindfold and draws the ticket in the presence of the entire committee.8 While we have 

not run an experiment nor implemented a randomized controlled trial, we can use the 

outcomes from these lotteries to generate an experimental treatment effect estimate 

for the effect of incumbency status on electoral support.  

It is also possible that two (or more) candidates from different parties face a tie for 

a marginal seat. However, within party ties are much more common in practice. 

Therefore, we do not analyze ties between candidates from different parties. Besides 

resulting in a larger sample in which the candidates that had a tie, there are three 

additional reasons to focus on the within party ties. First, using the within party ties 

allows for a simpler implementation of RDD, as we do not have to worry about 

discontinuities and possible party-level incumbency effects that are related to party 

lines.9 Second, focusing on the within party dimension also allows a cleaner 

identification of the personal incumbency effect, net of the party incumbency effect. 

Third, the use of only within party ties increases the comparability of our RDD analysis, 

which uses multi-party PR elections data, with the prior studies that use data from 

two-party (majoritarian) systems. This is so as within a party list, the Finnish elections 

follow the N-past-the-post rule. 

2.2 Data 
 

Our data originate from several sources. The first source is election data which consist 

of candidate-level information on the candidates’ age, gender, party affiliation, the 

number of votes they received, their election outcomes (elected status) and the 

                                                            
8 See e.g. an article in one of the major Finnish tabloids, Iltasanomat, on 12.4.2011. 
9 See Folke (2014) for the complications that multi-party-systems generate and Snyder et al. (2015) on 
issues with partisan imbalance in RDD studies.  
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possible incumbency status.10 These data were linked to data from KEVA (formerly 

known as the Local Government Pensions Institution) to identify municipal workers, 

and to Statistics Finland’s data on the candidates’ education, occupation and socio-

economic status. We further added income data come from the Finnish tax authority. 

Finally, we matched the candidate-level data with Statistics Finland’s data on municipal 

characteristics.11 

We have data on 198 121 candidates from elections held in years 1996, 2000, 2004, 

2008 and 2012.12 Summary statistics (reported in Appendix A) show that the elected 

candidates differ substantially from those who are not elected: They have higher 

income and more often a university degree and are less often unemployed. The 

difference is particularly striking when we look at the incumbency status: 58% of the 

elected candidates were incumbents, whereas only 6% of those who were not elected 

were incumbents.  

3 Main results 

3.1 Experimental estimates  
 

In this section, we estimate the magnitude of the personal incumbency advantage 

using the data from the random election outcomes. We define this added electoral 

support as the treatment effect of getting elected today on the probability of getting 

                                                            
10 These election data are publicly available from the Statistics Finland. Our dataset was provided by the 
Ministry of Justice, as we need the social security numbers of the candidates in order to be able to link 
the election data to other data sources. 
11 The candidate-level demographic and occupation data usually refers to the election year, with the 
exception that occupation data from 1995 (2011) is matched to 1996 (2012) elections data. 
12 Two further observations on the data are in order: First, to be careful, we omit all data (about 150 
candidates) from one election year (2004) in one municipality, because of a mistake in the elected status 
of one candidate. Mistake is apparently due to one elected candidate being disqualified later. Second, 
the data on the candidates running in 2012 are only used to calculate the outcome variables.  
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elected in the next election. We measure the event of getting elected today by a 

binary indicator, Eit, which takes value of one if candidate i was elected in election year 

t and is zero otherwise. Our main outcome is a binary variable, Yi,t+1, which equals one 

if candidate i is elected in the next election year t+1 and is zero otherwise.  

In elections between 1996 and 2008, 1351 candidates had a tie within their party 

lists for the last seat(s), i.e. at the margin which determines whether or not the 

candidates get a seat.13 In these cases, a lottery was used to determine who got 

elected. This implies that Eit was randomly assigned in our lottery sample, i.e. among 

the candidates that had a tie.  

Covariance balance tests for the lottery sample 
Was the randomization required by the law conducted correctly and fairly? To address 

this question, we study whether candidates’ characteristics balance between the 

treatment (randomly elected) and the control group (randomly not elected) within the 

lottery sample. The results are reported in Table 1. The differences are statistically 

insignificant and small in magnitude. These findings support the view that Eit is 

randomly determined in the lottery sample. 14 

 

 

 

 

                                                            
13 In addition, there were 202 ties in 2012. We do not include them in the lottery sample, because we 
cannot yet observe subsequent election outcomes for these candidates. When we include these ties in 
the balancing tests, the results do not change. Notice also that a tie may involve more than two 
candidates and more than one seat. For example, three candidates can tie for two seats.   
14 The candidates’ party affiliations and municipal characteristics should be balanced by design, because 
we analyze lotteries within the party lists. The corresponding balancing tests (reported in Appendix B) 
confirm this. 
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Table 1. Covariate balance tests for the lottery sample  

 

Experimental estimate for the personal incumbency effect 
Is there a personal incumbency effect? Before we can answer this question, we have to 

point out that a subsequent electoral outcome is observed for 820 out of the 1351 

candidates who participated in the lottery between 1996 and 2008, because they reran 

in a subsequent election. We do not know what happened to those who decided not 

to run again. This attrition is a possible source of concern for us, because the decision 

not to rerun may mirror for example the candidates’ expected performance. If it does, 

analyses based on the selected sample, from which those who did not rerun are 

excluded, would not provide as us with the correct treatment effect. Rerunning is an 

(endogenous) outcome variable and we therefore cannot condition on it, unless the 

treatment has no effect on the likelihood of rerunning. Relying on such an assumption 

Variable N Mean Std. Dev. N Mean Std. Dev. Difference

Vote share (from all  votes) 671 1.54 0.69 680 1.53 0.67 0.00
Vote share (from party votes) 671 6.49 6.34 680 6.49 6.31 0.00
Number of votes 671 41 39 680 41 38 0
Female 671 0.39 0.49 680 0.38 0.49 0.01
Age 671 45.42 11.87 680 45.69 11.54 -0.27
Incumbent 671 0.29 0.45 680 0.31 0.46 -0.02
Municipal employee 671 0.24 0.43 680 0.25 0.44 -0.01
Wage income 429 19190 12098 431 20207 12940 -1017
Capital income 429 2641 11420 431 2022 16683 618
High professional 671 0.18 0.38 680 0.18 0.38 0.00
Entrepreneur 671 0.24 0.43 680 0.24 0.43 0.00
Student 671 0.02 0.15 680 0.03 0.16 0.00
Unemployed 671 0.06 0.24 680 0.05 0.22 0.01
University degree 537 0.13 0.34 545 0.13 0.34 0.00
Notes : Difference in means has been tested using t test adjusted for clustering at municipality level. 
Sample includes only candidates running in 1996-2008 elections. Income data are not available for 2012 
elections, and in 1996 elections they are available only for candidates who run also in 2000, 2004 and 2008 
elections. Income and income per capita are expressed in euros.

Not elected (N = 680)
Individual characteristics
Elected (N = 671)
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would be neither harmless nor conservative.15 Our baseline results therefore refer to 

the entire lottery sample. This means that we code our main outcome variable so that 

it is equal to one if the candidate is elected in the next election, and is set to zero if the 

candidate is not elected or does not rerun.  

The raw data suggest that there is no personal incumbency advantage; the fraction 

of candidates who get elected in election year t+1 conditional on not winning the 

lottery in election year t is 0.325, whereas the same fraction conditional on winning 

the tie lottery is 0.329. The difference between the two fractions is small (≈ 0.004). To 

quantify the difference more formally, we regress Yi,t+1 on Eit using OLS and the sample 

of candidates who faced within-party ties. Because Eit is randomly assigned in the 

lottery sample, its coefficient is the average treatment effect (ATE). Note that due to 

the way the lottery sample is constructed, this ATE is estimated precisely at the cutoff 

point of political support which determines whether or not a candidate gets elected. It 

is therefore an ideal benchmark for the non-experimental RDD estimate, because the 

sharp RDD targets exactly the same treatment effect.  

Table 2 reports our experimental estimates of the personal incumbency effect. In 

the leftmost column, Yi,t+1 is regressed on Eit and a constant, using OLS. In the 

remaining columns we report the OLS results from a set of specifications that include 

control variables and fixed effects. Three main findings emerge. First, there is no 

evidence of a personal incumbency advantage: the estimated effect is close to zero. 

Second, the coefficient of Eit is relatively stable across the columns and is thus not 

correlated with the added controls or fixed effects. This further supports the view that 

                                                            
15 Uppal (2010) and Klašnja and Titiunik (2015) report the results for a sample that includes all 
candidates and for a sample that only includes those who rerun. De Magalhaes (2014) argues in favor of 
including all the candidates. 
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Eit is random. Third, the estimates are relatively precise, as the standard errors are 

around 0.03. 

Table 2. Experimental estimates of the personal incumbency advantage (Lottery 

sample) 

 

We have considered the robustness of the experimental estimate(s) in various 

ways. First, 0.9% of the candidates run in another municipality in the next elections. 

For Table 2, they were coded as not rerunning. The results (not reported) are robust to 

accounting for their reelection in municipalities other than the one where they faced 

the tie in the previous election. Second, 118 of the candidates that lost in the lottery 

became council members during the term of the council because some council 

member stepped down. This may lead to a contamination bias. We have therefore 

recalculated our experimental estimates after excluding these candidates from the 

lottery sample. The experimental estimates do not practically change. Third, we have 

considered the vote share in the next election as an alternative outcome. While more 

problematic, we follow the same practice with this alternative outcome as above and 

set it to zero if the candidate did not rerun in the next election. The results (reported in 

(1) (2) (3) (4)
0.0044 0.0009 -0.0101 -0.0099

(0.0247) (0.0249) (0.0291) (0.0332)
N 1351 1351 1351 1351

R2 0.00 0.03 0.28 0.44
Controls No Yes Yes Yes
Municipality fixed effects No No Yes No
Municipality-year fixed effects No No No Yes

Outcome: Elected next election

Elected

Notes: Only actual lotteries are included in the regressions. Set of controls 
includes age, gender, party affiliation, socio-economic status and incumbency 
status of a candidate, and total number of votes. Some specifications include also 
municipality or municipality-year fixed effects. Standard errors shown in 
parentheses are clustered at municipality level. Unit of observation is a candidate 
i  at year t .
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Appendix B) show that Eit has no impact on the alternative outcome.16 Fourth, we 

considered small and large elections separately (see Appendix B), but found no 

evidence of a personal incumbency advantage. Finally, we get an experimental 

estimate close to zero (for both the elected next election and vote share next election 

outcomes) if we use a trimmed lottery sample that only includes the rerunners 

(reported in Appendix B). 

Discussion of the experimental estimate  
The personal incumbency advantage refers to the added electoral support that an 

incumbent politician of a given party enjoys when she runs for re-election, relative to 

her being a non-incumbent candidate from the same party and constituency.17 Such 

advantage could stem from various sources, such as from having been able to serve 

the constituency well, having enjoyed greater public visibility while holding the office, 

improved candidate quality (through learning while in power), reduced competitor 

quality (due to a “scare-off” effect; see Cox and Katz 1996, Erikson and Titiunik 2015), 

and the desire of voters to disproportionately support politicians with past electoral 

success (“winners”). The earlier (mostly U.S.) evidence suggests that the existence of 

an incumbent personal advantage in two-party systems is largely beyond question 

(see, e.g., Erikson and Titiunik 2015, and the references therein). It is clear that the size 

of the advantage may nevertheless vary and be context specific; see e.g. Desposato 

and Petrocik (2003), Grimmer et al. (2012), Uppal (2009) and Klašnja and Titiunik 

                                                            
16 We have also checked that if the event of rerunning in the next election is used as the dependent 
variable, the experimental estimate is small and statistically not significant.  
17 This politician-level electoral gain is not the same as the advantage that a party enjoys from being the 
incumbent party in an election (Gelman and King 1990, Lee 2008, Erikson and Titiunik 2015). The party 
incumbency advantage measures the electoral gain that a candidate enjoys when she is from the 
incumbent party, independently of whether she is an incumbent politician or not. Following Lee (2008), 
most of the earlier RDD analyses refer to the party advantage (e.g., Broockman 2009, Butler 2009, Uppal 
2010, Caughey and Sekhon 2011, Trounstine 2011), even though it seems that what is being actually 
estimated is a combination of personal and party advantage (e.g., Fowler and Hall 2014). 
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(2015), who find evidence of party-level disadvantage in systems characterized by 

weak parties. 

In our view, the null finding of no personal incumbency advantage is neither 

surprising nor in conflict with the prior evidence, for three reasons: First, we are 

looking at personal incumbency advantage in the rather special context of small local 

PR elections. It is possible that in this context, the randomized political victories take 

place at a relatively unimportant margin. For example, such a political win does not, 

per se, typically lead to a visible position in media or a prominent position in the wider 

political landscape. Perhaps being the last elected candidate of a party in the Finnish 

municipal elections conveys limited opportunities to serve one’s constituency or to 

improve one’s quality as a candidate through learning-by-doing.18 What’s more, it is 

certainly plausible that getting the last seat by a lottery does not work to scare off 

good competitors in the subsequent elections. Such a political victory provides the 

voters with a limited opportunity to picture and support the candidate as a political 

winner. It is thus not surprising if there is no personal incumbency advantage at the 

margin that we study. 

Second, it is important to recall that most of the recent evidence on the positive 

and large incumbency effects refers to the advantage that parties get from being 

incumbent. For example, in Lee (2008), the estimated incumbency effect refers to the 

margin at which all the political power shifts from one party to another. In contrast, 

the random election outcomes in our data allow recovering a treatment effect 

estimate for the personal incumbency advantage that specifically excludes the party 

                                                            
18 Similarly, being the first non-elected candidate of a party may convey some opportunities to 
participate in the municipal decision making, e.g., by serving as a deputy councilor or as a member in 
municipal committees.  
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effect, because it is estimated from within-party variation in the incumbency status. 

Moreover, the existing studies that look at personal incumbency advantage in the PR 

systems of developed countries find typically only modest or no incumbency effects 

(Dahlgaard 2013, Golden and Picci 2015, Lundqvist 2011 and Kotakorpi et al. 2013).  

Third, our null finding is not as much in conflict even with the prior U.S. between 

party evidence as it first appears, because – as we will show in the next section – we 

also would claim to have found a positive, moderate and statistically significant 

incumbency effect if we had just relied on the standard implementation of RDD, using 

local linear regression and optimal bandwidths. As we illustrate below, we also would 

have reported significant and large effects if we had used the parametric global 

polynomial RDD specifications (like the earlier RDD literature often did; see e.g. Lee 

2008).  

3.2 Non-experimental estimates  
 

Implementing RDD for PR elections 
The identification of the treatment parameter using RDD relies on the assumption that 

both the expected electoral support for a candidate who is not an incumbent, given 

her electoral support in the previous election, and the expected electoral support for a 

candidate who is an incumbent, given her electoral support in the previous election, 

are continuous in the share/number of votes at the cutoff (Hahn et al. 2001, see also 

Lee 2008 and Imbens and Lemieux 2008). A special feature of a PR election system is 

that it is much harder than in a two-party majoritarian system for a candidate or a 

party to accurately predict the precise location of the cutoff that determines who gets 

elected from a given party-list. The reason for this is that the number of seats allocated 
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to the party also depends on the election outcome of the other parties.19 This makes it 

more likely that the forcing variable cannot be perfectly manipulated and thus that the 

key RDD assumption is satisfied. 

Our forcing variable is constructed as follows. We measure closeness within a party 

list in order to focus on within-party variation in the incumbency status and, as we 

explained earlier, to abstract from multi-party issues and potential party effects in PR 

systems (see Folke 2014). To this end, we calculate for each ordered party list the 

pivotal number of votes as the average of the number of votes among the first non-

elected candidate(s) and the number of votes among the last elected candidate(s). A 

candidate’s distance from getting elected is then the number of votes she received 

minus the pivotal number of votes for her list (party). We normalize this distance by 

dividing it by the number of votes that the party list got in total and then multiply it by 

100.20 This normalized distance is our forcing variable	ݒ௜௧.  
Four observations about our forcing variable are in order: First, it measures 

closeness within a party list in vote shares. It is thus in line with the existing measures 

for majoritarian systems. As usual, all candidates with ݒ௜௧ > 0 get elected, whereas 

those with ݒ௜௧ < 0 are not elected. All those candidates for whom ݒ௜௧ = 0 face a tie 

and get a seat if they win in the lottery. Second, the histogram of the forcing variable 

                                                            
19 In PR multi-party election systems, such as those used in the Nordic countries, the location of the RDD 
cutoff(s) and the nature of the associated forcing variable are much more elusive than in majority 
systems. As Folke (2014) stresses in the seminal implementation of RDD in such a system, the main issue 
is that the seats allocated to a given party are not only a function of their own vote share, but rather 
depend on the entire vote vector and often in a nonlinear way. Freier and Odendahl (2012), Fiva et al. 
(2013) and Kotakorpi et al. (2013) provide subsequent methodological contributions. Dahlgaard (2013), 
Golden and Picci (2015), Lundqvist (2011) and Kotakorpi et al. (2013) study quasi-randomization that 
takes place within parties in a PR system using a very similar approach as we do.  
20 This way of defining the forcing variable means that all those party lists from which no candidates or 
all candidates got elected are dropped out from the analysis. In total, this means omitting about 6000 
candidate-election observations. This corresponds to roughly 3% of the observations in the elections 
organized between 1996 and 2012. 
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close to the cutoff (reported in Appendix C) shows that there are observations close to 

the cutoff and thus that some, but not extensive, extrapolation is being done in the 

estimation of the RDD treatment effect. Third, the assumption of having a continuous 

forcing variable is not at odds with our forcing variable. For example, among the 100 

closest observations to the cutoff, 92 observations obtain a unique value of ݒ௜௧ and 

there are 4 pairs for which the value is the same within each pair. Finally, our 

normalized forcing variable and the (potential alternative) forcing variable based on 

the absolute number of votes operate on a very different scale, but they are correlated 

(their pairwise correlation is in our data 0.34, p-value < 0.001; see also Appendix C).21 

Moreover, as we discuss later in connection with robustness tests, our RDD results are 

robust to using alternative definitions of the forcing variable. 

The function of the forcing variable is estimated separately for both sides of the 

cutoff. Choice of the bandwidth determines the subsample near the cutoff to which 

the function of the forcing variable is fitted and from which the treatment effect is 

effectively estimated (Imbens and Lemieux 2008, Lee 2008, Lee and Lemieux 2010). 

For our baseline RDD, we use a triangular kernel and the optimal bandwidths of 

Imbens and Kalyanaraman (2012, IK), Calonico et al. (2014a, CCT) and Ludwig and 

Miller (2007, LM).22  

RDD estimations: Baseline results 
Table 3 reports our baseline RDD estimation results. We report results from a sharp 

RDD for the subsample of candidates that excludes the randomized candidates, 

                                                            
21 In large elections, it is more likely that small vote share differences are observed (rather than small 
differences in the number of votes). The opposite holds for small elections. 
22 We have also calculated the bandwidths proposed by Fan and Gijbels (1996). As those were always 
broader than the IK bandwidths, we do not report them. 
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because a typical close election RDD would not have such lotteries in the data. The 

table consists of four panels (A-D). We describe each of them in turn.  

In Panel A of Table 3, the bandwidth is selected optimally for the local linear 

specification using either the IK, CCT or LM method. The panel reports for these 

bandwidth choices the local linear (specifications (1)-(3)), quadratic (specifications (4)-

(6)) and cubic (specifications (7)-(9)) RDD estimates of the personal incumbency 

advantage. As specifications (1)-(3) show, all local linear RDD specifications with 

bandwidths that are optimally chosen for the linear specification indicate a positive 

and statistically significant incumbency advantage. The local linear RDD with optimal 

bandwidth is thus not able to replicate the experimental estimate. This finding is 

consistent with the view that when the MSE-optimal bandwidths are used in the local 

linear regression (and when the bias is large), there is a risk of over-rejection because 

of the distributional approximation being poor. This is likely to happen when the 

regression function has curvature within the optimal bandwidth that the linear 

approximation cannot capture. The next specifications (specifications (4)-(9)) in the 

panel show that the curvature of the regression function indeed matters. Using the 

richer quadratic and cubic local polynomials aligns the RDD estimates with the 

experimental results for the bandwidths that are MSE-optimal, as determined by IK 

and CCT for the linear specification. For the much wider LM bandwidth even the 

quadratic and cubic local polynomials produce a positive and significant effect.23 

                                                            
23 In our case, IK appears to result in the narrowest bandwidth among the IK, CCT and LM methods. The 
IK and CCT bandwidths are nevertheless pretty close to each other and they give similar results. The 
optimal IK and CCT bandwidths correspond to around 0.60% of the total votes of a list (that is 6 votes 
out of 1000). This typically translates into a small number of votes. Notice, however, that the 
bandwidths are not that small when compared to the vote shares that the candidates at the cutoff get in 
our data (6.5 % vote share, see Table 1). We use here only the CCT bandwidth selection criteria but not 
yet the bias-correction or robust inference method that they also propose, i.e. CCT-correction. 
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In Panel B of the table, we report the results using bandwidths that are half the 

optimal bandwidth of the local linear specification. This under-smoothing ought to 

reduce the (asymptotic) bias, which it indeed appears to do. All the estimates decrease 

in size. When bandwidths half the size of the optimal IK or CCT bandwidths are used, 

the results are in line with the experimental benchmark (specifications (10)-(11)). 

These results continue to hold when the quadratic and cubic polynomials are used. The 

wider LM bandwidth produces larger estimates that are not in line with our 

experimental finding in all but the cubic specification (18). 

In Panel C of Table 3, we report the results using bandwidths that are twice the 

optimal ones. We do this to see how the richer polynomials work when the 

neighborhood around the cutoff is widened. Compared to Panel A and B, the estimates 

increase in size. Now only the local cubic polynomial regressions with IK and CCT 

bandwidths do not reject the null hypothesis of no effect. This further illustrates how 

the curvature of the regression function matters. 

Finally, in Panel D, we report the results for the quadratic and cubic specifications, 

with IK and CCT bandwidths that have been re-optimized for these more flexible 

polynomial specifications. As the panel shows, we again get positive and statistically 

significant effects. In the cubic specification that uses the IK bandwidth, the effect is 

significant only at 10% level.  

The above findings are in line with the well-known result that the MSE-optimal 

bandwidth is too large for inference. As e.g. Imbens and Lemieux (2008) and CCT have 

noted, the use of the MSE-optimal bandwidth leads to over-rejection of the null 

hypothesis if the bias caused by the linear approximation is non-negligible. What also 

is in line with the recent econometric work is that holding the order of the polynomial 
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constant, smaller bandwidths align our RDD results with the experimental benchmark 

(see CCT for a discussion of under-smoothing). We find that holding the bandwidth 

constant, richer polynomials align our RDD results with the experimental benchmark, 

too. This result is in line with those reported by Card et al. (2014) in the sense of 

advocating the use of higher order local polynomials. The difference is that in our data, 

the MSE-based rule proposed by Card et al. appears not to reproduce the experimental 

estimate. 24  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                            
24 Card et al. (2014) propose selecting the order of the local polynomial by minimizing the asymptotic 
MSE. We have used polynomials of orders 0 – 5 with the IK optimal bandwidth (which in our data is 
narrower than the CCT optimal bandwidth). We failed to reproduce the experimental estimate. 
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Table 3. Local polynomial RDD estimates 

Even though a typical applied researcher does not have access to an experimental 

estimate and hence cannot benchmark her RDD estimate to the experimental one, it is of 

some interest to ask whether the experimental estimate (Table 2, specification (1)) is 

statistically different from the non-experimental estimates that the local linear RDD with 

optimal bandwidths produce (see Table 3, specification (1)-(3)). The reason is that an 

alternative interpretation for our findings is that our experimental estimate is imprecise and, 

in fact, consistent with a small and positive incumbency effect. The experimental estimate 

(1) (2) (3) (4) (5) (6) (7) (8) (9)

0.0387* 0.0521** 0.1562** 0.0077 0.0217 0.0683** -0.0220 -0.0042 0.0364**
(0.0156) (0.0129) (0.0090) (0.0239) (0.0203) (0.0099) (0.0338) (0.0272) (0.0132)

N 19407 26999 89094 19407 26999 89094 19407 26999 89094

Bandwidth 0.53 0.74 2.51 0.53 0.74 2.51 0.53 0.74 2.51

Bandwidth selection method IK CCT LM IK CCT LM IK CCT LM

(10) (11) (12) (13) (14) (15) (16) (17) (18)

0.0068 0.0240 0.0831** -0.0224 -0.0148 0.0359** -0.0180 -0.0250 0.0243
(0.0232) (0.0190) (0.0096) (0.0364) (0.0303) (0.0146) (0.0549) (0.0421) (0.0207)

N 9808 13496 47898 9808 13496 47898 9808 13496 47898

Bandwidth 0.27 0.37 1.25 0.27 0.37 1.25 0.27 0.37 1.25

Bandwidth selection method 0.5 * IK 0.5 * CCT 0.5 * LM 0.5 * IK 0.5 * CCT 0.5 * LM 0.5 * IK 0.5 * CCT 0.5 * LM

(19) (20) (21) (22) (23) (24) (25) (26) (27)

0.0708** 0.0975** 0.2418** 0.0334* 0.0412** 0.1344** 0.0159 0.0259 0.0737**
(0.0104) (0.0092) (0.0083) (0.0162) (0.0131) (0.0094) (0.0228) (0.0187) (0.0099)

N 40111 57227 121501 40111 57227 121501 40111 57227 121501

Bandwidth 1.07 1.48 2.51 1.07 1.48 2.51 1.07 1.48 2.51

Bandwidth selection method 2 * IK 2* CCT 2* LM 2 * IK 2 * CCT 2 * LM 2 * IK 2 * CCT 2 * LM

(28) (29) (30) (31) (32) (33)

0.0387* 0.0521** 0.0393** 0.0569** 0.0495** 0.1105**
(0.0156) (0.0129) (0.0136) (0.0106) (0.0114) (0.0095)

N 19407 26999 54465 78470 70577 112399

Bandwidth 0.53 0.74 1.41 2.09 1.84 3.98

Bandwidth selection method IK CCT IK CCT IK CCT

Outcome: Elected next election

Panel A: Bandwidth optimized for local l inear specification

Linear Quadratic Cubic

Elected (conventional)

Panel B: Bandwidth optimized for local l inear specification * 0.5

Linear Quadratic Cubic

Notes :  Table shows estimated incumbency advantage using local polynomial regressions within various bandwidths. All estimations use a triangular kernel. 
The standard errors are clustered at municipality level. * and ** denote 5% and 1% statistical significance levels, respectively. Unit of observation is a 
candidate i  at year t . 

Elected (conventional)

Elected (conventional)

Panel C: Bandwidth optimized for local l inear specification * 2

Linear Quadratic Cubic

Linear

Panel D: Bandwidths optimized for each specification separately

Elected (conventional)

Quadratic Cubic
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(0.0044) is 88.6% smaller than the RDD estimate (0.0386) produced by the local linear RDD 

with the IK optimal bandwidth, but we cannot reject the null hypothesis that the two 

estimates are equal (p-value = 0.24). However, the difference is statistically significant at 

10% level when the estimates based on the CCT bandwidths are used (p-value = 0.087) and 

highly significant when the estimates based on the LM bandwidths are used (p-value < 

0.0001). It is important to stress that this comparison is not what a typical applied researcher 

using RDD absent the experiment could do and would rely on, and thus these tests are not a 

good benchmark for evaluating the RDD estimate(s). 

RDD estimations: Curvature analysis 
The raw data support the view that there is substantial curvature in the relation between 

the forcing variable and the outcome variable close to the cutoff. We demonstrate this in 

Panel A of Figure 1. It plots the data using 100 bin averages around the optimal IK bandwidth 

of the local linear specification and the fits of linear (on the left), quadratic (in the middle) 

and cubic (on the right) regressions. The figure on the left clearly shows that that there is 

curvature in the data near the cutoff, making the linear approximation inaccurate. The 

quadratic local polynomial in the middle seems to capture the curvature quite well. This 

finding suggests that a polynomial specification of order 2 is flexible enough for the 

bandwidth that has been optimized for a polynomial of order 1, possibly explaining the 

different performance of these estimators in Table 3.  

The same observation can be made from Panels B and C of Figure 1, where the 

bandwidths are optimal for the quadratic (Panel B) and cubic (Panel C) specifications. Like in 

Panel A, the graphs on the left side of these panels display the fits that are based on the 

same order of the local polynomial specification, p, for which the optimal bandwidth is 

calculated. In the middle graph, the fit uses a p+1 local polynomial, but the bandwidth is the 
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same as on the left. In the graphs on the right side, the displayed fits are based on a p+2 

local polynomial. A visual inspection of these graphs again suggests that a polynomial of 

order p+1 is flexible enough for the bandwidth that has been optimized for a polynomial of 

order p.25 The approximation is better especially near the cutoff when the richer p+1 

polynomial is used. Moreover, the experimental estimate indicates that there should not be 

a jump at the cutoff. The graphs on the left are therefore consistent with a poor local 

approximation, because there a jump can be detected. The jumps are nearly invisible or 

completely non-existent in the graphs displayed in the middle (p+1) or on the right (p+2).  

We have checked that these findings are not specific to the way we define the forcing 

variable. The same patterns can be observed also if we use the absolute number of votes as 

the forcing variable (reported in Appendix C).  

 

  

                                                            
25 We checked that this holds in our case from p=0 to p=5, but did not check p>5. 
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data are included in the RDD sample. Second, when bandwidths narrower than the optimal 

ones are used, RDD reproduces the null result that the data from the random election 

outcomes suggest, irrespectively of which polynomial is used. How much narrower the 

bandwidth needs to be depends on the specification, but as a general rule, half the optimal 

is conservative enough to work well.  

 

 

Figure 2. Conventional RDD estimates using various bandwidths. 

Notes: Figure displays point estimates from local polynomial regressions with triangular kernel using various bandwidths. Dashed lines 
show 95 % confidence intervals computed using standard errors clustered at the municipality level. Red vertical line marks the optimal IK 
bandwidth. 

 

Bias-corrected RDD estimations 
To evaluate how the recently proposed bias-correction and robust inference method of CCT 

works (CCT-correction), we report in Table 4 a number of RDD estimates using the CCT-

correction. In this method, a pth order local polynomial is used to estimate the main effect 

whereas a (p+1)th order local polynomial is used to estimate the (potential) bias. The 

bandwidth that is used to estimate the bias is called a pilot bandwidth.  

Table 4 consists of three panels. In Panel A, we use bandwidths optimized for the 

linear specification, but report the estimates from linear, quadratic and cubic local 

polynomial specifications. For this panel we choose the pilot bandwidth used to estimate the 
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bias either by the data-driven method suggested by CCT (using the default option in the 

rdrobust Stata-package; see Calonico et al. 2014b) or by using the IK method. When the pilot 

bandwidth is chosen by the data-driven method of CCT, the main bandwidth is determined 

to be MSE optimal, based on the CCT bandwidth selection method. When the pilot 

bandwidth is chosen by the IK method, so is the main bandwidth. The results of this panel 

show that the CCT-correction is able to meet the replication standard, in the sense that 

when the CCT corrected estimates and standard errors are used, we do not, in general, 

reject the null hypothesis of no effect. The important exception to this result is the data-

driven pilot bandwidth calculation suggested by CCT. It apparently leads to too wide pilot 

bandwidths. When the pilot and main bandwidths are chosen by the IK method, the CCT-

correction meets the replication standard, irrespectively which local polynomial specification 

is used. 

In Panel B, we again report the estimates from linear, quadratic and cubic local 

polynomial specifications but choose the bandwidths differently. We optimize the main 

bandwidths for the linear specification using the CCT and IK bandwidth selection methods. 

We then impose the pilot bandwidth to be the same as the main bandwidth. From the 

perspective of the point estimate, CCT-correction with the same main and pilot bandwidth 

amounts to using the conventional local polynomial approach, but with the twist that the 

main effect is estimated using a one order higher polynomial specification (p+1) than the 

specification for which the bandwidth is selected (p). It follows that the point estimate (but 

not the standard error) is the same in columns (4) and (5) of Table 3 as here in columns (7) 

and (8) of Panel B of Table 4. The results of this panel show that when implemented in this 

way, the CCT-correction is able to meet the replication standard.  
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In Panel C, we use the bandwidths optimized for the quadratic and cubic local 

specifications. They are chosen as in Panel A. We again find that the CCT-correction is able to 

meet the replication standard, provided that the pilot and main bandwidths are chosen by 

the IK method. The data-driven method suggested by CCT again seems to lead to a too wide 

pilot bandwidth.  

 

Table 4. CCT bias-corrected local polynomial RDD estimates with robust inference. 

 

To explore how the bias corrected and robust estimates vary with different bandwidths 

and how the two bandwidth choices interact, we display in Figure 3 the bias-corrected RDD 

(1) (2) (3) (4) (5) (6)

0.0295 0.0455** 0.0059 0.0210 -0.0232 -0.0043
(0.0156) (0.0120) (0.0232) (0.0182) (0.0333) (0.0259)

N 19407 26999 19407 26999 19407 26999

Bandwidth 0.53 0.74 0.53 0.74 0.53 0.74

Pilot bandwidth 1.14 3.03 1.14 3.03 1.14 3.03

Bandwidth selection method IK CCT IK CCT IK CCT

(7) (8) (9) (10) (11) (12)

0.0077 0.0217 -0.0220 -0.0042 -0.0332 -0.0214
(0.0223) (0.0181) (0.0327) (0.0258) (0.0453) (0.0352)

N 19407 26999 19407 26999 19407 26999

Bandwidth 0.53 0.74 0.53 0.74 0.53 0.74

Pilot bandwidth 0.53 0.74 0.53 0.74 0.53 0.74

Bandwidth selection method IK CCT IK CCT IK CCT

(13) (14) (15) (16) (17) (18)

0.0295 0.0455** 0.0262 0.0518** 0.0250 0.0515**
(0.0156) (0.0120) (0.0170) (0.0110) (0.0189) (0.0107)

N 19407 26999 54465 78470 70577 112399

Bandwidth 0.53 0.74 1.41 2.09 1.84 3.98

Pilot bandwidth 1.14 3.03 1.49 5.38 1.92 7.90

Bandwidth selection method IK CCT IK CCT IK CCT

Elected (bias correction and robust inference)

Outcome: Elected next election

Panel A: Bandwidth optimized for local l inear specification

Linear Quadratic Cubic

Elected (bias correction and robust inference)

Panel B: Main and pilot bandwidths optimized for local l inear specification

Linear Quadratic Cubic

Notes :  Table shows estimated incumbency advantage using local polynomial regressions within various bandwidths. We report bias-corrected 
estimates and robust standard errors computed using rdrobust command in Stata. * and ** denote 5% and 1% statistical significance levels, 
respectively. Unit of observation is a candidate i  at year t . 

Panel C: Main and pilot bandwidths optimized for each specification separately

Linear Quadratic

Elected (bias correction and robust inference)

Cubic
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estimates and their robust 95% confidence intervals for a fixed pilot bandwidth, but for 

different main bandwiths. We use the IK method to determine the pilot bandwidth, because 

it seemed to work well. The figure shows that when fixing the pilot bandwidth to be IK 

optimal, the estimated effect is quite robust to the choice of the main bandwidth and most 

of the time not significantly different from zero. This confirms that the CCT-correction seems 

to work well, when the pilot bandwithd is chosen by the IK method.  

 

Figure 3. Bias-corrected RDD estimates, fixed pilot bandwidth. 

Notes: Figure displays bias-corrected point estimates from local polynomial regressions with triangular kernel using various bandwidths. 
Dashed lines show 95 % confidence intervals computed using robust standard errors. Red vertical lines mark the optimal IK bandwidth. The 
pilot bandwidth for bias correction has been fixed to 1.14, 1.49 and 1.92 for linear, quadratic and cubic specifications, respectively. 
Estimations have been carried out using rdrobust command in Stata. 

 

In Figure 4, we allow both bandwidths to vary and report the corresponding CCT-

corrected estimates and their robust confidence intervals. The results resemble those we 

reported earlier (Figure 2) for the conventional RDD. The estimated effect mostly increases 

with the bandwiths, but now the replication standard is met across a wider range of 

bandwiths. The figure confirms that when the CCT-correction is used and the main 

bandwidth is chosen to be IK optimal or smaller, the null hypothesis of no effect is not 

rejected in any of the specifications.  
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Figure 4. Bias-corrected RDD results, both bandwidths vary. 

Notes: Figure displays bias-corrected point estimates from local polynomial regressions with triangular kernel using various bandwidths. 
Dashed lines show 95 % confidence intervals computed using robust standard errors. In the third graph, confidence intervals are omitted 
for bandwidths smaller than 0.2. Red vertical lines mark the optimal IK main and pilot bandwidths (both for estimation and bias correction). 
Estimations have been carried out using rdrobust command in Stata. 

4 Discussion and robustness 

4.1 RDD falsification and smoothness tests  
 

The standard pattern of validity tests for the RDD includes the McCrary (2008) manipulation 

test, covariate balance tests, which are an indirect test of the smoothness assumption, and 

placebo tests, where the location of the cutoff is artificially redefined. We do not report the 

results of the validity tests in detail here. It suffices to note the following (see Appendix D for 

details).  

First, there is no jump in the amount of observations at the cutoff of getting elected. 

Second, when testing for covariate balance, we allow for the possibility that the covariates 

have slopes (or even curvature) near the cutoff (e.g., Snyder et al. 2015 and Eggers et al. 

2015) and estimate local linear specifications. We calculate the optimal bandwidths (and half 

the optimal ones) for different polynomials to address potential slope and curvature issues. 

We do this for each covariate separately. The covariate balance tests produce somewhat 

mixed evidence, but overall they suggest that RDD ought to work well in our application. This 

finding is somewhat in contrast with those of Caughey and Sekhon (2011), who mention the 
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possibility that purposeful sorting by the candidates may invalidate the use of RDD also in 

the closest races. We find some evidence that there are fewer rejections of covariate 

balance when more flexible local polynomial specifications (or under-smoothing) are used. 

 Finally, the placebo cutoff tests provide signals that cast doubt on the appropriateness of 

standard local linear (and polynomial) RDD specifications with the MSE optimal bandwidths 

in our context. Moreover, the placebo tests do not suggest that under-smoothing 

procedures and use of higher degree local polynomials without adjusting the bandwidth 

accordingly would not work. This finding echoes the conclusion that when these bias-

correction tools are used, RDD is able to reproduce the experimental estimate. In sum, this 

shows that the placebo cutoff tests can be useful in detecting too inflexible specifications.    

4.2 When is RDD as good as randomly assigned?  
 

One reason for the popularity of RDD is that close to the cutoff, variation in the treatment 

status may be “as good as randomized”, provided that the forcing variable cannot be 

precisely manipulated (Lee 2008, p. 676). RDD is widely believed to meet the replication 

standard because of this particular feature. This feature may also be the reason why RDD 

has been used as a benchmark against which other non-experimental estimators have been 

compared (see, e.g., Lemieux and Milligan 2008).  

This naturally leads to the question of whether we can identify a neighborhood around 

the cutoff where the randomization assumption is plausible. Knowing whether such a 

neighborhood can be found is useful, even though covariate balance in means is not a 

requirement for the validity of RDD. Our data are special, because we know that in a sample 

that includes the lotteries, the randomization assumption is satisfied if the neighborhood is 

degenerate at the cutoff.  



32 
 

Inspired by the approach proposed by Cattaneo et al. (2014), we explore the largest 

bandwidth in which the as-good-as-random assumption holds and then compare the sample 

means of the outcome variable across the cutoff. To determine the largest bandwidth in 

which the as-good-as-random assumption holds, we either look at the most important 

covariate or the minimum p-value among all the covariates. According to Eggers et al. 

(2015), incumbency status (elected at t-1) is a very good measure of candidate quality. If we 

use it, we find that bandwidths 0.04 or smaller are as-good-as-random at the 5% significance 

level (923 non-experimental observations). Based on the minimum p-value among all the 

covariates (but not correcting for multiple testing), it seems that bandwidths 0.02 or smaller 

would be as-good-as random at the 5% significance level (128 observations). These findings 

indicate that the approach proposed by Cattaneo et al. (2014) leads to rather conservative 

(small) samples in light of our other RDD findings. This is partly due to not correcting for 

multiple testing and partly due to the fact that in our election data, many covariates have 

rather steep slopes with respect to the forcing variable.26  

The approach is, however, able to reproduce the experimental estimate. When we use 

these conservative bandwidths, there is no statistically significant difference in the means of 

getting elected at t+1 elections around the cutoff: The difference is 0.0101 (p-value 0.32) for 

the bandwidth of 0.04 and 0.0640 (p-value 0.75) for the bandwidth of 0.02.27 

 

                                                            
26 One could consider generalizing the covariate-based bandwidth selection criterion by Cattaneo et al. (2014) 
to higher order local polynomial specifications (p = 0 in Cattaneo et al. 2014). This would involve conducting all 
the covariate balance tests with the same bandwidth and specification that is used to estimate the effect on 
the main outcome. Such covariate balance tests could be indicative of the issues (e.g. the curvature problem) in 
the particular specifications and bandwidth choices used to estimate the main outcome. However, a systematic 
analysis and formalization of this generalization is beyond the scope of this paper. 
27 Note that we do not have to resort to the randomization inference method proposed by Cattaneo et al. 
(2014a), because we have quite a lot of observations also within the two as-good-as-random bandwidths. 
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4.3 Robustness of RDD estimates  
 

We have conducted a large number of tests to probe the robustness of our RDD findings. 

Taking each of them in turn (see Appendix F for details): 

First, RDD is sometimes implemented using higher order global polynomials of the forcing 

variable. We have redone the RDD analysis using such parametric RDDs, using five different 

polynomials (1st-5th degree). These parametric RDD generates positive and statistically 

significant incumbency effects that are roughly similar in magnitude to those reported in Lee 

(2008). Consistent with what Gelman and Imbens (2014) argue, we find that this approach to 

implementing RDD provides misleading findings, as it does not allow us to recover the 

experimental estimate. The bias here is an order of magnitude larger than the one in the 

local polynomial specifications. 

Second, we have considered the vote share in the subsequent elections as an alternative 

measure of incumbency advantage. As we reported earlier, the experimental estimate 

suggests no incumbency advantage when this alternative measure is used. In contrast, the 

RDD results suggest a positive effect when RDD is implemented in a standard fashion, using 

the local linear polynomial and various (MSE) optimal bandwidths.  

Third, ties appear more often in elections in the smaller municipalities. As we reported 

earlier, the experimental estimate is quite precisely estimated and close to zero both in 

small and in large elections. However, our normalized forcing variable can get values really 

close to zero only when parties get a large amount of votes, which tends to happen in the 

elections in the larger municipalities. To check what this implies for our RDD findings, we 

have rerun parts of the RDD analysis separately for small and large municipalities. These 

estimations show that for both the larger and smaller municipalities, the bias increases with 
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the bandwidth and decreases as the degree of local polynomial increases. It thus seems that 

the conclusions we draw are not driven by the size of the municipalities.  

Fourth, another potential explanation for why the local linear RDD point estimates 

increase when the bandwidth gets wider is heterogeneity in the personal incumbency effect 

across municipalities (and party-lists). The use of wider bandwidths means that RDD 

identifies the effect for a different set of municipalities than what we have in the lottery 

sample. To rule out this explanation, we have repeated the RDD analysis using only those 

party-lists that were involved in the lotteries. In this case, increasing the bandwidth adds 

new candidates from the same lists, but does not add new lists or municipalities. Our main 

results remain unchanged. 

Fifth, we have rerun the RDD estimations using alternative definitions for the forcing 

variable. The results show that our RDD findings are not driven by the choice of the forcing 

variable. For example, we get very similar results if the forcing variable is either the vote 

margin that is calculated in terms of the number of votes or vote shares. Moreover, we get 

similar results if the locations of the within-party thresholds are defined in an alternative 

way. 

Sixth, we have studied whether there is heterogeneity in the effect between the parties. 

We found no evidence for substantial heterogeneity in the personal incumbency advantage 

between the parties. 

Finally, we have already mentioned that the experimental estimate does not change if 

those who do not rerun are excluded from the lottery sample. We have replicated our 

baseline RDD analysis using the sample from which those who do not rerun are similarly 

excluded. Our results remain unchanged. 
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5 Conclusions 
 

We have made use of elections data in which the electoral outcome was determined via a 

random seat assignment for a large number of candidates because of a tie in their vote 

count. These instances provide us with a randomized experiment against which we have 

benchmarked non-experimental RDD estimates of personal incumbency advantage. To our 

knowledge, the experiment is unique in the literature, because it takes place exactly at the 

cutoff. This means that both the experiment and RDD target the same treatment effect.  

We find that there is no evidence of a personal incumbency advantage when data from 

the randomized elections is used. The point estimate of the incumbency advantage is close 

to zero and relatively precisely estimated. We have argued that this finding is neither 

surprising nor in conflict with the prior evidence, because we are looking at the effect of 

incumbency status on electoral success at a rather special context, in small local PR 

elections. It is possible that the randomized electoral victories that we study take place at a 

relatively unimportant margin, providing limited scope for the emergence and creation of 

personal incumbency advantage.  

We also find that when RDD is applied in conventional fashion (i.e. using local linear 

regression with optimal bandwidths) to the same close elections, the estimates suggest a 

moderate and statistically significant personal incumbency effect. However, standard bias-

correction tools, such as using narrower bandwidths than those suggested by the bandwidth 

algorithms, using higher degree local polynomials without adjusting the bandwidth 

accordingly or using the recent bias correction method of CCT with IK optimal bandwidths, 

bring the RDD results in line with those obtained using the randomized elections. The finding 
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that higher order polynomials may lead to an improved estimate is in line with Card et al. 

(2014), but the MSE-based rule advocated by them seems not to work in our data.  

Our results hence show that RDD can indeed meet the replication standard in the context 

of close elections. The lesson that the prior work on non-parametric methods has already 

stressed - and that our study clearly enforces - is that the bias induced by the local linear 

approximation can be large enough to severely distort the conclusions one draws. This 

possibility needs to be addressed carefully in applied RRD work.  
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This is an online supplement to Hyytinen, Meriläinen, Saarimaa, Toivanen and Tukiainen (2015, 

HMSTT hereafter). We report here the additional empirical analyses to which HMSTT refers in the 

main text.  

The supplement consists of Appendices A – F. Appendix A reports summary statistics for our data. In 

Appendix B, we describe a number of empirical results for the lottery sample. Appendix C 

characterizes graphically the forcing variable used in the regression discontinuity design (RDD). In 

Appendix D, we evaluate the validity of the RDD. Appendix E reports additional covariate balance 

tests for various RDD samples, determined by different bandwidth choices. Finally, a large battery of 

robustness checks is reported in Appendix F.  

 

  



45 
 

Appendix A: Supplementary information to HMSTT Section 2.2 
(Data) 
In this appendix, we report summary statistics for our data. 

Table A1: This table reports descriptive statistics for the individual candidates. Overall it 

seems that the elected candidates have on average higher values in variables that can be 

seen as measuring candidate quality. Like we report in the main text, the table shows, for 

example, that the elected candidates have higher income, are more often university-

educated and are less often unemployed. The difference is particularly striking when we look 

at the row which refers to the incumbency status: 58% of the elected candidates were 

incumbents, whereas only 6% of those who were not elected were incumbents.  

 

Table A1. Descriptive statistics for individual candidates. 

 

Variable N Mean Std. Dev. N Mean Std. Dev. N Mean Std. Dev.
Elected next election (only re-runners) 82949 0.38 0.48 32070 0.79 0.41 50879 0.12 0.32
Elected next election (all candidates) 160730 0.19 0.40 46982 0.54 0.50 113748 0.05 0.22
Running next election 160730 0.52 0.50 46982 0.68 0.47 113748 0.45 0.50
Number of votes next election 82949 76 180 32070 131 268 50879 41 65
Vote share next election 82949 1.14 1.31 32070 2.05 1.54 50879 0.57 0.68
Vote share 198120 0.97 1.20 56734 2.22 1.50 141386 0.46 0.47
Number of votes 198120 61 149 56734 127 257 141386 34 45
Female 198121 0.39 0.49 56734 0.35 0.48 141387 0.40 0.49
Age 198120 46.75 12.64 56734 48.15 11.15 141386 46.18 13.15
Incumbent 198121 0.21 0.41 56734 0.58 0.49 141387 0.06 0.24
Municipal employee 160996 0.23 0.42 47060 0.27 0.44 113936 0.22 0.41
Wage income 98360 20372 26054 27398 24302 44222 70962 18855 13328
Capital income 98360 1857 22867 27398 3388 38750 70962 1266 11991
High professional 198025 0.19 0.40 56721 0.24 0.43 141304 0.18 0.38
Entrepreneur 198025 0.15 0.36 56721 0.23 0.42 141304 0.12 0.33
Student 198025 0.04 0.20 56721 0.02 0.13 141304 0.05 0.22
Unemployed 198025 0.07 0.25 56721 0.03 0.18 141304 0.08 0.27
University degree 159440 0.16 0.37 46711 0.20 0.40 112729 0.14 0.35
Coalition Party 198121 0.15 0.36 56734 0.15 0.35 141387 0.16 0.36
Social Democrats 198121 0.18 0.38 56734 0.18 0.38 141387 0.18 0.38
Center Party 198121 0.22 0.42 56734 0.30 0.46 141387 0.19 0.40
True Finns 198121 0.02 0.15 56734 0.01 0.12 141387 0.03 0.16
Green Party 198121 0.04 0.19 56734 0.02 0.15 141387 0.04 0.20
Socialist Party 198121 0.09 0.29 56734 0.07 0.26 141387 0.10 0.30
Swedish Party 198121 0.03 0.17 56734 0.04 0.20 141387 0.02 0.16
Christian Party 198121 0.04 0.18 56734 0.03 0.16 141387 0.04 0.19
Other parties 198121 0.23 0.42 56734 0.20 0.40 141387 0.24 0.43
Notes :  Income data are not available for 2012 elections, and in 1996 elections they are available only for candidates who run also in 2000, 
2004 and 2008 elections. Income is expressed in euros. Municipal employee status is not available for 2012 elections.

Not elected (N = 141384)

Individual characteristics

All data (N = 198121) Elected (N = 56734)



46 
 

Table A2: This table reports descriptive statistics for the municipalities. The panel on the left 

shows, e.g., that there are three major parties in Finland. The three largest parties seat 

shares total to over 70%. There are two main reasons why there are differences in the 

variables related to elections between the elected candidates’ municipalities (the panel in 

the middle) and the not-elected candidate's municipalities (the panel on the right). First, a 

larger share of all running candidates is elected in smaller municipalities. For example, the 

Center Party has a larger vote share in smaller municipalities. Second, there are more 

candidates in the larger municipalities. The table also shows that in a number of dimensions, 

like income, age and unemployment rate, there are no major differences in the municipal 

characteristics between elected and non-elected candidates.  

 

Table A2. Descriptive statistics for municipalities. 

 

Variable N Mean Std. Dev. N Mean Std. Dev. N Mean Std. Dev.
Total number of votes 198120 19935 43682 56734 10607 26431 141386 23677 48421
Coalition Party seat share 198121 19.58 10.10 56734 17.61 10.52 141387 20.38 9.81
Social  Democrats seat share 198121 21.88 10.21 56734 20.62 10.88 141387 22.38 9.88
Center Party seat share 198121 30.58 20.52 56734 35.20 21.14 141387 28.73 19.97
True Finns seat share 198121 3.77 5.87 56734 3.49 5.87 141387 3.88 5.86
Green Party seat share 198121 4.25 5.41 56734 2.89 4.30 141387 4.79 5.70
Social ist Party seat share 198121 8.57 7.37 56734 8.14 7.72 141387 8.74 7.22
Swedish Party seat share 198121 4.39 13.87 56734 5.19 16.80 141387 4.07 12.49
Christian Party seat share 198121 3.41 3.56 56734 3.24 3.79 141387 3.48 3.47
Other parties' seat share 198121 3.45 6.74 56734 3.50 7.56 141387 3.43 6.39
Voter turnout 196332 62.20 6.28 56174 63.40 6.28 140158 61.72 6.21
Population 197310 43407 95692 56581 22944 58177 140729 51634 106027
Share of 0-14-year-olds 196388 17.84 3.28 56331 17.96 3.47 140057 17.79 3.20
Share of 15-64-year-olds 196388 64.41 3.48 56331 63.49 3.27 140057 64.78 3.49
Share of  over-65-year-olds 196388 17.75 4.82 56331 18.55 4.99 140057 17.43 4.72
Income per capita 196388 21204 5876 56331 20364 5634 140057 21543 5937
Unemployment 197310 13.50 5.71 56581 13.77 5.85 140729 13.39 5.65

All data (N = 198121) Not elected (N = 141384)

Notes :  Income per capita is expressed in euros.

Elected (N = 56734)

Municipality characteristics
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Appendix B: Supplementary information to HMSTT Section 3.1 
(Experimental estimates) 

In this appendix, we report a number of empirical results obtained using the lottery sample 

(i.e. the sample which only includes the candidates that had a tie). These results bear on the 

robustness of the experimental estimate.  

Table B1: This table shows additional balance checks for party affiliation and municipality 

characteristics in the lottery sample. These characteristics should be balanced by 

construction, as we construct the forcing variable within party lists. The table shows that the 

samples are, indeed, almost identical. The small and insignificant differences in means are 

likely due to the fact that in some lotteries there are more than two candidates. 
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Table B1. Additional balance checks. 

 

 

Table B2: This table reports experimental results for the alternative outcome of vote shares 

in the next elections. The regressions use the entire lottery sample. They provide no 

evidence of personal incumbency advantage. Out of interest, we have also checked that the 

effect is close to zero and not significant also if running in the next election or the absolute 

number of votes in the next election is used as the outcome variable. 

 

Variable N Mean Std. Dev. N Mean Std. Dev. Difference

Coalition Party 671 0.20 0.40 680 0.20 0.40 0.00
Social Democrats 671 0.18 0.39 680 0.18 0.39 0.00
Center Party 671 0.42 0.49 680 0.42 0.49 0.00
True Finns 671 0.02 0.13 680 0.02 0.13 0.00
Green Party 671 0.01 0.11 680 0.01 0.11 0.00
Socialist Party 671 0.08 0.27 680 0.08 0.27 0.00
Swedish Party 671 0.03 0.18 680 0.04 0.19 -0.01
Christian Party 671 0.02 0.15 680 0.02 0.15 0.00
Other parties 671 0.03 0.18 680 0.03 0.18 0.00

Variable N Mean Std. Dev. N Mean Std. Dev. Difference
Total number of votes 671 4467 12006 680 4395 11921 71
Coalition Party seat share 671 16.88 11.08 680 16.76 10.88 0.13
Social Democrats seat share 671 19.70 10.76 680 19.63 10.95 0.07
Center Party seat share 671 41.46 19.98 680 41.57 20.17 -0.11
True Finns seat share 671 1.92 4.79 680 1.89 4.59 0.02
Green Party seat share 671 1.72 3.29 680 1.73 3.31 -0.01
Socialist Party seat share 671 7.55 7.91 680 7.56 7.82 0.00
Swedish Party seat share 671 3.70 14.42 680 3.97 14.95 -0.27
Christian Party seat share 671 2.87 3.92 680 2.83 3.92 0.04
Other parties' seat share 671 3.76 8.59 680 3.63 8.48 0.13
Voter turnout 664 65.23 5.90 673 65.38 6.02 -0.15
Population 671 9316 25430 680 9145 25241 171
Share of 0-14-year-olds 667 18.31 3.31 676 18.42 3.33 -0.11
Share of 15-64-year-olds 667 62.97 2.87 676 62.89 2.90 0.07
Share of  over-65-year-olds 667 18.72 4.69 676 18.69 4.68 0.03
Income per capita 667 18457 5372 676 18413 5372 44
Unemployment 671 14.85 6.75 680 14.80 6.69 0.05
Notes : Differences in means have been tested using t test adjusted for clustering at municipality level. 
Sample includes only candidates running in 1996-2008 elections. Income data are not available for 2012 
elections, and in 1996 elections they are available only for candidates who run also in 2000, 2004 and 
2008 elections. Income and income per capita are expressed in euros.

Municipality characteristics
Elected (N = 671) Not elected (N = 680)

Individual characteristics
Elected (N = 671) Not elected (N = 680)
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Table B2. Experimental results the alternative outcome vote share. 

 

  

(9) (10) (11) (12)
0.0116 0.0063 -0.0203 -0.0138

(0.0579) (0.0584) (0.0670) (0.0747)
N 1351 1351 1351 1351

R2 0.00 0.06 0.37 0.52
Controls No Yes Yes Yes
Municipality fixed effects No No Yes No

Municipality-year fixed effects No No No Yes
Notes : Only actual lotteries are included in the regressions. Vote share is set to 
zero for those candidates that do not run in the next election. Set of controls 
includes age, gender, party affiliation, socio-economic status and incumbency 
status of a candidate, and total number of votes. Some specifications include also 
municipality or municipality-year fixed effects. All standard errors are clustered at 
the municipality level. Unit of observation is a candidate i  at year t .

Outcome: Vote share next election

Elected
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Table B3: In this table, we look at elections in small and large municipalities separately. We 

split the sample based on the median number of total votes in the municipality in the lottery 

sample. This median is 2422. The median is slightly higher (2662) in the entire sample. The 

regressions reported in the table below do not include any controls. They should therefore 

be compared to the result in column (1) in Table 2 in the main text of HMSTT. As can be seen 

from the table, we do not find evidence for an incumbency advantage in either sub-sample.  

 

Table B3. Experimental results for small and large elections. 

 

 

 

 

 

 

 

 

 

 

 

 

(1) (2)
0.0016 0.0057

(0.0336) (0.0363)
N 687 664

R2 0.00 0.00

Sample Small elections Large elections

Outcome: Elected next election

Elected

Notes : An election is considered small (large), if 
at most (more than) 2422 votes are cast. Only 
actual lotteries are included in the regressions. 
All standard errors are clustered at the 
municipality level. Unit of observation is a 
candidate i  at year t .
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Table B4: We have reproduced the experimental estimate using a sample from which those 

who do not rerun are excluded. We report these results for our main outcome and the 

alternative outcome (the vote share). As above, these results provide no evidence of a 

personal incumbency advantage. 

 

Table B4. Experimental estimates for rerunners. 

 

 

  

(1) (2) (3) (4)
-0.0026 -0.0022 0.0251 0.0345
(0.0350) (0.0360) (0.0503) (0.0638)

N 820 820 820 820

R2 0.00 0.04 0.41 0.64

(5) (6) (7) (8)
-0.0118 -0.0092 0.0510 0.0209
(0.0684) (0.0680) (0.0823) (0.1045)

N 820 820 820 820

R2 0.00 0.17 0.67 0.80
Controls No Yes Yes Yes
Municipality fixed effects No No Yes No

Municipality-year fixed effects No No No Yes
Controls No Yes Yes Yes
Municipality fixed effects No No Yes No

Municipality-year fixed effects No No No Yes
Notes : Only actual lotteries and rerunning candidates are included in the 
regressions. Set of controls includes age, gender, party affiliation, socio-economic 
status and incumbency status of a candidate, and total number of votes. Some 
specifications include also municipality or municipality-year fixed effects. Unit of 
observation is a candidate i  at year t .

Outcome: Elected next election

Elected

Outcome: Vote share next election

Elected
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Appendix C: Supplementary information to HMSTT Section 3.2 
(Non-experimental estimates) 
This appendix provides additional figures to characterize our forcing variable, 	ݒ௜௧. We call 

our forcing variable “Vote margin (%)” in some of the graphs below, where the margin refers 

to the distance to the cutoff. The forcing variable is reported in percentage points. For 

example, a value 0.5 refers to 5 votes out of 1000.  

Figure C1: In this figure, we graph the distribution of the number of votes within different 

bandwidths in the forcing variables. The figures show how many votes the candidates 

involved in close elections receive. The distribution gets a large amount of mass around 30–

50 votes.  

 

Figure C1. The distribution of the number of votes for different bandwidths. 

 

Notes: Figure shows the distribution of number of votes within one bandwidth on both sides of the cutoff for different bandwidths. Bin size 

is 1 vote. x-axis is restricted to 100 votes. 
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Figure C2: This figure displays the relationship between the forcing variable and the distance 

to cutoff (vote distance), as measured by the absolute number of votes. The density graphs 

show that, as expected, the candidates are further away from the cutoff in terms of absolute 

number of votes as the bandwidth becomes wider. For all reported bandwidths, the most 

common distance is only one or two votes. 

 

Figure C2. Distribution of the distance to cutoff in absolute votes for different bandwidths 

of the forcing variable. 

 

Notes: Figure shows the distribution of distance measured in votes for different bandwidths. Bin size is 1 vote. x-axis is restricted to 50 

votes. Lotteries are excluded. 
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Figure C3: This figure maps the relationship between the forcing variable (vote margin, x-

axis) and the distance to cutoff measured in the absolute number of votes (y-axis). It shows 

that, overall, the two are positively correlated within the reported bandwidth. There are 

fairly many observations also on or close by the horizontal line. This means that, within the 

reported bandwidth, for each value of the forcing variable there are many observations that 

are only one or two votes from the cutoff. This echoes what Figure C2 showed.  

 

Figure C3. Relationship between the forcing variable and the distance to cutoff measured in 

absolute votes. 

 

 

Figure C4: These histograms show the distribution of the forcing variable within two very 

small bandwidths nearby the RDD cutoff. The histograms suggest that the forcing variable 

can be treated as continuous for the purposes of RDD. The dip in the density for forcing 

variable values between -0.01 and 0.01 is related to the fact that the forcing variable can 

obtain such small values only when the party lists are large. For example, a value of 0.01 

refers to one vote out of ten thousand. Lists that get more than ten thousand votes exist 

only in the larger municipalities.  
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Figure C4. Histogram of the forcing variable close to the cutoff. 

 

Notes: Figure A shows histogram of the forcing variable with bins of 0.005, and figure B uses bins of 0.001. Values of the forcing variable 

are limited between -0.1 and 0.1. Lotteries have been excluded. 

 

Figure C5: These figures display RDD fit and a scatter of plot of observation bins around the 

cutoff when the forcing variable is defined as the (non-normalized) number of votes. The 

main purpose of these figures is to show that curvature issues in the relationship between 

the forcing variable and outcome are not unique to the way define the forcing variable. This 

indeed appears not to be the case: As the figures show, there is a clear jump at the cutoff in 

the figure on the left and evidence of curvature in the middle and on the right.  
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Figure C5. Curvature between the non-scaled forcing variable (number of votes) and the 

outcome. 

 
Notes: Figure shows local polynomial fits with triangular kernel within the optimal Imbens-Kalyanaraman (2012) bandwidth optimized for 

the linear specification.  The fit is based on the local linear (Panel A), quadratic (Panel B) and cubic (Panel C) specifications. Blue dots marks 

bins within each value of the discrete forcing variable measured as the distance from the cutoff in the absolute number of votes (bins of 

0.5). 
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Appendix D: Supplementary information to HMSTT Section 4.1 (RDD 
falsification and smoothness tests) 
In this appendix, we report validity tests to for the regression discontinuity design. The 

standard pattern of validity tests for the RDD includes i) the McCrary (2008) manipulation 

test, ii) covariate balance tests, and iii) placebo tests where the location of the cutoff is 

artificially redefined. 

Figure D1: This figure reports the McCrary (2008) tests. The test asks whether there is a 

jump in the amount of observations at the cutoff of getting elected. Such jump would 

indicate that some candidates have been able to manipulate into getting the treatment. 

There is no jump. The estimated difference in height is -0.0140 (standard error 0.0474) in 

graph A (the values of the forcing variable restricted between -1 and 1), and -0.5701 

(standard error 0.6616) in graph B (the values of the forcing variable restricted between -0.1 

and 0.1). This is not surprising, since there cannot be a jump in the amount of candidates 

elected: The number of council seats available is fixed. If one candidate is able to manipulate 

into getting elected, another candidate will not be elected.  

 

Figure D1. McCrary density test. 

 

Notes: Graph A shows the McCrary (2008) density test with the forcing variable within -1 and 1. Graph B shows the density test with forcing 

variable within -0.1 and 0.1. 
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Table D1: The main identification assumption in RDD is that covariates develop smoothly 

over the cutoff. The recent literature (e.g. Snyder et al. 2015 and Eggers et al. 2015) argues 

that especially in close election applications, balance tests based on the comparisons of 

means across the cutoff are likely to (wrongly) signal imbalance, because the covariates vary 

strongly with the forcing variable near the cutoff. One should, therefore, control for this co-

variation (“slopes”) when implementing the balance tests. Panel A of Table D1 uses 

therefore the optimal bandwidth for the local linear specification computed for each 

covariate separately. When testing for covariate smoothness, bandwidth needs to be 

optimized for each covariate separately, because they are each unique in their relation to 

the forcing variable. We report in Panel B of Table D1 also the results that use half the 

optimal bandwidth. We do so to check how under-smoothing influences the covariance 

balance tests and to make sure that curvature issues (similar to those we report for our main 

outcome) do not lead to wrong conclusions about the covariate balance. If some of the 

covariates have a lot of curvature nearby the cutoff, one might wrongly infer that there is 

imbalance unless under-smoothing is used. 

As can be seen from Panel A and B, there are some significant estimates. We cannot rule 

out that the few imbalances are due to multiple testing, because Panel A and B are not 

completely in line with each other in this regard. It is also possible that the estimated jumps 

are due to substantial curvature in the relationship between the given covariate and the 

forcing variable near the cutoff. This seems to be at least partly the case, since many of the 

jumps are no longer statistically significant when more flexible specifications (smaller 

bandwidths for a given local polynomial or higher order polynomials for a given bandwidth) 

are used. This means that there are fewer rejections of covariate balance when more flexible 

local polynomial specifications (or under-smoothing) are used. 

We conclude that, taken together, the covariate balance tests provide somewhat mixed 

evidence. Overall, they do not cast clear doubt on the validity of RDD.  
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Table D1. Covariate smoothness test. 
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Figure D2: Figure D2 reports a series of placebo tests where the location of the cutoff is 

artificially redefined. If there are jumps in locations other than the true cutoff, it would 

suggest that strong nonlinearities or discontinuities in the relationship between the forcing 

variable and the outcome may be driving the RDD result (instead of a causal effect at the 

cutoff). Typically, these tests are used in applications where there is a documented effect at 

the cutoff (that is statistically different from zero) and the researcher wants to show that 

this statistically significant jump is unique (or, at least, that only 5% of the placebo cutoffs 

show jumps that are significant at the 5% level).  

In Panel A and B, we display the placebo RDD estimates that are based on the 

conventional local linear and quadratic specification, using the corresponding IK optimal 

bandwidths. As we report in the main text, the RDD estimates produced by these 

specifications indicate that there would be a positive jump at the true cutoff. This is in 

contrast to what our experimental estimate suggests. As the placebo estimates on the left of 

these panels show, there also are statistically significant jumps at some of the placebo 

cutoffs located close by the true cutoff. Some of these jumps are even larger than the one 

found at the true cutoff. These placebo tests are thus indicative of these RDD specifications 

not working properly. The placebo graphs on the right have been produced using the same 

specifications as on the left, but with the CCT-correction. They, too, are indicative of these 

specifications not working as expected. 

In Panels C and D, we explore whether those RDD specifications that in our context 

seem to work are problematic in the light of the placebo tests. Panel C reports the results for 

half the optimal (IK) bandwidths: On the left, we use the conventional local linear 

specification for this under-smoothing approach. The corresponding estimates based on the 

CCT-correction are displayed on the right. In Panel D we explore whether a polynomial of 

order p+1 is flexible enough for the bandwidth that has been optimized for a polynomial of 

order p. The panel reports these results for the quadratic and cubic local polynomials. As the 

two panels show, there are no jumps at any of the placebo cutoffs, implying that these 

specifications work appropriately. In sum, the placebo tests reported in Panel C and D do 

suggest that the under-smoothing procedure or the use of higher degree local polynomials 

without adjusting the bandwidth accordingly work. These findings thus suggest that the 

placebo cutoff tests seem to be of use in detecting too inflexible specifications. 
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Figure D2. RDD estimates at the artificial cutoffs.  

 
Notes: The figure shows the RDD point estimates and the 95% confidence intervals from specifications using local polynomial regression 

with a triangular kernel. All the left hand graphs and also the right hand graph in Panel D use conventional approach with optimal IK 

bandwidths and confidence intervals constructed using standard errors clustered by municipality. All the right hand graphs in Panels A-C 

use IK bandwidth and bias-correction and robust inference by Calonico et al. (2014a). We report the results at various artificial (placebo) 

cutoffs where the location of the artificial cutoff relative to the true cutoff is reported in the x-axis. In Panel A, bandwidth is optimized for 

the linear specification, In Panel B, bandwidth is half the one in Panel A and in Panel C, bandwidth is optimized for the quadratic 

specification. In Panel D, bandwidth is optimized for p-order polynomial specification whereas the fit is based on p+1 order. Optimal 

bandwidth is based on the specification and sample at the real cutoff. Vertical red line marks the real cutoff. 
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Appendix E: Supplementary information to HMSTT Section 4.2 
(When is RDD as good as randomly assigned?) 
This appendix reports means tests of covariate balance within small bandwidths near 

the cutoff. These tests do not control for the slopes (or curvature) of the forcing 

variable nearby the cutoff. They are not tests of whether the covariates develop 

smoothly over the cutoff, but rather tests for whether the treatment is as good as 

randomly assigned. 

Table E1: This table looks at the covariate balance of candidate characteristics. It 

reports the means of the candidate characteristics for small bandwidths on both sides 

of the cutoff as well as a t-test for the difference of the means. As we report in the 

main text, when incumbency status (elected at t-1) is used, we find that bandwidths 

0.04 or smaller are as-good-as-random at the 5% significance level (923 observations). 

Based on the minimum p-value among all the covariates (but not correcting for 

multiple testing), it seems that bandwidths 0.02 or smaller would be as-good-as 

random at the 5% significance level (128 observations). These numbers are obtained 

by starting from the zero bandwidth and widening the bandwidth until the first 

statistically significant coefficient is found. This is a conservative approach in the sense 

that if we started from wider bandwidths and decreased their length until no 

significant differences are found, we would get somewhat larger bandwidth estimates. 

For example, based on Table E2, a bandwidth of 0.05 would be as-good-as-random 

(but 0.10 or larger would not). 

Table E2: This table reproduces the analysis of Table E1 for municipality-level 

covariates. As the table shows, they are balanced, as they should be by construction. 
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Table E1. Covariate balance within small bandwidths (candidate characteristics). 
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Table E1 (continued). Covariate balance within small bandwidths (candidate 

characteristics). 
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Table E2. Covariate balance within small bandwidths (municipality characteristics). 
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Appendix F: Supplementary information to HMSTT Section 4.3 
(Robustness tests) 
This appendix discusses the robustness tests (#1–#6) that we have conducted.  

 

Robustness test #1: Global polynomial RDD 

Table F1: In this table we report results for a parametric RDD specification using higher 

order global polynomials (1st-5th degree) of the forcing variable on both sides of the 

cutoff. As the table shows, the treatment effect estimates tend to get smaller when 

the degree of the polynomial increases, but even for the 5th degree polynomial, they 

are positive, large and highly significant. The bias using global polynomials seems to an 

order of magnitude larger than the one obtained using local polynomials. This 

approach generates incumbency effects that are roughly similar in magnitude to those 

reported in Lee (2008). It should be noted, however, that his estimates refer to an 

amalgam of party and personal incumbency effects and apply to a very different 

institutional context.  

 

Table F1. Parametric RDD with 1st – 5th order polynomials. 

 

 

Robustness test #2: Alternative measure of incumbency advantage 

Table F2: In this table, we look at the effect of being elected in election at time t on the 

vote share in the election at time t+1. As we reported earlier (Table B2 in Appendix B), 

the effect is not statistically different from zero in the lottery sample when this 

variable is used as an alternative outcome. As the table below shows, the conventional 

RDD using optimal bandwidths and local linear specification produces a positive and 

(1) (2) (3) (4) (5)
0.4320** 0.3862** 0.3418** 0.2959** 0.2552**
(0.0053) (0.0062) (0.0069) (0.0077) (0.0085)

N 154545 154545 154545 154545 154545

R2 0.33 0.33 0.33 0.34 0.34

Order of control polynomial 1st 2nd 3rd 4th 5th

Outcome: Elected next election

Elected

Notes : Each specification uses the whole range of data. All standard errors are clustered at the 
municipality level.* and ** denote 5% and 1% statistical significance levels respectively. Unit 
of observation is a candidate i  at year t .
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significant effect. The more flexible specifications reproduce the experimental 

estimate: The estimates suggest that the under-smoothing procedure and the use of 

higher degree local polynomials without adjusting the bandwidth accordingly work. It 

is, however, important to point out that some of the estimates in Panel B are negative 

and quite large in the absolute value.  

 

Table F2. RDD results, incumbency advantage in vote share in the next election. 

 
 

Robustness test #3: Small vs. large municipalities 

Tables F3 and F4: These tables reports RDD results separately for small (Table F3) and 

large (Table F4) municipalities and thus for small and large elections. We use the 

median number of votes in the municipality in the lottery sample as the point of 

division (i.e., 2422 votes). As is noted in the main text of HMSTT (and in Appendix B), 

ties usually appear in elections held in slightly smaller municipalities (those with a 

small number of voters). This means that our experimental estimate may mostly apply 

to such elections. As we reported earlier, the experimental estimate is very close to 

zero both in small and in large elections. However, our forcing variable, ݒ௜௧, can get 

values really close to zero only when parties get a large amount of votes. This tends to 

(1) (2) (4) (5) (7) (8)

0.0491** 0.0361 0.0063 -0.0011 -0.0190 -0.0338
(0.0189) (0.0207) (0.0269) (0.0306) (0.0364) (0.0396)

N 36834 28925 36834 28925 36834 28925

Bandwidth 0.99 0.79 0.99 0.79 0.99 0.79

Bandwidth selection method IK CCT IK CCT IK CCT

(10) (11) (13) (14) (16) (17)

0.0160 0.0074 -0.0261 -0.0523 -0.0857 -0.1003
(0.0257) (0.0283) (0.0377) (0.0427) (0.0517) (0.0575)

N 17930 14348 17930 14348 17930 14348

Bandwidth 0.49 0.39 0.49 0.39 0.49 0.39

Bandwidth selection method 0.5 * IK 0.5 * CCT 0.5 * IK 0.5 * CCT 0.5 * IK 0.5 * CCT
Notes :  Table shows estimated incumbency advantage using local polynomial regressions within various 
bandwidths. The standard errors are clustered at municipality level. * and ** denote 5% and 1% statistical 
significance levels, respectively. Unit of observation is a candidate i  at year t . 

Elected 

Outcome: Vote share next election

Panel A: Bandwidth optimized for local l inear specification

Linear Quadratic Cubic

Panel B: Bandwidth optimized for local l inear specification * 0.5

Linear Quadratic Cubic

Elected 
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happen in larger elections. The RDD estimates, which use the narrowest bandwidths, 

may thus mostly apply to them. To check whether the discrepancy between the 

experimental and the RDD estimates is driven by the size of the municipalities, Tables 

F3 and F4 reports parts of our RDD analysis separately for small and large 

municipalities. The results show that our conclusions are not driven by the size of the 

elections. 

 

Table F3. RDD results for small municipalities. 

 

 

 

 

 

 

 

 

(1) (2) (3) (4) (5) (6)

0.1123** 0.0356 0.0340* 0.0133 0.0112 0.0015
(0.0114) (0.0187) (0.0166) (0.0293) (0.0224) (0.0394)

N 23967 10611 23967 10611 23967 10611

Bandwidth 4.01 1.41 4.01 1.41 4.01 1.41

Bandwidth selection method IK CCT IK CCT IK CCT

(7) (8) (9) (10) (11) (12)

0.0511** 0.0183 0.0170 0.0071 0.0102 0.0390
(0.0156) (0.0272) (0.0239) (0.0433) (0.0328) (0.0707)

N 14563 5598 14563 5598 14563 5598

Bandwidth 2.00 0.71 2.00 0.71 2.00 0.71

Bandwidth selection method 0.5 * IK 0.5 * CCT 0.5 * IK 0.5 * CCT 0.5 * IK 0.5 * CCT
Notes :  Table shows estimated incumbency advantage using local polynomial regressions within various 
bandwidths. The standard errors are clustered at municipality level. * and ** denote 5% and 1% statistical 
significance levels, respectively. Unit of observation is a candidate i  at year t .  Sample includes only small 
elections in which at most 2422 votes were given.

Elected 

Outcome: Elected next election

Panel A: Bandwidth optimized for local l inear specification

Linear Quadratic Cubic

Panel B: Bandwidth optimized for local l inear specification * 0.5

Linear Quadratic Cubic

Elected 
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Table F4. RDD results for large municipalities. 

 

  

(1) (2) (3) (4) (5) (6)

0.0506** 0.0637** 0.0099 0.0235 -0.0259 -0.0071
(0.0162) (0.0139) (0.0244) (0.0220) (0.0326) (0.0284)

N 17665 22917 17665 22917 17665 22917

Bandwidth 0.62 1.11 0.62 1.11 0.62 1.11

Bandwidth selection method IK CCT IK CCT IK CCT

(7) (8) (9) (10) (11) (12)

0.0102 0.0277 -0.0346 -0.0255 -0.0313 -0.0391
(0.0233) (0.0203) (0.0349) (0.0311) (0.0499) (0.0419)

N 8945 11344 8945 11344 8945 11344

Bandwidth 0.31 0.55 0.31 0.55 0.31 0.55

Bandwidth selection method 0.5 * IK 0.5 * CCT 0.5 * IK 0.5 * CCT 0.5 * IK 0.5 * CCT
Notes :  Table shows estimated incumbency advantage using local polynomial regressions within various 
bandwidths. The standard errors are clustered at municipality level. * and ** denote 5% and 1% statistical 
significance levels, respectively. Unit of observation is a candidate i  at year t .  Sample includes only large 
elections in which more than 2422 voters voted.

Elected 

Outcome: Elected next election

Panel A: Bandwidth optimized for local l inear specification

Linear Quadratic Cubic

Panel B: Bandwidth optimized for local l inear specification * 0.5

Linear Quadratic Cubic

Elected 
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Robustness test #4: Heterogeneity in the personal incumbency effect 

Figure F1: This figure shows RDD point estimates and their 95 % confidence intervals 

for a wide range of bandwidths, obtained using only those party-lists that were 

involved in the lotteries. When these party-lists are used, increasing the bandwidths 

adds new candidates from the same lists, but does not add new lists or municipalities 

to the sample. The reason for reporting these results is that, besides the bias caused by 

the potentially incorrect linear approximation, the point estimates may increase due to 

heterogeneity in the personal incumbency effect across municipalities (and thus party-

lists). The use of wider bandwidths means that our baseline RDD identifies the effect 

for a different set of municipalities than what we have in the experimental sample. The 

findings reported in Figure F1 do not support the explanation of heterogeneous 

treatment effects, as the patterns that we find here are similar to those reported in 

the main text of HMSTT (Figure 2). 

 

Figure F1. RDD estimates using only party lists with lotteries. 

 

Notes: The graph displays the point estimates of incumbency advantage for various bandwidths. Dashed lines mark the 95 % 

confidence intervals. In the third graph, confidence intervals have been omitted for bandwidths smaller than 0.3. Red vertical line 

marks the optimal bandwidth chosen using IK method. The sample includes only candidates from party lists that have lotteries. 

 

Robustness test #5: Alternative definitions for the forcing variable. 

Figure F2: This figure reports RDD results when a non-scaled version of our forcing 

variable is used. The forcing variable is defined as in the main text of HMSTT, but is not 

scaled with the total number of votes the party got. We display the RDD estimates for 

linear, quadratic and cubic local polynomial specifications. As the figure shows, the 
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results that we obtain using this alternative forcing variable echo our baseline RDD 

results. The local linear polynomial produces biased results, but the higher order 

polynomials and bandwidths smaller than optimal work better.   

 

Figure F2. RDD estimates using absolute vote margin, measured in number of votes, as 

the forcing variable. 

 
Notes: The graph displays the point estimates of incumbency advantage for various bandwidths. The bars below and above the 

point estimates show the 95 % confidence intervals. Red vertical line marks the optimal bandwidth chosen using IK method. The 

forcing variable is as in the main text but not scaled with the total number of votes the party got. 
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Figure F3: This figure reports RDD results when another alternative version of our 

forcing variable is used. For this figure we define the cutoff as the number of votes of 

the first non-elected (last elected) candidate of the ordered party list for the elected 

(non-elected) candidates. The forcing variable is then the distance from this cutoff 

multiplied by 100 and divided by the number of party’s votes. As the figure shows, the 

results echo our baseline RDD results. 

 

Figure F3. RDD estimates using the distance to the first non-elected (or last elected) 

candidate as the forcing variable.  

 
Notes: The graph displays the point estimates of incumbency advantage for various bandwidths. The bars below and above the 

point estimates show the 95 % confidence intervals. Red vertical line marks the optimal bandwidth chosen using IK method. The 

forcing variable is defined as follows. For elected (non-elected) candidates, the cutoff is the number of votes of the first non-

elected (last elected) candidate of the ordered party list. The forcing variable is then the distance from this cutoff multiplied by 

100 and divided by the number of party’s votes. 

 

Robustness test #5: Heterogeneity in the effect between parties. 

Figure F4: This figure reports graphically the RDD results separately for each of the 

three large parties (Panel A: Center Party, Panel B: National Coalition Party and Panel 

C: Social Democratic Party). The graphs allow us to study whether there is 

heterogeneity in the effect between the parties. Our motivation to look at such 

heterogeneity is that it could be an alternative explanation for the disparity between 

the experimental estimate and non-experimental RDD estimates. Suppose, for 

example, that there is no incumbency advantage within party A but a positive 

advantage within party B. Then if party A is more often involved in lotteries and if for 

−
.4

−
.2

0
.2

.4
E

st
im

at
ed

 e
ffe

ct

.1 .2 .3 .4 .5 .6 .7 .8 .9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Bandwidth

Linear

−
.4

−
.2

0
.2

.4
E

st
im

at
ed

 e
ffe

ct

.1 .2 .3 .4 .5 .6 .7 .8 .9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Bandwidth

Quadratic

−
.4

−
.2

0
.2

.4
E

st
im

at
ed

 e
ffe

ct

.1 .2 .3 .4 .5 .6 .7 .8 .9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Bandwidth

Cubic



73 
 

some reason party B is overrepresented in the RDD samples (that are based on larger 

bandwidths), we might observe that the experimental estimate is zero and that RDD 

estimates produce a positive effect, especially when larger bandwidths are used. 

Figure F4 allows us to rule out such explanations. It seems that there is no substantial 

heterogeneity in the within party personal incumbency advantage between parties. 
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Figure F4. RDD estimates for different parties.  

Panel A: Center Party. 

 
Panel B: National Coalition Party. 

 
Panel C: Social Democratic Party. 

 
Notes: The graph displays the point estimates of incumbency advantage for various bandwidths. Dashed lines show the 95 % 

confidence intervals. In the third graph, confidence intervals have been omitted for bandwidths smaller than 0.2 in Panel A and 

smaller than 0.3 in Panels B and C. Red vertical line marks the optimal bandwidth chosen using IK method. The figure for linear 

specification also displays the estimate from the lottery sample and its 95 % confidence interval.   
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Robustness test #6: Excluding from the sample those who do not rerun  

Table F5: These tables reports RDD results for a sample from which those who do not 

rerun are excluded. In Panel A, elected next election is the outcome variable, whereas 

in Panel B we use the vote share in the next election again as the alternative outcome. 

As we reported earlier (in Appendix B), the experimental estimates suggest no effect 

on these outcome variables when the sample from which those who do not rerun are 

excluded. Our motivation to report these results is that the previous literature is mixed 

on how those who do not rerun should be treated: For instance, Uppal (2010) report 

the results for a sample that includes all candidates and for a sample that only includes 

those who rerun, whereas de Magalhaes (2014) argues in favor of including all the 

candidates.  

The results of the two panels show that our conclusions are unaffected by the 

sample restriction: We again find that the standard implementation (local linear with 

IK optimal bandwidth) of RDD generates a positive and significant effect. We also find 

that undershooting appears to work (with one exception) and that the use of higher 

degree local polynomials without adjusting the bandwidth accordingly reproduces the 

experimental estimate in the sense that we do no reject the null hypothesis of no 

effect. These insignificant findings are largely, but not in each case, due to greater 

standard errors, as the estimated effects do not systematically become closer to zero 

as the more flexible approaches are used.  
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Table F5. RDD estimates for using rerunners only.  

Panel A: Elected next election. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1) (2) (3) (4) (5) (6)

0.0671** 0.0751** 0.0505 0.0531 0.0369 0.0428
(0.0212) (0.0188) (0.0310) (0.0279) (0.0429) (0.0369)

N 12058 15079 12058 15079 12058 15079

Bandwidth 0.54 0.69 0.54 0.69 0.54 0.69

Bandwidth selection method IK CCT IK CCT IK CCT

(7) (8) (9) (10) (11) (12)

0.0484 0.0574* 0.0342 0.0351 0.0563 0.0339
(0.0299) (0.0264) (0.0457) (0.0403) (0.0682) (0.0564)

N 6209 7745 6209 7745 6209 7745

Bandwidth 0.27 0.34 0.27 0.34 0.27 0.34

Bandwidth selection method 0.5 * IK 0.5 * CCT 0.5 * IK 0.5 * CCT 0.5 * IK 0.5 * CCT
Notes :  Table shows estimated incumbency advantage using local polynomial regressions within various bandwidths. 
The standard errors are clustered at municipality level. * and ** denote 5% and 1% statistical significance levels, 
respectively. Unit of observation is a candidate i  at year t .  Sample includes only rerunning candidates.

Elected 

Outcome: Elected next election

Panel A: Bandwidth optimized for local l inear specification

Linear Quadratic Cubic

Panel B: Bandwidth optimized for local l inear specification * 0.5

Linear Quadratic Cubic

Elected 
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Panel B: Outcome: Vote share next election. 

 

  

(1) (2) (4) (5) (7) (8)

0.0490* 0.0494* 0.0471 0.0470 0.0488 0.0518
(0.0239) (0.0244) (0.0328) (0.0337) (0.0437) (0.0453)

N 16668 15697 16668 15697 16668 15697

Bandwidth 0.76 0.72 0.76 0.72 0.76 0.72

Bandwidth selection method IK CCT IK CCT IK CCT

(10) (11) (13) (14) (16) (17)

0.0578 0.0601 0.0367 0.0264 -0.0278 -0.0278
(0.0309) (0.0318) (0.0459) (0.0471) (0.0598) (0.0614)

N 16668 15697 16668 15697 16668 15697

Bandwidth 0.38 0.36 0.38 0.36 0.38 0.36

Bandwidth selection method 0.5 * IK 0.5 * CCT 0.5 * IK 0.5 * CCT 0.5 * IK 0.5 * CCT
Notes :  Table shows estimated incumbency advantage using local polynomial regressions within various bandwidths. 
The standard errors are clustered at municipality level. * and ** denote 5% and 1% statistical significance levels, 
respectively. Unit of observation is a candidate i  at year t .  Sample includes only rerunning candidates.

Elected 

Outcome: Vote share next election

Panel A: Bandwidth optimized for local l inear specification

Linear Quadratic Cubic

Panel B: Bandwidth optimized for local l inear specification * 0.5

Linear Quadratic Cubic

Elected 



78 
 

References 

Calonico, Sebastian, Matias D. Cattaneo, and Rocio Titiunik. 2014a. “Robust 

Nonparametric Confidence Intervals for Regression-Discontinuity Designs.” 

Econometrica 82(6): 2295–2326. 

Calonico, Sebastian, Matias D. Cattaneo, and Rocio Titiunik. 2014b. “Robust Data-

Driven Inference in the Regression Discontinuity Design.” Stata Journal 14(4): 909-

946. (CITE?) 

De Magalhaes, Leandro. 2014. “Incumbency Effects in a Comparative Perspective: 

Evidence from Brazilian Mayoral Elections.” Political Analysis 23(1): 113-126. 

Eggers, Andrew C., Anthony Fowler, Jens Hainmueller, Andrew B. Hall, and James M. 

Snyder. 2015. “On the Validity of the Regression Discontinuity Design for Estimating 

Electoral Effects: New Evidence from Over 40,000 Close Races.” American Journal of 

Political Science 59(1): 259–274. 

Lee, David S. 2008. “Randomized experiments from non-random selection in U.S. 

House elections.” Journal of Econometrics 142(2): 675-97. 

McCrary, Justin. 2008. “Manipulation of the Running Variable in the Regression 

Discontinuity Design: A Density Test.” Journal of Econometrics 142(2): 698-714. 

Snyder, James M., Olle Folke, and Shigeo Hirano. 2015. “Partisan Imbalance in 

Regression Discontinuity Studies Based on Electoral Thresholds.” Political Science 

Research and Methods. Forthcoming. 

Uppal, Yogesh. 2010. “Estimating Incumbency Effects In U.S. State Legislatures: A 

Quasi-Experimental Study.” Economics and Politics 22(2): 180-99. 

 

 


