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ABSTRACT: Dynamic general equilibrium models are studied from a mathema-
tical point of view. Study concentrates on conditions of optimality, stability and
especially numerical solution algorithms. Models are also studied in respect of
suitability for expanding the generational accounting method. In addition to Ram-
sey model two dynamic self-made models are presented, one of which uses the
overlapping generations structure. Technological process is simulated with these
models using various numerical methods. Also methods of analysing stability
properties are presented and executed. At the end of the study several weaknesses
of the general equilibrium analysis and suggestions how to overcome these weak-
nesses are discussed and a model structure suitable for expanding the generational
accounting is presented.
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TIIVISTELMA: Tyossi tutkitaan dynaamisia yleisen tasapainon malleja mate-
maattisista lahtokodista eli painotetaan optimointia, stabiilisuutta ja erityisesti
numeerisia ratkaisumenetelmii. TyOssd tutkitaan myOs millainen yleinen tasa-
painomalli sopisi sukupolvitilinpitolaskelmiin. Tydssd kédytetdéin Ramseyn mallin
liséiksi kahta titd tutkimusta varten tehtyd yleisen tasapainon mallia, joista toisessa
‘on mallinettu limittdiset sukupolvet. Malleilla simuloidaan teknisté kehitystd kiyt-
tden erilaisia numeerisia menetelmid. Malleissa kéytetyt ulkoiset muuttujat ovat
Kenc et al. estimoineet yleisesti Suomea varten. Tyossd kiydadn 1api ja sovelle-
taan myds menetelmid, joilla voi tutkia kyseisten mallien stabiilisuutta. Tydn
lopussa kdydédn ldpi tasapainomallildhestymistavan puutteita ja tehdiddn ehdotuk-
sia niiden poistamiseksi sekd ehdotetaan mallirakennetta, jota voitaisiin kiyttdd
apuna sukupolvitilinpitolaskelmissa.
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Preface

Dynamic general equilibrium models have been a major method in economic theory
since early 1960's. The problem was that only some simple models had analytical
solutions and they were not feasible for policy simulations. At late 1980's advan-
tages in computer and software technology enabled extensive use of computable
dynamic general equilibrium models as a tool of policy simulations. Instead of ana-
lytical solutions the computable dynamic general equilibrium models are solved

numerically using a specific iterative process.

The current economic recession has sparked a fear in the OECD countries during
the past few years that low economic growth together with ageing baby-boomers
might lead to a situation where the promises of public pension schemes cannot be
fulfilled without enormous tax increases. This had led universities and government
organisations of various countries to develop computable dynamic general equilib-
rium models, which use overlapping generations formulation to analyse this particu-
lar problem. In addition to public pension schemes various studies of tax reforms
have utilised dynamic general equilibrium models, e.g., Auerbach-Kotlikoff's Dy-
namic Fiscal Policy. Also OECD uses overlapping generations method in a project,

which analyses problems of ageing population.

Government Institute for Economic Research has developed dynamic general equi-
librium models form 1992 onwards. This study by Antti Lappeteldinen mathemati-
cal aspects of the computable dynamic general equilibrium models are analysed. The
study introduces several methods, which can be used to solve dynamic equations and

methods for analyse stability properties of the equilibrium models as well.



The study is a part of a project to construct a large scale dynamic general equilib-
rium model on problems on Finnish pension schemes. The project is led by Prof.
W. Perraudin, Birkbeck Collage and CEPR whose study will be published on spring
1995. He has also alongside with Senior researcher Reijo Vanne and Assistant Prof.
Jukka Ruusunen helped this study with their comments. The study is also accepted
as Antti Lappeteldinen's Masters thesis at System- and operations research labora-
tory at Helsinki University of Technology. The project is funded by the Finnish
national fund for research and development, SITRA. On behalf of Government insti-
tute for Economic Research I want to thank every one involved on the project espe-

cially Antti Lappeteldinen.

Helsinki, on 21th April 1995

Seppo Leppénen



Esipuhe

Dynaamiset yleisen tasapainon mallit ovat kuuluneet olennaisena osana taloustieteen
teoriaan 1960-luvun alusta. Ongelmana tuolloin oli, etti analyyttisesti pystyttiin
ratkaisemaan vain helppoja malleja, jotka eivit tdytd simulaatiomalleille asetettuja
vaatimuksia. Tietokone- ja ohjelmistotekniikan kehitys 1980- luvun lopussa mahdol-
listi léajojen dynaamisten tasapainomallien kdyton politiikkasimulaatioissa. Numeer-
iset mallit poikkeavat analyyttisistd malleista siind ettd analyyttisen ratkaisun sijasta

tehtévd ratkaistaan numeerisesti joissain pisteissé jollakin numeerisella algoritmilla.

Talouden nykyinen taantuma lantisissd teollisuusmaissa heritti pelkoja, ettd hidas
taloudellinen kasvu yhdessd ikdédntyvien suurten ikéluokkien kanssa vie pohjan julk-
isilta elédkelupauksilta ilman suuria veronkorotuksia. Timi on saanut monet korkeak-
oulut "ja tutkimuskeskukset kehittiméin limittdisten sukupolvien dynaamisia
tasapainomalleja. Eldketutkimuksen lisdksi monet verouudistuksia kisittelevit tut-
kimukset kdyttdvit dynaamisia tasapainomalleja, esimerkiksi Auerbach-Kotlikoffin
"Dynamic Fiscal Policy”. My6s OECD kiyttdd timén tutkimussuunnan keskeisii

tyovilineitd ikddntyvin vieston taloudellisia vaikutuksia kisittelevissid hankkeessa.

Valtion taloudellinen tutkimuskeskus on vuodesta 1992 lihtien panostanut dynaamis-
ten tasapainomallien kehittimiseen. Téssd Antti Lappeteldisen laatimassa tutkimuk-
sessa tarkastellaan numeerisia dynaamisia tasapainomalleja matemaattisista
13ht6kohdista. Tutkimuksessa arvioidaan eri algoritmien sopivuutta numeeristen

dynaamisten tasapainomallien ratkaisemiseen sekd mallien stabiilisuusominaisuuksia.

Tutkimus on osa projektia, jossa tarkastellaan Suomen elikejirjestelmin kestivyyttd
dynaamisen tasapainomallin avulla. Prof. W. Perraudin, joka toimii professorina
Birkbeck College Lontoossa, on laatimassa téstd aiheesta keviilld 1995 ilmestyvin

tutkimuksen. Hidn on myés ohjannut osaltaan timin tutkimuksen tekoa. Antti



Lappeteldistd ovat myss auttaneet kommenteillaan erikoistutkija Reijo Vanne seka
apulaisprofessori Jukka Ruusunen. Tutkimus on hyviksytty Teknillisen korkeakou-
lun tietotekniitkan osaston systeemi- ja operaatiotutkimuksen laboratorion
diplomityoksi. Hankkeeseen on saatu rahoitusta SITRAlta. Valtion taloudellisen
tutkimuskeskuksen puolesta esitdn kaikille hanketta eteenpdin vieneille ja erityisesti

Antti Lappeteldiselle parhaat kiitokset.

Helsingissa 21.4. 1995

Seppo Leppénen
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1 INTRODUCTION

In this study we analyse dynamic general equilibrium models from a mathematical
rather than an economic point of view. In dynamic general equilibrium models sup-
ply and demand decisions by economic agents are functions which maximise agents'
intertemporal utility or profits, usually under the assumption of perfect foresight'. In
addition the balance between the supply and demand of each good must be fulfilled.
The dynamic structure allows us to consider economic issues like intergenerational
redistribution of utility, which we cannot analyse using static models. The mathe-
matical point of view means here that we are interested in mathematical problems
such as numerical solutions necessary conditions for optimality and stability. Normal
economic considerations related to dynamic general equilibrium models such as the
effects of the choice of tax base on agents [Auerbach & Kotlikoff (1987)] [Perraudin
& Pujol (1991)] are not focused in this study.

The main purpose of this study is to analyse dynamic general equilibrium models
that could be used for generationai accounting” and would preferably have the fol-
lowing properties. The model should tell how the wage rate, level of savings and
labour demand of different generations react to economic growth or government
policies. The model should be reasonably easy to solve numerically and there should
be a simple method for analysing its stability properties. We have divided our main
purpose into three themes: numerical methods for solving dynamic general equilib-
rium models, the constructing simple dynamic equilibrium models and obtaining the
conditions of optimal behaviour by economic agents in these models under the as-
sumption of perfect foresight and reviewing and applying some of the theories and

methods for analysing the stability properties.

! Implying that agents have perfect knowledge of all future prices.

2 Generational accounting is defined in the Appendix 2.



This study is organised as follows. In chapter 2 we analyse different numerical
methods for solving dynamical general equilibrium models. Apart from the simplest
equilibrium models no analytical solutions generally exist. Hence numerical methods
must be applied in almost all policy simulations using the dynamic general equilib-
rium models. For numerical methods we introduce the Ramsey model, also known
as the optimal growth model [Azariadis (1993)] and [Sargent (1987)], which is a
simple model with a long-lived agents structure but very useful for testing the vari-
ous numerical methods. We apply six different numerical methods to the Ramsey
model and analyse the advantages and disadvantages of these numerical methods
with respect to the Ramsey model and consider what kind of difficulties might ensue
if these methods are applied to more complicated equilibrium models. The numerical
methods are basic, multiple and bounded shooting methods, normal and two modi-
fied Wilcoxen methods. One of the modiﬁpd Wilcoxen methods uses the Jacobi
iteration algorithm and the other the Gauss-Seidel iteration algorithm. [Lipton et. al.

(1982)], [Keuschnigg (1991)], [Spender (1985)], [Bertsekas & Tsitsiklis (1989)].

In chapter 3 we construct dynamic general equilibrium models. We explain the dif-
ferences between long-lived agents models and overlapping generations models,
derive the equations for optimal behaviour using the Kuhn-Tucker conditions [Ba-
zaara & Shetty (1979)] and recursive dynamic programming [Sargent (1987)]. We
discuss how the optimality equations of the long-lived agents model and the overlap-
ping generations model must be formulated in order to apply numerical methods
[Cazes et al.(1992)] and [Kendrick (1981)]. All the models in this study have dis-

crete dynamic structures.

In chapter 3 we construct two dynamic models: one long-lived agents model and one
overlapping generations model. The models include intertemporal utility maximisa-
tion by households, in respect of consumption and leisure abilities, and a competi-

tive firm that maximises its profits by paying for its inputs, labour and capital



according to their marginal productivity. The main idea and the economic back-

ground for these models are taken from Auerbach & Kotlikoff (1987).

We use these models to simulate a technological innovation which increases produc-
tivity. We analyse its effects on wages, interest rates and savings and consumption
by households by solving the models by rearranging the equations in them so that

Jacobi iteration can be applied.

In chapter 4 we review mathematical methods of analysing whether a stationary
solution of a non-linear difference equation is a saddle point. We show that there is
a unique transition path to the fixed point of the system of difference equations
[Laitner (1984) and (1990)]. The fixed point is called the final steady state when it is
associated with dynamic general equilibrium models. We also review the theory of
the bifurcations of equilibrium [Azariadis (1993)] and comparative statistics analysis
around the final steady state. At the end of the chapter we discuss sensitivity analy-
sis, which is a practical solution for assessing how changes in exogenous variables
affect the position of the final steady state and the transition path [Auerbach & Kot-
likoff (1987)], [Perraudin & Pujol (1991)]. The main mathematical tool of this chap-
ter is the implicit function theorem [Rudin (1989)].

We apply the uniqueness and sensitivity methods to the final steady state of our
overlapping generations model to study how these methods can be applied

numerically.

In the last chapter we draw conclusions. We discuss what kind of dynamic general
equilibrium model would be best suited to generational accounting for it to forecast
savings and wage rates and labour supply trends. At the end of the chapter we dis-
cuss the weaknesses of the dynamic general equilibrium models as tools of analysing

policy simulations.



The essential part of constructing the general dynamic equilibrium models is the
parameter estimation. However this study does not discuss parameter estimation’.
We have decided to omit statistics out of this study, because we want to concentrate
on numerical methods optimisation and stability. The collection of time-series data

alone for parameter estimation would also have been too time consuming.

The parameter values for the Ramsey model are chosen randomly and the parameter
values for the long-lived agents model and for the overlapping generations model are
mainly those estimated for Finland by Kenc et al. (1994). They use the statistical
method known as the general method of moments to micro- and macro economic
time-series data of Finland. Even though some of the exogenous parameters are
estimated for a particular country, economic conclusions cannot be on the basis of
these dynamic general equilibrium models. In this study we concentrate on the

mathematical side of the dynamic general equilibrium models.

All the programs for the numerical solutions, e.g., the shooting methods, are our
own Excel macros. We found the cell structure of Excel very convenient for discrete
calculations, especially for programming the bounded and the multiple shooting
method. The ease of using the graphics was another advantage of Excel. On the
other hand the execution of Excel commands related to matrix operations was not so
simple. It might possible have been easier with some another software package,

e.g., Gauss,

3 "It is here that economics begins and computer science ends.” [Auerbach et al.
(1987), pp.54]
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2 NUMERICAL METHODS FOR THE DYNAMIC GENERAL
EQUILIBRIUM MODELS

In this chapter we present a simple perfect foresight dynamic general equilibrium
model with an analytical solution. The model is known in economics literature as the
optimal growth model or the Ramsey model. Secondly we formulate the model so
that numerical methods can be applied. Thirdly we solve the model using three types
of shooting methods: basic, multiple and bounded and three types of Fair-Taylor
algorithms. During and after solving the model with different algorithms we discuss
the advantages and disadvantages of each of the algorithms. We also discuss how the
performance of the different algorithms varies with problems which have more di-

mensions than the optimal growth model.
2.1 The optimal growth model

The optimal growth model we use was pioneered by Ramsey (1928) and later devel-
oped by Cass (1965) and Koopmans (1965). The model is quite simple, but particu-
larly useful for test numerical procedures, while a non-trivial analytical solution
exists [Sargent (1987)]. Also for those with a mathematical rather than an economics
background the optimal growth model describes how economists map the economy

using difference equations and analyse it using discrete dynamic optimisation

techniques.

The model is a discrete mapping of a stationary economy with a fixed labour supply
and capital adapted freely without any transition costs. Only one consumption good*
is produced and it is described by the Cobb-Douglas production function [Chiang
(1984), pp. 414]. The economy consists of a single infinitely lived individual with
perfect foresight. We set "the clocks” so that he is born at t=0. He will not be paid

4 It is useful to think of the production good as wheat, which can be either eaten
(consumed) or stored for farming next year (invested). In this model we refer K., as
investments in the period t and prodution capital in period t+1.
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for his labour, but as the owner of the production capital he will own all the goods
produced. At the beginning of each period the individual is faced with deciding the

optimal consumption/investment ratio to maximise his intertemporal utility function:
@0

[2.1] U=2 Bu(c)
t=

under the constraint that investments (K, ,) and consumption (¢) cannot exceed
output f(K)), which is a function of capital invested for production in the preceding

period.

[2.2] K +ce = f(Ke)

The variable 3 is a discount factor, t is a time period index, c is consumption, k
capital. The utility and production functions u(t) and f(k) have the following proper-
tiesu'(0) = £'(0) = oo, f',u’ > 0, f'"",u"" <0, u''(0)=0. The equals sign in [2.2]
instead of the less than sign assumes that no production is wasted. The single infi-

nitely lived individual's maximising problem can also be considered dynastic behav-
iour, where the generation currently alive not only considers its own well-being, but
also that of its descendants. However, the discounting term b in the utility function,
indicates that the present generation alive is more concerned with itself than its

offspring.

For our study let u(c)=Inc, and f(k:) = AK, where A is a scaling constant, and
0<a <1 is a factor implying decreasing returns to scale. In the farmer's example

the farmer is not able to sow and cultivate large amounts of wheat as effectively as
smaller amounts. Mathematically this means that together with the linearity of [2.2]
with respect to c,, the Kuhn-Tucker sufficient conditions for the maximum are satis-
fied. Under the assumption of perfect foresight the individual is able to maximise his
intertemporal utility the "day" he is born. To maximise [2.1] under constraint [2.2]

we write a function
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[23] L= u(ct) + ..+ U(Ct.m) +..+ Q\,Q(AKt —Ci— K¢+1) + ..,

which is analogous to the Hamiltonian function in continuous time [Kendrick
(1981)], [Sargent (1987)]. The 1's are Lagrange multipliers associated with budget
constraints for each period. We define c, as a control variable and K, as a state vari-

able. We can write the first order conditions:

oL .1
= Bro-—he=0
[2.4 2,b]
%{i = Mo AR %y =0
t

Because our end point conditions are: 1. end time fixed (infinity), 2. end state free,
the boundary conditions, which are also called transversality conditions, reduce to’

[Kamien & Schwartz(1991)].

[2.4 c] lim Ar — 0.
T

To form a relation c,,, = G(c) we divide [2.4.b] by itself lagged one variable and
replace It-1 by 2.4.b. Together with the budget constraint, it leads to the following

discrete dynamic system:
Kt+1 = AK:X —Ct

[2.5 a,b]
Ctr1 = AOLB(AK? - Ct)a—lct ,

where k, is given and c,,; = ¢, when t>T.

3 Provided there is a discounting term B <1. According to [Barro & Sala-i-Martin
(1994)] an infinite end point can be treated similarly to a finite endpoint. However there is
no proof of this.
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Equation [2.5.b] is considered as a discrete time version of the solution of the Euler-
Lagrange equation for the necessary condition for the extremum in continuous time
[Kendrick (1981)], [Kirk (1970)]. Therefore it is often referred in economics litera-

ture to the Euler equation.

This is the standard method for solving discrete dynamic general equilibrium mod-
els. However, the optimal growth model is simple enough to be solved analytically
[Sargent (1987)]. Instead of the optimal control approach we used here, Sargent uses
the dynamic programming developed by Richard Bellman. The solution method is
based on defining K,,, as a control variable and K, as a state variable. Next Sargent
(1987) replaces ¢, in [2.1] by [2.2] and forms the Bellman equation associated with
this problem. The Bellman equation satisfies Bellman's principle of optimality,

where v(K)) is the value function:

v(K¢) =max {In(AK{ — Ku1) + Bv(Ki)}.

Kty

Sargent (1987) solves the Bellman equation by making a guess v(K() = E + FInK;
for the value function v(K)) and verifying it. The analytical solution to capital accu-

mulation in this version of the optimal growth model is:
[2.6] K = AopK

The questions studied by the optimal growth model are, for example, related to
growth theory [Barro & Sala-i-Martin (1994)] which analyses changes in production
and how fast these take place, if technological change takes place. Consider the

parameter A in the production function (f(K,) = AK)) to be constant for many peri-
ods, say A=2.5, #=.8 and 2 =0.5. In that case optimal policy would be to remain
in a steady state and produce 2.5 units and consume 1.5 units in each period. Then

suddenly a technological innovation takes place and A becomes four times as large.

By solving the model we find out that consumption will rise from 1.5 to 16, but it
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takes 18 periods (using three decimals) to achive a new steady state. The optimal
growth model is only a theoretical model and the questions are also quite theoretical.
In chapter 3 we deal with more complicated models which can be used to predict
e.g. how the similar technological innovation effects the consumption patterns of the

individuals in that economy and the demand for labour.

We showed earlier that the discount factor 3 <1 is correct, on the ground that the

current generation prefers itself to the future generations. Also the mathematics of

the optimal growth model "forces man to do so". Consider a more selfishness case
where =1. The equation [2.6] converges to a finite positive number k* (if 0<a

<1). Then equation [2.5.a] implies that there is a finite positive number c* for

steady-state consumption. According to equation [2.4.a]:

lim A = 25 > 0.
t—w

Thus the transversality condition [2.4.c] is violated. Thus according to the optimal
conditions of the optimal growth model, the current generation is more concerned

with itself than with its offspring®.
2.2 Shooting methods

Shooting methods are well known procedures both in the engineering and economics
fields. They can be applied to both differential and difference equation systems. The
basic idea of all shooting methods is to guess a set of values, including the values of
the first period. Then the system is "shot", or integrated forward in order to verify
whether the guessed values satisfy the terminal conditions, which are the final
steady-state requirements in the optimal growth model. Thus we want to end up with

constant and positive levels of consumption and savings after a certain period. If

8 Barro & Sala-i-Martin (1994) discuss the transversality conditions of the infinite
horizon Ramsey model in continuous time. According to them the sufficient transversality
condition in the case of B=1 is lim(t—>o) H(t)- >0 , where H is the Hamiltonian of the
problem.
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these are not satisfied, we use iteration methods such as Newton's method’ to im-

prove the guesses.
As an example let us consider a system of difference equations,
[27] Xt+l =Ft( xt’zt)a

where X, is an unknown n*1 vector and z, is a known k*1 vector. In the case of our
optimal growth model the values of z, are the parameters A, o and 3, which in this
case are constants. Let kand c, be subvectors of x, with dimensions of m*1 and

(n-m)*1 respectively. As the boundary conditions we have:

ko =1_(, and
[2.8 a,b]
G(x1-1,X7)=0

The second boundary condition is an approximation of lim Xt — Xt—; = 0 in infinite
T—®

horizon models.

In the basic shooting method only the initial values (c;) are guessed. This requires
the iteration of n-m scalars. In systems with non-integer power terms, such as dy-
namic general equilibrium models, the execution of the basic shooting method algo-
rithms is usually terminated by the error message "cannot raise negative number to
non-integer power", or the series diverge to infinity. In optimal growth this is due to
the fact that the steady state is a saddle point. This will take place even with accurate
initial values and when using a relaxation parameter to generate new values in the

iteration.

! To find the solution to the system f(x)=0, the Newton method is

X1 =X-(H(x)) 'Nf(x,), where H is the Hessian matrix of f.
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To avoid these problems, multiple shooting divides the solution path into subinter-
vals of s time periods in length, which are solved such that the values of the preced-
ing subinterval do not effect the calculation. The start of succeeding subinterval is
used as a terminal condition for the preceding interval. In addition to iterating s*(n-
m) control variables (c) we also have to iterate (s-1)*m state variables (k). When the
subintervals are small enough this method proves to be a very powerful tool but is at
the expense of increasing the dimensions of the calculations in the iteration process.
In large-scale economic simulations the use of the multiple shooting method leads to
several transformations of huge matrices [Lipton et al.(1982)]. This can be avoided
by using the quasi-Newton method [Bazaara & Shetty (1979)] where matrix transfor-
mation takes place only at the beginning of an iteration process and the same Hes-
sian matrix is used at later iteration rounds. But this could lead to problems if the

initial values are poorly chosen.

A good compromise between the basic and multiple shooting methods is the
bounded shooting method [Spencer (1985)]. In the bounded shooting method we
only iterate (n-m) scalars, as in the basic shooting method. The integration or "shot"

is then executed until period t, where the first auxiliary boundary condition

[2.9] g < Gulce1,c) <8

is breached. The choice of the upper and lower boundaries of auxiliary boundary
conditions is largely a matter of experimentation. In the optimal growth mode] the
difference between ct and ct+1 narrows sharply after a few periods, due to the
decreasing returns in the production function [Varian(1992)]. This would suggest
that the boundaries of the auxiliary boundary conditions should be in the form of
narrowing "tubes" as shown in figure 2.1. According to Spencer (1985), the

bounded shooting method also works well in large-scale economic models. It has

been applied in  models used by “the Bank of  England.
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Differsnce cit)-cit-1

period t

Figure 2.1: Illustration of the shape of "a tube" for the auxiliary boundary condition of

optimal growth models.
2.2.1 Algorithm for the Basic Shooting Method

Applying the basic shooting method to a problem such as the optimal growth model
starts with an initial guess for c,, integrates [2.7] forward with the given [2.8.a] to
derive an implied violation for [2.8.b]. In our applications we require a steady-state
at period T. Therefore we let the boundary condition [2.8.b] be

Glco) = cr (co)-crs (co)
where c; (c,) maps ¢, —c; with the given k,, and defining H(c,) as a Jacobian of
G(c,) at point c,. We assume there is a non-trivial solution at ¢,* >0. We can write a
linear relation between the initial guess c, and the solution c,* by using the Taylor

approximation in the neighbourhood of c,*.

T(Co) l

cr(Co) ¥ er(Co) + —3—

00( Co~ )

, der(co), | \
[2.10] comCo—| ——ley | (cT(Co)—cr(cy)).
aCo
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The problem is that we do not know the end point value c(c*0 ). So we must ap-

proximate error cy (G, )- Cp (¢*) by cp(cy)- cr.1(cy)-

. der(co); |
[2.11] Co R Co— Tlco (ct(co) — c1-1(C0))
Co

If we use the notation defined above we can rewrite [2.11]:
[2.12] ¢y~ co-[H]'Gr

If the problem is linear, the Taylor approximation is exact. If not, we can apply an

iterative process to achieve convergence:
[2.13]  c5" ~c5-[H]"Gr,

where H is evaluated at C,° . To improve the probability of finding the solution, we
highly recommend using an relaxation parameter even in simple optimal growth

models. With a relaxation parameter equation [2.13] becomes:
[2.14] c™ ~ el — r()[H] "G
where the relaxation parameter 0 <r(i) <1 is a function of the iteration round i.

2.2.2 Algorithm for the Multiple Shooting Method

To apply the multiple shooting method we divide the interval [0,T] to subintervals
[0,T,1,[T,,T,]...[T,;,T], with T,=T. The problem defined in [2.7] can be character-

ised as:
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X., = Hi(Ko, co)

[2.15]
X., = Ho(K1,¢1)
Xs = HS(IA(S'—I ,es—l)

The variables with hats are unknown variables of the problem. Thus K, , C,, are

starting vectors of interval [T,,T,] and Hy(K |, C;) is the value of vector X at the
end of interval [T, T,]. The dimensions of H, differ. H, maps R™™* 5R" and for
i=2,...,s H; maps R">R". After introducing matrix notation:

% <[0r K1, X, ] and
X= [(A:o,Xl,Xz, ...Xs], where )A(i = [IA(i,éi:l ,

the system [2.15] can be rewritten as :

[2.15b] X=HX)

with H; Re+eD+am) _, pa+eD+em) Ror the matrix notation it is also useful to de-
fine a matrix M as:

M= X~ X1, Xs - Xs, . GKit, Xe.

Since X is a function of X, M is an implicit function of X. If we can locate X* so
that

2.16]  M(X")=0°

then ¢, satisfies equations [2.15] and [2.8 a,b]. To locate X* we use Newton's
search as in the basic shooting method.

8

According to Brouwer's theorem [Bertsekas & Tsitsiklis (1989)] the equation [2.16]
has a solution.
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-1
2171  X* zf(i—(@%’lj M(X?)
a ~

Xi

Each iteration of [2.17] requires an inversion of a [n(s-1)+(m-n)] matrix. For large

and complicated systems many subintervals are required. This may become very

costly computationally. Fortunately [61\1[] can be written:

oX
- o, _
o -1 0. . 0
0210 0 o0
Xy
[2.18] a—l\fl =
oX
0 0 LE A
v aXs——Z
0 RLIN
L X1 J
where I is the n”n identity matrix. ?;Il has the dimensions (m-n)*n, aAHS has
Co s—1

the dimension n*(m-n) and the rest of the blocks have dimensions of n*n. This form
affords substantial computational savings in the inversion procedure. From now on

we refer to equation [2.18] as the H-matrix.
2.23 Algorithm for the Bounded Shooting Method

The bounded shooting method differs from the basic shooting method only in that
[2.7] is integrated or "shot" forward with the initial guess ¢, only until the auxiliary
boundary condition [2.9] is breached and not necessary till the T* period. The im-
plied violation of [2.8] is derived at the point where the auxiliary boundary condi-
tion [2.9] is breached. This leads to an iterative process similar to that in the basic

shooting method.
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[2.19] ¢ x el - [H] G-

where 7 is equal to T if the auxiliary boundary condition [2.9] is not breached. If the
auxiliary boundary condition is breached, © is the period in which the auxiliary
boundary condition is first breached and H is a Jacobian:

_ 6C1:(C()):

[2.20] H="—5 =,

and

G = G(X‘[—] ’ XT) .
224 Performance of the Shooting Method Algorithms

We use the optimal growth model described in section 2.1. The problem is to solve
equations [2.6] and [2.7] so that with the given k, the steady-state requirement [3.0]
is satisfied. For numerical purposes we set T=25, A=10, «=0.5, p=0.8 and
k,=1. In the multiple shooting method T was divided to eight subintervals. Hence
every subinterval consists of four time periods. We show the analytical solution of

the optimal growth model with these parameters in figure 2.2.
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Figure 2.2: Analytical solution for the transition paths of the optimal growth model with

parameters as defined above.

The saddle point structure combined with the 15-digit numerical calculation cumu-
lates error disabling the use of the basic shooting method when the transition period
is long, even when the initial guess is almost correct. In addition using the basic
shooting method without the relaxation parameter almost certainly leads to numeri-
cal overflow because if initial consumption is too low in the first iteration this leads
to overconsumption in the first period in the second iteration round, eventually lead-
ing to negative capital in some period in the second iteration round. With our pa-
rameters and the initial condition, six units of consumption in the first period is the
solution to the optimal growth model. And initial guess less than 5.99999 units of
consumption leads to negative capital and numerical overflow in the second iteration
round. So the basic shooting method without the relaxation parameter has hardly any
practical value. The bounded shooting method without the relaxation parameter
converges to the fixed point. But the convergence is slow, because the shooting

integration must be interrupted because of the numerical overflows.

With the relaxation parameter, the basic shooting method works significantly better

and it is also faster as long as the relaxation parameter is chosen so that there are no
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overflows and if it is also reasonably large. Figures 2.3 and 2.4 illustrate the roles

of the relaxation parameter and the auxiliary boundary condition.

In figure 2.3 the value of the initial guess is on the x-axis and the outcome of one
iteration round using the basic shooting method is on the y-axis. The normal curve
in the figure indicates the outcomes without the relaxation parameter. As the normal
line shows almost all initial guesses over 4 lead to overflow after one iteration be-
cause the outcome is over 6, which the basic shooting method cannot be deal with.
The reason is that the mappings of equations [2.13] and [2.14] with ¢, over 6.0001
are not real numbers. Initial guesses below 4 also lead to overflow after two or more
initial rounds, e.g. the outcome of 3 is 4.96 and the outcome of 4.96 is 6.27. The
purpose of the efficient constant relaxation parameter is to find the best linear com-
bination of a 45-line (y=x) and the normal line so that the combination (relaxation
line) is as close to the normal line as possible but does not have values over 6. The
relaxation line in figure 2.3 has a constant relaxation parameter of 0.5, which is a
good approximation of the best possible constant relaxation parameter. The fact that
the normal line and the 45-line cross at two points indicates that the fixed point

equation [2.13] has two solutions, ¢,=0 or ¢,=6, and the latter is stable.

6 AY."J i
5 /\"f.w
o
//

w I % normal

=T relaxation

e
e

] 1 2 3 4 5 8
initial valus

Figure 2.3: Mapping of the fixed point equations [2.13] and [2.14]. Basic shooting
method.
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Figure 2.4 shows the outcomes of the bounded shooting method with the auxiliary
boundary condition to stop integration at period t, if c-c., < -10 or if there is over-
flow at period t+1. The bounded shooting method does not terminate the iteration
process if the input value implies overflows from period 2 onwards, so outcomes
over 6 are not a problem. Figure 2.4 also shows that there is only one positive solu-

tion to the optimal growth problem.

AT!FJ' s %anss,

The Initial Value

Figure 2.4: Mapping of the fixed point equation [2.19] with the auxiliary boundary condi-
tion -10 < ¢(c,)-¢,,(c,) < 10. Bounded shooting method.

In table 2.1 we show how different constant relaxation parameters affect the num-
bers in the iteration rounds needed for convergence in the basic shooting method.
Note that the non-monotonic form of the normal line is the reason that fewer itera-
tion rounds are needed for convergence from an initial value of 2.8 than from an

initial value of 2.9.

The iteration results for the bounded shooting method are shown in table 2.2. As an
upper boundary for the auxiliary boundary condition we stopped the "shot" at t if
¢-¢.;> 10 or if there was an overflow at period t+1. As a lower boundary we tried
three different auxiliary boundary conditions: stopping the "shot" at t if ¢-c,; < -10,

c¢y < -lorc-c,; <-0.1.
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For both the basic and the bounded shooting methods we used |cy(co)/cy (Co)-1] <

1*10e-6 as the criterion of convergence.
Table 2.1: Required iteration rounds for convergence of basic shooting method with differ-
ent initial values and different relaxation parameters. Criterion for convergence

|er(co)/eri(cy)-1] < le-6.

Relaxation parameter

Initial value 1 1 1
8 overflow overflow overflow
7 overflow overflow overflow
4 51 38 overflow
3 53 overflow overflow
3 52 39 overflow
0 64 48 overflow

Table 2.2: Required iteration rounds for convergence of bounded shooting method with
different initial values and different upper bounds for the auxiliary boundary condition.

Criterion for convergence |cq(Co)/cr (cy)-11 < le-6.

Lower limit of the auxiliary boundary

Initial value condition
-10 -1 0
8 66 66 66
7 58 58 58
4 64 36 54
3 72 37 58
3 62 37 59
0 67 44 73
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Comparing the bounded shooting and the basic shooting method in three major re-
spects, namely programming effort, speed of convergence and tolerance of error in
initial values, prefers the bounded shooting method to the basic shooting method in
all the respects. If we consider problems of greater dimensions, the weight given to
tolerance of different initial values must be superior to the weight given to program-
ming effort. However, we must emphasise, that different relaxation parameters were
given a priori, they were not solutions of any separate optimisation problem. That
would improve the basic shooting method in speed of convergence but at the cost of

more programming effort.

Programming the bounded shooting method algorithm is almost identical to pro-
gramming the basic shooting method algorithm. Only a single extra loop is required,
namely to check, whether the auxiliary boundary condition has been violated. Table
2.2 indicates that widening the tolerance of the auxiliary boundary condition will not
terminate iteration. This would suggest that it is not necessary to devote much effort
to the auxiliary boundary conditions. In the economic models functional forms seem

to behave well except that negative values for state and control variables lead to

numerical overflows.

With the second criterion, the speed of convergence, it is not clear which method to
prefer. Since one iteration round takes longer with the bounded shooting method and
because we chose the relaxation parameters and the auxiliary boundary conditions
randomly. But intuitively we assume that the bounded shooting method converges

faster, because the auxiliary boundary conditions keep the shots in the tube.

The tolerance range for initial value errors seems to be much better with the
bounded shooting method algorithm even without the relaxation parameter than with
the basic shooting method algorithm. This is why the bounded shooting method is

generally referred to the basic shooting method. According to Bazaara & Shetty



22

(1979) Newton's method is guaranteed to converge regardless of the starting point if
the Hessian matrix is symmetric positive definite and relaxation parameter chosen by
auxiliary minimisation problem. In economic applications with non-integer powers,
however, the Hessian matrix does not exist with all initial values, therefore even the
best possible relaxation parameter function cannot be superior to the bounded shoot-

ing method.

The multiple shooting method differs from the other shooting methods, in that in
addition to the initial values (c,) we have guess and iterate values for all elements of
the x-vector for the first time period of each subinterval, with the exception of the
first subvector, where the k,-vector is known. In practice this leads to sharp increase
in the dimensions of the H-matrix. Inversion of the H-matrix gets computationally

costly when the dimensions increase. Another factor slowing convergence is that in
addition to [2.8.b], Xs —X;s =0 must hold for every s=[1,S-1]. The relaxation pa-

rameter function was kept the same for all iterations a(i)=025%i*>, where i is the

number of the iteration round.

Table 2.3: Required iteration rounds for convergence of the multiple shooting method with

different initial values and different frequency of inversion of the H-matrix. Criterion for

S-1
convergence 1(c0)-cT-1 (cO)l+2. |&; —cs| <le-6
s=1

Frequency of calculation of inverse
H-matrix

Error in all Every itera- Every sec- Every
initial  val- tion round  ond iteration fourth itera-

ues (%) round tion round
10% 8 9 10

20% 8 10 12

30% 10 11 15

40% 10 13 overflow
50% 10 overflow overflow

75% overflow overflow overflow
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Comparing the bounded and the multiple shooting methods is not as straightforward
as comparing the bounded and the basic shooting methods. There are several reasons
for that: different number of initial variables, different convergence criteria, and
most of all the fact that each iteration round in the multiple shooting method requires

the inversion of much larger matrices than in the bounded shooting method.

In table 2.3 we have analysed what happens if the H-matrix is not inverted in every
iteration round and instead we use the previous iteration round values of the H-
matrix. As seen from table 2.3, it is not necessary to obtain new values for the in-
verse H-matrix in every iteration round. At least this is true in straightforward eco-
nomic problems with low relaxation parameter value at the beginning of the iteration
process. But even if we use the same H-matrix for four consecutive iteration rounds,

we still could not match the bounded shooting method in terms of time.

There are alternative methods [Bazaara & Shetty (1979)] for totally avoiding trans-
formation of the H-matrix known as quasi-Newton methods. In these methods the

H-matrix is approximated by various iterative processes. The purpose of the ap-
proximating the H-matrix is that lim B; = H;, where B; is an approximation of H; at

i—>0
ith iteration round. One widely used iterative process is Broyden, Fletcer, Goldfarb
& Shanno method, named after its inventors. In this process B, is the sum of two

positive definite matrices

Xi+1 = Xj— aBIVfI(le)
[2.21 a,b]

yiTBiyiJ SiSEr _ siyiTBi + BiyisiT

T T T
S;Yi SiYi

Bi+1 = Bi + (I +
S; Yi

where §,=x;,,-X; , Vi = Vﬁ(§i+1)— Vﬁ(ii) , ﬁ(i,-) is defined in equation [2.15 b]

and where B, and I are identity matrices. However, this iterative process contains
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so many matrix and vector multiplications that it does not represent any real time-

saving in our optimal growth model with 15-dimension matrix inversion.

The tolerance range of the initial values is the main criterion for choosing the algo-
rithm for the discrete dynamic general equilibrium models. With respect to the toler-
ance range, the multiple shooting method can be made a little more efficient than the
bounded shooting method by increasing the number of subintervals. However, this

also increases the dimension of the H-matrix.

After studying all three shooting algorithms we would still recommend the bounded
shooting algorithm, provided that some prior knowledge exists, e.g. the absolute

values of the initial and the final steady states of the dynamic system.

The following figure illustrates the performances of the bounded and the multiple
shooting methods. Figures 2.5 and 2.6 show the bounded shooting method with an
initial value of 4 and where the lower limit of the auxiliary boundary condition is
-0.1, after 10 and 30 iteration rounds respectively. Figures 2.7 and 2.8 show are the
multiple shooting method with all the initial values 10% lower than the solution and
with the inverse Hessian matrix updated in every second iteration round, after two

and six iteration rounds respectively.

40 T
3 T
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%+ hf k-solution
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T* colution
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Figure 2.5: The bounded shooting method after 10 iteration rounds.
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Figure 2.6: The bounded shooting method after 30 iteration rounds.
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Figure 2.7: The bounded shooting method after two iteration rounds.
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k-solution
—— psolution
——

——c

Figure 2.8: The multiple shooting method after six iteration rounds.

23 Fair-Taylor Methods

There are two Fair-Taylor methods described in literature. The first is the normal
Fair-Taylor method, which was introduced by Fair and Taylor in 1983 and the sec-
ond is the generalised Fair-Taylor method introduced by Wilcoxen in 1989. In the
normal Fair-Taylor method algebraic methods alone are used to obtain a set of equa-
tions for fixed point iteration. The fixed point iteration is then performed using ei-
ther the Gauss-Seidel or the Jacobi iteration method to achieve convergence.
Wilcoxen's Fair-Taylor method improves the convergence by using calculus and
Taylor approximation to obtain a set of equations for the fixed point iteration. Oth-

erwise the methods are similar.

The Jacobi and Gauss-Seidel iterations are defined as follows. Consider an iterative

process xi*! = f(x') Let x" denote the n" variable of x and let f, denote the n® com-

ponent of the function f. Then we can write Jacobi iteration as

XM= f (x4, ..., %) n=1,...m
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and Gauss-Seidel iteration as:

i+l i+l

i+l
RS il

xH = f(x xi,...,x1), n=1,...,m

Thus Gauss-Seidel iteration uses the latest information available and should there-
fore sometimes converge faster than the corresponding Jacobi-algorithm. This is
proven in Bertsekas & Tsitsiklis (1989). Under normal circumstances, the cost of

using the Gauss-Seidel iteration represents a small additional programming effort.

2.3.1 Algorithm for the Normal Fair-Taylor method

In this section we use "hat" notation similar to the multiple shooting method. We
define & as an input vector for the i* iteration round and ¢' is the outcome values of
the i" iteration round. The input vector for the (i+1)® iteration round, denoted as

&*! is a linear combination of ¢' and & .

The normal Fair-Taylor method we describe here is designed to solve the system of

difference equations in the optimal growth model:

kit = Fl(kt, Ct)
[2.5 a,b]
cu1 = Fa(ke, co).

In more complicated models market-clearing conditions must also be satisfied. Such
conditions usually include equations that imply that time spent on labour and time
spent on leisure must add up to all time in each time period. We will discuss these

conditions in the next chapter.

The solution in the normal Fair-Taylor method begins by writing the Euler equation

of the control variable’ [2.5 b] in the following form:
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[2.5b'] ¢t = Fa(ker, cev1)

Thus we want to have the values of the control variables at period t as a function of
the control and state variables at period t+1. We do this because we rather to iterate
new values for ¢, than for c;. Secondly we make a guess for all expected variables
¢°. Thirdly we use [2.5 a], the guessed variables ¢° and the knowledge of the initial
values of k, to determinate the state variables k. Finally we use equation [2.5 b'] and
the initial guesses for ¢° and k to obtain new values for the control variables c°. If
and only if & = ¢°, the values of the control variables satisfy the requirements for
intertemporal optimal behaviour under the budget constraint [2.5 a]. Otherwise in
the normal Fair-Taylor method we use a linear combination of ¢ and ¢, as a new set

of initial values in the iteration process.
[2.22] ¢ = gci + (1 - @)éi

If the convergence criterion is not met, we go back to step three of our iteration.
With luck iteration converges to a fixed point [Keuschnigg (1991)]. If equations
[2.22] and [2.5] form a contraction mapping in a closed subset X<R", the iteration
converges geometrically to unique solution from any initial vector x,(k,c)eX(k,c)
[Bertsekas & Tsitsiklis (1989)]. It is no easy task to verify contraction mapping due
to the deep implicit structure of the equation system in the dynamic general equilib-

rium models.

The fourth step in the normal Fair-Taylor algorithm can be performed by applying
either the Jacobi or the Gauss-Seidel method. In the Jacobi method the new value of

¢, is a function of guessed values of the control variables at periods t and t+1.

° In economics literature control variables, especially related to the Fair-Taylor

method, are referred to as jump variables. The name jump variable indicates that their
values are not dictated by history as in the case of state variables.
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¢t = Fa(Chyy, kin(ki, C1)

The structure of the Fair-Taylor method also allows us to use the Gauss-Seidel ver-

sion with no significant increase in programming effort.
[2.5b"]  er=Fa(Cel, ki (ki €0))

In the Gauss-Seidel version the new value of ¢, is a function of guessed values of the
control variables at period t and a ready-calculated value of the control variable at

period t+1.

Using the normal Fair-Taylor method has both advantages and disadvantages. The
first advantage is that the dimensions of the equation system to be solved are limited
and the second is the absence of calculus. The costs of these advantages are in-
creased computational time and increased uncertainty of convergence. Note that [2.5
b'] does not produce an update for the last time period. This has to be calculated by
a separate final steady-state calculation or by adding an additional steady-state re-
striction ¢cy=c;, as we did with the shooting algorithms. The third possibility is to
fix a reasonable value for c; and utilise the Turnpike property. The same applies to
Wilcoxen's modified Fair-Taylor method. The flow diagram in the appendix illus-
trates Wilcoxen's modified Fair-Taylor method, but by letting the damping factors

¢, and @, be zero then the in the flow diagram illustrates the normal Fair-Taylor

method.
2.3.2 Algorithm for the Wilcoxen's modified Fair-Taylor method

In Wilcoxen's modified Fair-Taylor method we perform the first three steps as in
the normal Fair-Taylor method. We write the values of the control variables at pe-
riod t as a function of the control and state variables at period t+1. We make a

guess for all the expected variables ¢°. We use equation [2.5 a], the guessed
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variables &° and knowledge of the initial state values k, to determine the state vari-
ables k. Thirdly, just as in the shooting methods, we apply the Taylor approximation
of equation [2.5 b'] around the solution c¢*,. That leads an normal iteration formula

similar to Newton's search:
[2.24] ¢! = (I- VF3)™(F; - VF;3¢))

This equation has similar disadvantages to the multiple shooting method. Firstly the
dimensions of the Jacobian matrix (n-m)T * (n-m)T are large. Secondly, at least in
larger dynamic general equilibrium models, it is not very easy to calculate deriva-
tives, due to their implicit structure. The Jacobian in equation [2.24] is defined as

follows:

Jiu Ji2 oo it z_"li ? 5201[_

C1s C2s "t Oc(n-m)s
Jiz T2 oo Jor

VF3= J;s= e

R aC(n—m)v. aC(n_m)t aC(n—m)t

JIT JTZ . JTT Ocqg Ocogg **t O¢(n-mw

Wilcoxen also introduced some simplifying assumptions, which, according to
Keuschnigg (1991), enormously reduce the computational cost without sacrificing a
great deal of information about the intertemporal structure of the Jacobian of equa-

tion [2.24]. These assumptions are:

J, =0for s>t+1

Jusr = I t>1
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The first assumption is straightforward. Varying ¢ after period t+1 does not affect c
in period t or earlier. This makes the Jacobian almost lower block triangular. The
second assumption states that varying ¢ in previous periods (s<t) does not affect ¢
in period t or after. This is only an approximation, since the state equation [2.5 a]
naturally carries over some effects into period t. This makes the Jacobian upper
block triangular. Finally Wilcoxen assumes that the effect made to ¢ by variation of
¢ in periods t and t+1 is the same in all time periods and equal to J,, and J,. This
final assumption states that we only need to calculate two blocks of the Jacobian..

After these assumptions we can rewrite equation [2.24] as:
[2.24'] ct= - 01J11) 1 (Fa(Ciit, 6 — 01T 11t + 2T aetyy — Covy))

This is the Gauss-Seidel version and the Jacobi version is quite similar. The ¢ sym-
bols are dumping factors for the Jacobians. For values of ¢ the upper index stands
for the iteration round and the lower index stands for the time period. As in the
normal Fair-Taylor method, the last step in Wilcoxen's modified Fair-Taylor
method is to create a linear combination of ¢ and c, as a new set of initial values for
the iteration process. If the convergence criterion is not met we go back to step three
of our iteration. The flow diagram in the appendix illustrates Wilcoxen's modified
Fair-Taylor method. Note that when using j;, = j, =0 in Wilcoxen's modified Fair-

Taylor method, we have the normal Fair-Taylor method.
2.3.3 Performance of the Fair -Taylor Algorithms
We used the same optimal growth model as in the shooting method section to ana-

lyse the performance of the Fair-Taylor algorithms. For the iteration process the

Gauss-Seidel version of the Euler equation [2.5 b'] becomes:
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A+l

Ag A C
¢,=F (cl+l’k k ’Cl) = t+1 —
t 3\ t+l( ty Lt ) AaBkt+1 (kt, C;)OH

The Jacobi version of [2.5 b'] is otherwise similar, expect that éiﬁ is replaced by

Al
Ct.

The main difficulty in both of the Fair-Taylor algorithms lies in the initial guesses of
the control variables (¢&'s). If the guess in most of the time periods were to be higher
or lower than the solution, this would lead to very high errors in the state variables
(k). In the Fair-Taylor algorithms there are no mechanisms similar to, the auxiliary
boundary condition in the bounded shooting method or the guesses in the state vari-
ables in the multiple shooting method to deal with this problem. This is why we
added an extra auxiliary boundary condition in all our runs of the Fair-Taylor algo-
rithms. We added the following constraint in equation [2.5 a], which reduced over-

flows a great deal.

kt+1 = Ak:x —Ct if t<I15
[2.25 a']
ket = Max(10, Aky —¢,) if t>1

Another aspect, which in Wilcoxen's modified Fair-Taylor method we did not find
very beneficial for the optimal growth model, was the third and fourth simplifying
assumptions. We found that at the beginning of the iteration process the Jacobians
did vary quite a lot in different time periods. Before introducing the auxiliary bound-
ary condition it also caused overflows. For example if every second initial guess is
1% over and every other initial guess is 1% less than the solution, the Jacobians
vary as in picture 2.9. The picture implies at least that the fourth simplifying as-
sumption, which states J,,,,=J,, is not that good approximation. With our case it
means that for example the J,,, , which is 1.13, is approximated by 0.5, which is
the value of J,,. The error caused by the third simplifying assumption in our case is

quite small, because the values of J,, are almost the same. However, in problems
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with large dimensions it is probably a good idea to use assumptions three and four,
or perhaps to calculate the Jacobians for every n" time period and use interpolation

in between.

a
o

— ks
—0— Jsge1

e
2 £

ABSOLUTE VALUE OF THE JACOBIAM
a
>

e
=

o
@

T
ﬁ

20 5

e
)
=
&

Figure 2.9: Absolute values of the Jacobians of the various time periods in the optimal
growth model when the guesses for the consumption vector (c) are 1% over the actual solu-

tion in every second and 1% less the actual solution in every second time period.

To test convergence we ran the normal Fair-Taylor method and two versions of
Wilcoxen's modified Fair-Taylor method. The first Wilcoxen's version uses Jacobi
iteration and assumptions 1-4. The second Wilcoxen's version uses Gauss-Seidel
iteration and assumptions 1-2 only, so we calculated Jacobians for each time period.
We do not use damping factors for the Jacobians, so we had ¢, = ¢, = 1. We set
the initial values so that guesses in odd time period were below the solution by a

certain percentage and guesses in even time periods were over the solution the solu-

T
tion by certain percentage. The convergence criterion was 2 (ce—C)/T<1%1075.
t=1

We chose the following relaxation parameter functions for the iteration results in
table 2.4. For the normal Fair-Taylor method we had a minimum of 0.25 or
0.01*i"2, Letter i stands for the iteration round number. The choice of relaxation

parameter for both Wilcoxen's methods turned out to be more complicated.
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Heuristically the Gauss-Seidel method should converge faster than the Jacobi
method, but we obtained the opposite results when we used the same relaxation
parameter function for both methods. The reason for this is probably purely acciden-
tal. The relaxation parameter function was accurate for the Jacobi method but too
small for the Gauss-Seidel method in the few first iteration rounds and the Jacobi
method reached the neighbourhood of the fixed point in fewer iterations. By using
different relaxation parameter functions we were able to make the Gauss-Seidel

iteration converge faster.

In the following table we used the following relaxation parameter functions. For the
Jacobi method we had a minimum of 0.5 and 0.02*i and for the Gauss-Seidel
method we had a minimum of 0.5 and 0.1*i. When we used the Jacobi relaxation
parameter function for the Gauss-Seidel method the convergence was usually one

iteration round slower compared to the Jacobi method.

Table 2.4: Required iteration rounds for convergence of the different Fair-Taylor algo-

T
rithms. Criterion for convergence ), (ce—co)/T <1107,
t=1

Error in initial Normal Fair- Wilcoxen's Wilcoxen's
values Taylor (Jacobi)  Fair-Taylor Fair-Taylor
(Jacobi) (Gauss-Seidel)
2% 68 55 52
4% 72 58 54
10% 76 61 55
20% 77 62 62

Table 2.4 indicates that the Wilcoxen's modified methods do not offer any signifi-
cant advantage compared to the normal Fair-Taylor algorithm. It is therefore sensi-

ble to try the normal Fair-Taylor method first. At least in problems with small
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dimensions, if the normal Fair-Taylor method fails to converge the algorithm written

for it can be used to write Wilcoxen's Fair-Taylor algorithm.

In our opinion that name the normal Fair-Taylor algorithm is somewhat surprising.
In most respects we found it to be Jacobi or Gauss-Seidel fixed point iteration

method.

2.4 Comparison of the performances of the shooting and the Fair-Taylor

algorithms

Comparison of the bounded and multiple shooting methods with Wilcoxen's Fair-
Taylor method in the case of models such as the optimal growth model favours the

shooting methods.

We discuss overlapping generations models in the next chapter. In these models the
optimal intertemporal relations in the control variables are not so simple, as we will
see. Therefore the shooting methods are very difficult to apply. The normal Fair-
Taylor method also has some other advantages compared to the shooting methods:
it is easy to apply and it converges quite often, at least after some work with the
initial guesses. It is also widely used, for example Auerbach & Kotlikoff (1987)
arrange their equations of the optimal behaviour more or less as suggested by the
Fair-Taylor method and use Gauss-Seidel iteration method to solve the system of
equations. However they themselves state that they apply the Gauss-Seidel method
and not the Fair-Taylor method. Thus we do not attempt to differentiate strictly

between the Gauss-Seidel and the normal Fair-Taylor method here.

After applying all these methods we have come to the conclusion that for calculating
the transition paths between steady states the plain Gauss-Seidel or Jacobi methods

with a relaxation parameter are those to be used first. The equations to be iterated
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are usually contraction mappings, at least when a relaxation parameter is used. In
this way these iteration methods should converge. If these methods fail to converge,
we advocate leaving the equations as suggested by the normal Fair-Taylor method
and replacing the Gauss-Seidel or the Jacobi method by Newton's or gradient

methods.
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3 TWO LARGE-SCALE DYNAMIC GENERAL EQUILIBRIUM
MODELS

In the preceding chapter we discussed several numerical methods for solving the
optimal growth model. In this chapter we replace the optimal growth model by two
more sophisticated models’®. We call these models the long-lived agents model and
the overlapping generations model. These models separate households and firms and
allow separate payments to the owners of labour and capital. In addition to calling
these models the long-lived agents model and the overlapping generations model
these names are also general names for different structures for modelling the life
time behaviour [Sargent (1987)] and economic growth of households mathematically
[Azariadis (1993)] and [Barro & Sala-i-Martin (1994)]. Both these structures have
been widely used in economic textbooks but policy simulation models of a particular

country usually applies the overlapping generations structure.

We have divided this chapter into five parts. In the first subsection we briefly de-
scribe the long-lived agents model. In the second subsection we formulate dynamic
first-order conditions of optimal behaviour. They include the initial and the final
steady states and the transition path between them. Thirdly we analyse how techno-
logical innovation affects wages and interest rates, the demand for labour, the utility
of households and so on. We do this by solving the model using the normal Fair-
Taylor method with the Jacobi iteration method. Fourthly we describe differences
between the long-lived agents model and the overlapping generations model and
derive the first-order conditions of this model. Finally we solve a policy simulation
with the overlapping generations model using similar technological innovation as in
the long-lived agents model. We use Jacobi iteration to solve the overlapping gen-

erations model.

'  The models in this chapter are self-designed and based on the model used by Auer-
bach and Kotlikoff in "Dynamic Fiscal Policy".
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3.1 Description of the long-lived agents model

Consider a non-stochastic, discrete-time, one-good production economy consisting
of a large constant amount of households and firms. The firms use capital and labour
as inputs to produce the good that can be used for consumption or investment. The
households are the economic agents in this model because in addition to their own
economic actions they run the firms as the owners. All households live identical T
periods. Furthermore we assume that all households are born and die at the same
time. We also let T run to infinity. So the time horizon is identical to the optimal

growth model and we avoid formulation of the "end of the world".

There is no public sector in the economy we model. The economy is also closed, so
there are no foreign countries to do trade with. The economy is at the (initial) steady
state. At the beginning of the first period, a technological innovation changes the
production function in such a way that the production process becomes more capital-
intensive and less labour-intensive, the other input good for production. Simultane- '
ously production becomes more efficient. We use this model to study the conse-

quences of this innovation.
311 Household behaviour

The households are endowed with 24 hours of leisure each day. They can intertem-
porally exchange their leisure for the consumer good by going to work to earn the
amount of the good they want to consume. Each household makes economic actions
so that it maximises its utility over its life-time. The utility is an intertemporal func-
tion of consumption abilities and leisure. Each household has its own utility func-
tion, but to be able to solve the model numerically we must replace the households
by a single average household, which behaves as if there were more household in

the economy [Sargent (1987)] and [Perraudin & Pujol (1991)].
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Thus the household maximises by exchanging intertemporally its endowed leisure (1)
for the consumption good (c) so that its intertemporal utility achieves the maximum
value. The household's utility function takes the following form:

T (1-1/0)
1 1 a“up)

=T 2 (1-1/8)D "

[3.1] U=

where u,is defined as

= 051-1/;)) N a01£1~1/p)).

This is the normal CES function [Chiang (1984)] and [Varian(1992)] of consumption
and leisure, where ¢, and 1, are respectively consumption and leisure in period t.
Symbols a ,a,, d and r are taste parameters that allow of several different tastes and
individual behaviour to be presented. In the model they are exogenous and therefore
we call them exogenous parameters. These parameters should be estimated from the
daté of the economy we aim to model. The discount rate d represents the pure time
preference of the households. The smaller the value of d, the less the household will
consume now compared to future. We will discuss the effects of a, a, and r when

deriving the first-order conditions for the household.

More complicated forms of household utility functions could include the disaggrega-
tion of the consumption goods. However, this complicates the solution method and

in particular the parameter estimations quite considerably.

To avoid infinite borrowing, so referred as the Ponzi-game [Barro & Sala-i-Martin
(1994)] in economic literature, we introduce a budget constraint. Since there is no
social security or taxes, the budget constraint simply prevents households from con-

suming more during their lifetime than their total income from labour and capital.
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So the present value of consumption cannot exceed the sum of the present value of

earning and the present value of capital gain.

13.2] i wi(l-l)-c: _ 0
(1)

where r, and w, are respectively the interest rate and wage rate in period t. Because
household has no bequest motive and because of the structure of the CES utility

function:

ﬂ>0 ou

E AE>0V020/\120

optimal behaviour is to consume everything before dying, hence the equality sign in
equation [3.2]. More binding forms of budget constraint can prevent houscholds
from borrowing against their future income. And if the public sector existed, it

would include taxes and social security.

We must also scale leisure so that there cannot be a negative labour supply. So lei-

sure and labour time must add up to all time (scaled as one time unit) in each period.

The question as to how long each period is cannot be answered with accuracy in
models that use the long-lived agents model structure because household has an

infinite life horizon [Barro & Sala-i-Martin (1994)] and [Sargent (1987)].
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3.1.2 Optimal behaviour of the firms

Both in the long-lived agents model, and the overlapping generations model we have
one production sector and a closed economy. By making the first assumption we
indicate that same good can be either consumed or invested. By making the second
assumption we avoid the formulation of exports, imports and exchange rates. We
also assume that all goods produced in period t must be consumed or invested in the
same period. The firms operate in a competitive manner producing a good, for
which there is demand from the households. In the production sector we do a similar
aggregation to the household sector. We let one average competitive firm répresent
all the firms. The firm produces the single good by using labour and capital (the
goods invested), which are supplied by the household. The prices the firm pays to

the household for labour and capital are determined endogenously.

We use a CES production function similar to the household's utility function to cal-
culate the output of the firm as a function of two inputs: capital (K) and labour (L).
The CES production function takes the following form:

(1-1/g), L

[3.4] Fo=e1(eoK{ " + (1 -go)L )7z

where F,, K, and L, are output, capital and labour at period t respectively. e, is a
scaling constant. The technological progress we simulate means that at the beginning
of the period one technological innovation increases e¢;, and simultaneously produc-
tion becomes more capital-insensive, which increases e,. The effects of the parame-

ters ¢, and e on output will be discussed later in this chapter.

The profit of the firm in period t is:

[3.5] ny=FewiLe1.Ks,
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where w, and r, are the wage level and interest rate in period t respectively. In a
fully competitive economy the firm's profits (p,) are zero in each period. In brief
this is because if the competitive firm tries to maintain above market prices nobody
will buy its output and if it tries to pay below market for its inputs, nobody will
work for it or lend capital to it [Varian (1992)] and [Barro & Sala-i-Martin (1994)].
We set the price of the output good as the numeraire. Thus the price of capital and

labour are calculated as a function of the price of the output good in each period.

Competition requires that employees are paid according to their marginal product.

This allows us to derive the wage level from [6a] a—ITEL = 0 in each period t. Equation
t

[6.a] implies that the firm will hire more labour (by paying higher wages) as long as
the additional labour produces only the value the firm must pay for it'". The assump-
tion of a fully competitive economy also requires that firms can adjust their labour
without an additional cost and that markets are fully competitive. In other words it
means that each employee negotiates his wage without any restrictions such as a
minimum wage. In this case all leisure time is voluntary and there is no unemploy-
ment. Thus each individual is able to supply the type of labour demanded by the

firms without education.

We can derive the interest rate in the same manner as the wage rate. The firm can
adjust its capital without an additional cost and there is no additional user fee of
capital. Thus the case interest rate r, in each period is the solution of the marginal

productivity of the capital to the firm [6b] z;ﬂl(t =0.
t

n Because the CES production function [3.4] is concave in respect of labour (L) (and
also in respect of capital when we speak of the interest rate) this point exists.
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3.1.3  Market equilibria

To satisfy the market equilibria, production in each period must be equal to con-
sumption plus investment in that period. So we do not model any exogenous depre-

ciation rate.

[37] Kt+1 = Kt + F(Kt,Lt) —Ct

3.2 The Kuhn-Tucker necessary and sufficient conditions for the
long-lived agents model and the role of the exogenous parameters

in the utility and production functions

In this subsection we derive the necessary and sufficient conditions for optimal be-
haviour in the long-lived agent model under conditions of perfect foresight. We do

this by using the Kuhn-Tucker conditions, which differ slightly from the recursive

dynamic optimisation technique we used to solve the optimal growth model in the

preceding chapter.

3.2.1 The household

We maximise [3.1] with the budget condition [3.2] and the leisure condition [3.3 a]
by writing the Lagrangian function and applying the Kuhn-Tucker necessary condi-

tions for optimality [Bazaara & Shetty (1979)]:
Min -U

i Wi (tl—lt)—ptct ~0
=1 TT(1+r,)

s=2

subject to

and 1;—130
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The Kuhn-Tucker necessary conditions'? for optimality are:

[37] V(—U(Ct, |t)) + KVBC(Ct, |t) + utVLB(Ct, |t) =0
(3.8] wmLB(Cr, 1) =0
[39] Mt >0 ’

where BC, LC, A and p, are respectively the budget and leisure constraints and La-
grange multipliers associated to them. The Lagrange multipliers are also referred to
respectively as the shadow price of the lifetime budget constraint and the shadow
wage. In addition to the necessary conditions, the Kuhn-Tucker sufficient conditions
[Bazaara & Shetty (1979)] are also satisfied, because the CES functions are quasi-
concave (-U is quasi-convex) with all positive values of capital and labour [Chiang
(1981) pp.427], and because both cc;nstraints are linear both in terms of C, and 1.
Mathematically the budget constraint is not linear in terms of 1, because the wage
rate is a function of leisure, w,=w,(K,L(1)), but the household does not take into
account in its optimisation problem the fact that its supply of labour effects its wage
rate. In this way we prevent the single household from behaving as a monopoly in

selling labour and capital.

After a little manipulation equation [3.7] attains the forms:

(-1/0)

1 up _-1/p 1
3.7 a] — = M——)
A-1gent (1 +r,)
[3.7 b] —L uém ol P = M)
(1-1/8)®D 11(1 rr.)

where w* is defined as:

?  In economics literature necessary conditions are usuaily first-order conditions and

similarly sufficient conditions are second-order conditions.



45

e I1 (1+r15)
W: =Wt+__——s=2;\/

Dividing equation [3.7 a] by [3.7 b] leads to an equation of the optimal relation of

contemporaneous consumption and leisure:

Q_(Oto\—p
[3.11] L kw:) .

Equation [3.11] clarifies the meaning of two the taste parameters o, and p. The pa-
rameter p determines how responsive the labour supply is to real wage of the same
period. The term o, represents the preferences of the household to leisure relative to
consumption. An increase in o, increases | and if o, is held fixed, the percentage
change in the leisure consumption ratio, l/c,, in respect of change in the wage rate is
equal to p. Equation [3.11] allows us to use one control variable only - consumption
- and calculate optimal leisure from [3.11]. Note that this is only valid if we have an

interior solution in respect of leisure, thus 1, <1 in all periods.

The consumption path is derived by replacing L, in [3.7 a] by [3.11] and dividing
[3.7 a] by itself lagged one time period:

[3.12) Ce =( 1 +og(wi) ! )ﬁ((l +1))"
' Cor \U+olwi)™) \1a+8)/

and for leisure by replacing consumption variables (c) in equation [3.12] by the

values of [3.11].

= -0 * =
e e (R
1 + OLOWt_l prl (1 + 8) Wt—l
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Equation [3.12] shows the effect of the last remaining taste parameter o.. This repre-
sents the intertemporal elasticity of substitution of consumption across various peri-
ods of the household's life. For example behaviour of the household related to a real
wage rate increase in time causes two things. First consumption increases over time
and secondly leisure decreases during lifetime, because the household shifts its la-

bour supply to later years to take advantage of higher wages.

Note that in this chapter we derived the first order conditions by maximising the
utility function [3.1] subject to the budget constraint [3.2] and we applied the Kuhn-
Tucker optimality equations to the Lagrange equation. We would have had the exact
first order conditions, if we had maximised utility [3.1] with respect to market clear-
ing equation [3.7] as a costate equation and had applied the first-order conditions of
discrete recursive dynamic optimisation [Kendrick (1981)] and [Kirk (1970)], as we
did with the optimal growth model in chapter 2.

3.2.2 The firm

The fully competitive markets force the firm to pay wages and interest according to

solutions of equations [3.6 a] and [3.6 b], which are:

3.14]  we=g:(1-go)eoK! ™ +(1 - o)L ™)

B15]  re=eise(ek( " + (1 -so)L ()i,

Note that the household considers w,and r, to be given constants, because it "thinks"
that there are a large number of households and the household considers that its own

labour and savings decisions do not effect wage or interest rates.
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To understand the meaning of the parameters €, €, and ¢, it is useful to maximise
[3.5] in respect of K, and L, without replacing w, and r,. This leads to a relation

similar to {3.11]:

pig Lo (m0-s9)

Kt - WtEo

As with the contemporous consumption leisure equation [3.11], we can see from the
contemporous capital labour equation of the firm [3.16] that € is the elasticity of
substitution in production, representing the percentage change in the ratio of K/L,in
respect of a percentage change in the wage/interest ratio. If the interest/wage ratio
rises, the firm is more willing to employ. In reality firms also face costs in adjusting

their capital and labour as well. We have not included this fact in these equations.

The parameter €, represents the intensity of capital use in production. The higher €,
is, the smaller the labour-capital ratio the firm has. The parameter €, is a scaling

constant.

33 Technological innovation: policy simulation with our long-lived

agents model.

3.3.1 Description of the algorithm for the numerical solution

We solved the model in three parts. The first part was the initial steady state, the
second the final steady state and the third the transition path in between. This divi-

sion is very common in economic literature.

In the initial and final steady states the derivatives of K, L and ¢ are zero. So we had
to iterate K, L, ¢ and p to find a solution to the following fixed point equation

system.



48

[ T+adw) P ) (A 1))

€= (1 + ocg(w:_l)“’*lj ((1+9))

o p
1_Lt=lt=( 0*) Ct

Wi

[3.17 a,b,c,d]
Kt = Kt + F(Kt, Lt) - Ct
ut(lt - 1) = 0 .

We solved the steady states in the following way. We set the exogenous parameters
to the values before a technological innovation and assume I, <1 for all periods t.
According to the Kuhn-Tucker theorem this implies that all the Lagrange multipliers
(1) associated with inequality constraints 1, <1 are zero. Next we guess K, L and c.
Then we used normal Jacobi fixed point iteration to achieve convergence. After each
iteration round we checked, whether our assumption I, <1 held, and if not the itera-
tion was terminated. The same iteration process was performed with the exogenous

parameters after the technological change.

We solved the transition path with knowledge of the value of capital in the initial
steady state and the values of consumption and the labour supply in the final steady
state. Again we assume that |, < 1. We set T at 40 periods. We guessed the values
of ¢ and L from period 1 to T-1. Then we solved the values of w, ¢ and K, note

K,=K,, using equations [3.14],[3.15] and [3.7].

Finally we apply equations [3.11] and [3.12] to achieve the next round of guesses
for the values of ¢ and L. In every iteration round we also checked that 1, were less
than one for every period, so that our assumption of the interior solution, p,=0,

would hold during the iteration process.
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For the initial steady-state calculations it takes about 50 iterations to converge in
terms of eight decimals. The final steady state only takes about 30 iterations to con-
verge because we can utilise the initial steady state values as initial guesses and we
used a higher relaxation parameter. When solving the transition path we used the
final steady state values as initial guesses, with the exception of the first few peri-
ods, where we use linear combinations of initial and final steady state-values. We
used a very small constant relaxation parameter. We found the vectors K, ¢ and 1
that satisfied all conditions of optimality after very many iteration rounds, but even
in the Windows environment this was not very time consuming. We will discuss the
uniqueness and stability of the steady states and the transition path in the next

chapter.

3.3.2 The simulation results of a technological innovation with the long

lived agents model

We use the following parameters (table 3.1) in the model. With the exception of the
scaling constant they are those estimated by Kenc et al. (1994) for Finland using
micro- and macroeconomic time series data for Finland dating from the early 1960s
to the early 1990s. Just to take one example, the regulations that limited households
from borrowing from the banks have changed entirely between the years 1960 and
1992, so these exogenous parameters must have "fairy” high confidence intervals.

The confidence intervals, however, were not included in Kenc et al. (1994).

Table 3.1: The parameter values of the long-lived agents model.

Parameters of Value Parameters of the  Value (before  Value (after techno-
the househoid firms technological logical innovation)
innovation)

€ 0 -0
1
€ 1 1

» o { KR
(=T N -
o
g
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The technological innovation increases utility immediately, because the innovation
increases €,, which can be utilised immediately with existing capital and labour.
Figure 3.1 shows how utility increases during the transition path. The increase in
utility after the initial "shock" comes mainly from changes in g,. Leisure increases
as the capital/labour ratio converges to a new steady state. The main difference for
computable static models® can be seen in the transition path of the interest rate. This
jump is not visible in static models. To really benefit from time spent solving transi-
tion paths in order to analyse how, for example, the technological innovation affects
to the utility of households born at different periods, we should use the overlapping

generation model structure.

192 7

—-a—n—8
.
-

1.08 -
108 -
.08 -

1.02

...... 4 s + :
Uttt 3t

Figure 3.1: Development of utility without discounting to period zero. Initial steady state
= 0.

A model where only initial and final steady state solution are calculated.
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The other variables converge to the final steady state, as figure 3.2 shows.

0 5 0 15 20 % 30 3% 4
period

Figure 3.2: Transition path of state-, control variables, labour supply and wage and interest

rates.
34 The overlapping generations model

The overlapping generations model brings the mathematical relations of the long-
lived agents model closer to reality by letting new households be born and especially
die. Thus at any period there are individuals of different ages living in the same
economy. The idea of overlapping generations was introduced by Diamond (1965)

and Samuelson (1957).

The concept of overlapping generations is a key structure that permits the study of
pay-as-you-go'* pension systems for example. Working generations accept the sys-
tem because they trust that they will be paid when they will become old. The over-
lapping generations model is a good tool for analysing whether this trust is well
founded. The trust may be called in question if the population or the economy is not
growing or the economy is borrowing major amounts of its current spending from

foreign economies.

“  Pension payments by current working generations are paid to current old generations
instead of accruing for the payers themselves.
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For the model period 1 is referred to as the period where the initial steady state is
breached. Generation 1 is born in period 1 and so on. Figure 3.3 illustrates the over-
lapping generation structure. In each time period one generation is born and one
dies. Thus each generation optimises its own utility without concerning itself without

other generations.

1 2 3 4 time period AN
Ilgeneration 1 generation /
3
2 generationl generation |  [.... infinity
3
3 generationl generation |..... infinity
3
4|generation -2 generationl |  |.... infinity
generation generationl |..... infinity
-2
age: generation- [ | | infinity
2
periods generation- |  [.... infinity
2
\ / death death death death death

Figure 3.3: Illustration of the age-time dimensions of the models with overlapping genera-

tions structure. In period 3, for example, the generation 3,2,1,0,-1,-2,-3 are alive.

In this chapter we describe a simple overlapping generations model and study how
equations of first-order conditions must be arranged to be able to use the Jacobi

iteration method described carlier.
34.1 Description of the overlapping generations model

Assume that in each period one unit of households is born and each household lives
two periods. No household has initial capital, implying that the households do not
leave any bequests. We use the same variables as in the long-lived agents model

except that we add one more variable, namely labour efficiency, e, which is a



53

function of individuals' age in terms of periods, not time. The labour efficiency
variable permits young individuals to have different labour productivity from that of

old ones.

We also add a lower index to show, which generation the variable or the parameter
refers to in any period. For example ¢, refers to the consumption of the old gen-
eration living in period t. After introducing the labour efficiency variable, e, and
households that die after two periods, the maximisation problem of the household in
the long-lived agents model becomes to the maximisation problem of the mortal
households in the overlapping generations model. The exogenous taste parameters
and the exogenous parameters in the production function have the same meaning as

in the long-lived agents model.

2 (1-1/a)

_ 1 1 (1-1/p)
[3.18] Max U—(I_I/a)g(l_l/a)(t_l)ut

where u, is defined as

(1-1/p) (1-1/p)
u; = (¢ + Ol ).

We define the budget constraint so that economic transactions take place at the be-

ginning of each period. We can write the budget constraint for each generation in

the following way:
[3 19] (1 + rs)(wtet,young(l - lt,young) - Ct,young) + (Wtet,old(1 - 1t,old) - Ct,old) = 0

Thus each generation has its own optimisation problem to maximise [3.18] under the

budget constraint [3.19] and the inequality constraint for leisure [3.3.a] 1, <1 for all

periods.
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The production sector is identical to that in the long-lived agents model. The firm
does not die, but the owners do. Thus the optimisation problem of the firm is identi-
cal to that of our long-lived agents model. The results determine the wage rate and
the interest rate. The only difference is in the definition of the labour input. In the
long-lived agents model it was L,=1-1. In the overlapping generations model it is:

Lt = eyou,,g *( 1 'lt,young) + €old *(l -lt,old) .

34.2° The Kuhn-Tucker necessary and sufficient conditions for opti-

mality in the overlapping generations model

Because the households only live fir two periods the recursive optimisation method
is of no benefit. The normal Kuhn-Tucker method gives the optimal consumption

path. It is very similar to long lived agents model.

P
[3.20] Cood ( 1+ ag(W:,old)_PH ] (A +r))”

Ct—l,young - 1+ ag(wr—],young)_pﬂ k(l + 6)) ’

where w* is now defined

},J.t(l +rs)
- _)\, — .

W = W€ +

When we solve the model by assuming the interior solution with regard to the lei-
sure constraint 1, <1, all the Lagrange multipliers (1,'s) are zero. Equation [3.20]
implies that the consumption of the young at period t-1 is related to the consumption
of the old at period t. This causes problems if we use one of the shooting methods.
If the household lived for more periods, it might be a sensible idea to use shooting
methods, where each generation's control variable, the consumption, is a separate

dimension.
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In steady states consumption is only a function of the age period, and not of the time
period. In steady states the consumption of the old generation is a function of the
consumption of the young generation alive in the same period. The same genera-

tional relation is naturally true for the steady state leisure value.

We obtain the optimal ratio of contemporaneous leisure and consumption as we did

in the long-lived agents model. The only difference is the addition of labour effi-

ciency.
391 L = ( Olo ) P o ut
[3.21] =\ Fwy ) Cts (interior solution)

where the index s can either mean young or old age. In our overlapping generations
model the young generation alive inherits no capital, so the capital of the economy is
owned by the old generaﬁon alive. The old generation alive, however, spends its
capital before it dies, and all the input capital for the firm at period t must be saved
by the young generation alive at period t-1. The market-clearing equation for our

overlapping generations model is:
[322] I(t+1 = (1 + rt) * ((1 - 1t,young) * €young * Wt,young — Ct)

Owing to the same CES function structures as in our long-lived agents model, the

sufficient conditions are also satisfied, as they were in the long-lived agents model.

343 The steady-states

o
The following equations must be satisfied in the steady-states of the overlapping
generations model. The derivative of the capital must zero, implying that the young

generation alive must save an amount of capital identical to that owned by the old

generation alive. So at the steady states the market clearing equation is
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[323 a] Kt = (1 + rt) * ((1 - lt,young) * €young *we— ct)

The consumption of the young generation alive and the old generation alive and the
ratio of contemporaneous leisure and consumption of both age groups must satisfy

the optimality conditions of the maximisation problem of the household.

E
Cioa [ 1+ OL(‘;(W:,old)_‘yrl J L +r))”

Ceyoung A1+ ocg(w:young)“"“ \(l + 8))

C oun, —p
[3.23 b,c,d] 1‘” g=( %o )

*
t,young w t.young

-p
C t,old Olo
~tod _ | &
Lt,ola Wi old

The budget constraint for each household must also be met:

[3.23 ¢] (1 + I't)((l - lt,young)eyoungwt - Ct,young) + (1 - 1t,old)eoldwt —Crold = 0

So we have a static problem with five equations [3.23 a...e] and five unknowns
values of 1 and ¢ for the young and the old and the capital of the steady state econ-
omy, which is equal to savings of the young multiplied by the steady-state interest
rate. Again we assumed an interior solution, thus 1, <1 for all time periods and for
both generations alive. This kind of problem can be easily solved by Newton's
method for example. If there were disaggregation of the goods and the generations
lived for more periods, the bounded or the multiple shooting method might be

suitable.
344 The transition path

For the transition path all generations maximise their utility at the beginning of the

first period, except for the old generation alive in the period when the technological
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change takes place. They have to remaximise their consumption and leisure for their
last period. Note that the only optimising decision which the old generation can
make, is to select the optimal ratio of consumption and leisure during the last period
of its life. Let us say that the change takes place at the beginning of period 1 and
that all the effects have taken place by period T. Thus we assume that the dynamic

system of our overlapping generations is at a steady-state after T periods or earlier.

After this assumption the mathematical problem can be characterised as follows.
Find the vectors {C; oumg --Cryoung)> Uiyoune -+ ITyoungls Uiowd ---lrowy and the scalar
Cy0a SO that (1) the budget constraints are satisfied for generations born from period
0 to T: (2) the optimal choice of intertemporal consumption is satisfied for genera-
tions born from period 1 to T: (3) the optimal choice of contemporaneous
consumption/leisure ratios is satisfied for the generations born from period 1 to T
both for the old and the young: (4) the capital at period T must be equal to the capi-
tal of the separate final steady-state calculation: (5) all leisure values are strictly

under one. Thus we have 3T+ 1 unknown variables and 3T +1 equations.

35 Technological innovation: policy simulation with our overlapping

generations model

3.51 Description of the algorithm for the numerical solution

We solved the model's steady states using Newton's method and the transition path
by arranging the equations as suggested in the normal Fair-Taylor method and ap-
plying the Jacobi iteration method with a relaxation parameter. We constructed the

transition path algorithm in the following way:

1: We set T=25, the relaxation parameter y=0.01 and we assumed an interior solu-

tion with respect to leisure, which implies p,=0.
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2: We guessed the values K,... K, 1 jque- Jryoung @04 1 ga. - Lr o
3: We calculated the values of L, w and r for all periods and generations.

4: We calculated c, ,,,, and ¢, ;s from capital accumulation equation [3.22]:
Kt+1 = (1 + rt) * ((1 - lt,young) * €young * Wy — Ct,young)

5: We calculated c, .4, with the exception of c, .4, from Euler equation [3.20]:

p—o

Ceold _ [ 1+ 0L(F))(W:,old)—pﬂ ] ;((1 + rt)\ *
1rabwl, o )? ) \(1+8))

C t—1,young ,young

6: We used equations of the optimal ratio between contemporaneous leisure and
consumption and the budget constraint for the new values of K and 1. Thus the set of

equations we solve by applying the Jacobi iteration method is:

[3.23 a,b,¢]

P

i+ Go ‘ ii g i

tyoung = [ . i i J Ceyoung (Kt Kipr 5 Lt youngs L ora)
Wt.young(Kt s 1t,young ’ It,old)

( i
" i i i
Wy o1d (Kt Lt young » lt,old)

i+l
told —

p
i i i i i i
Ct,Old(Kta t—1 5 1t,young s 1¢,0ld » 1t—1,young3 lt——l,old)

i+l _ i i i i i i * iqi i i
Kt = Ct,old(Kt, Kt—l ’ lt,young’ t,old?> lt—l,young’ 1t—l,old) - Wt.old(Kt’ lt,YOUﬂg’ lt,old)(1 - 1t,old)

7: We used the relaxation parameter and went back to step 3 until we achieved

convergence.
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We chose final steady-state values for the initial guesses and had a constant relaxa-
tion parameter (0.01). This led to convergence, but many iteration rounds were

needed to calculate the transition path between the steady-states.

3.5.2 Simulation results of a technological innovation in the overlap-

ping generation model.

The technological innovation we simulated with the overlapping generation model
was similar to the long-lived agents model, except that the scaling constant €, was
ten times as high. Thus the exogenous parameters are from Kenc et al. (1994).

Table 3.2: The parameters of the overlapping generations model.

Parameters of Values Parameters of the  Values (before  Values (after techno-
the household firms technological logical innovation)
innovation)
Oy 4 € 0 0
o 1 €, 1
p 1 g, 10 12
3 0

The technological innovation increases utility for all the generations. The increase is
naturally the smallest for the generation born at period zero, because the change
affects it only in its last period and it was not even able to prepare itself for the
change. Therefore there was no perfect foresight in that generation's savings

decision.

The interesting feature of the development in utility is the fact that the generation
born in period 2 has higher intertemporal utility than its successors and predeces-
sors. The reason the higher utility compared to the successors is the higher interest
rate when it is young. The generation born in period two can save almost the same
amount with less work than the generation born in period 3, due to the higher inter-
est rate. The firm is still demanding more capital in period two and it is willing to

pay for it. The generation born in period 1 has a higher lifetime utility compared not
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only to its predecessors but also to all of its successors. There are two reasons for
this. It has the highest interest rate for its savings and its predecessors have to work
"harder", because the lower technology did not allow them to create enough savings
for their consumption in period one, leaving more leisure for the generation born in

period one.

History dictates lower interest rates for the generation born in period two, which
will not be fully compensated by a higher wage rate in that period. The intertempo-
ral utility of each generation is shown in figure 3.4, The transition path of the inter-
est rate is similar to that in the long-lived agents model. The total labour supply first
decreases but then temporarily increases in period 2 as figure 3.5 shows. The reason
for this is that the generation born in period 1 prefers to transfer its labour to period

2 and enjoy higher wages, as seen in figure 3.6.

9.8 T

9.8
43 1

932 1 l
434 /
9.36 1

9.38
94
842 +

944
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0 1 2 3 4 65 B 7 8§ 9 10 11 12 13 W 16 16 17 18 19 20 21 2 20 24 25
poriod of birth

Figure 3.4: The values of the intertemporal utility of each generation after the technologi-
cal innovation compared to the situation without the technological change ( straight line

below).
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period

Figure 3.5: Transition paths of the labour supply and the interest rate.

Figure 3.6 shows the accumulation of capital, which is quite similar to the accumu-
lation of capital in the long-lived agents model. Figure 3.6 also shows that leisure
for the young generation alive "overshoots” because in periods 2 and 3 the interest
rate is higher and the wage rate is lower than in the equilibrium level of the final

steady state.

We can see from the figure 3.7 that in addition to leisure, consumption is also
higher for the old than the young, which might seem a little odd considering taking
into account the positive discount rate. The reason is that the interest rate is higher
than the discount rate. Figure 3.8 shows how the goods produced in each period are
divided between consumption and additional investment ( the area between the two

curves).
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period

Figure 3.6: The transition paths of capital accumulation and leisure of the old generation

alive and the young generation alive in each period.

period

Figure 3.7: The transition paths of the wage rate (divided by 10 for presentation purposes)

and consumption of the old generation alive and the young generation alive in each period.
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248 Ti ~—0— Production

24

235

Figure 3.8: The transition paths of total consumption compared to production during each
period. The area between total consumption and production is the additional investment in

production ( more than the previous generation).

3.6 Relative merits of the long-lived agents model and the overlap-

ping generations model.

The formulation of human life and human behaviour is much more realistic in mod-
els with overlapping generations structures. The long-lived agents model seems to be
used mainly in economic text books. However, we believe that the long-lived agents
model structures has its place in policy simulations, which concentrate on production
issues and where households are seen only as a source of labour and capital supply,
for example, the growth theory [Barro & Sala-i-Martin (1994)]. But when concen-
trating on issues such as utility distributions between generations, for example, gen-
erational accounting, the overlapping generations structure is superior to the

long-lived agents model.
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4 UNIQUENESS AND STABILITY OF THE DYNAMIC GEN-
ERAL EQUILIBRIUM MODELS

In this chapter we discuss several methods for analysing the conditions of stability,
the uniqueness of the transition path and possible bifurcations of the solutions to the
general dynamic equilibrium models. We also review the comparative statics analy-
sis, which is an additional outcome of the bifurcation theorem. At the end of the
chapter we perform a sensitivity analysis on our overlapping generations model

described in the previous chapter.

The methods we review and use in this chapter are divided into four parts. Firstly
we review the theory of stability and the uniqueness of the transition path to the final
steady state, Secondly we apply this theory to our overlapping generations model to
check whether we have a unique saddle-point solution. Thirdly we review the theo-
ries of bifurcation, comparative statics and the sensitivity analysis. Finally we apply
the sensitivity analysis to our overlapping generations model and discuss what it

reveals about the stability of the overlapping generations model.

Because of non-linearity we restrict our reviews and analyses to the vicinity of the
final steady state, which was calculated for our overlapping generations model in the

previous chapter.

4.1 A Method for analysing saddle-point stability around the final
steady state

Our analysis for determining whether there is a unique transition path to the final
steady state is based on assessing whether the dynamic system is saddle-point stable
around the final steady state. Consider a two dimensional space: consumption by the

young (C, . ) and the capital (k).
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If the system

[ct+l,y’kt+1] =F(ct,y’kt)

is a saddle-point around the final steady state, the transition path is unique. If the
system is a source and non-stable, generally there will be no convergence to the
final steady state. If the system is a sink (stable) there is a continuum of consump-
tion possibilities for the young generation that maximises their lifetime utility with
given predetermined capital and still the economy would converge to the same final

steady state [Laitner (1984) and (1990)].

Figure 4.1 illustrates the properties of a saddle point . Let us suppose that the econ-
omy is at the initial steady state with the capital at the level where the consumption
axis crosses capital axis. Then the technological innovation takes place. The level of
capital (state variable) is determined by history, but consumption (control variable)
is not determined by history. In the case of a saddle point there is one and only one
level of consumption (point a) that leads to the final steady-state. If at that moment a
different level of consumption is chosen, for example, point b or point d, the econ-
omy does not attain the steady state point (SSP). If the system is a sink there is a
continuum of points that lead to the steady state point (SSP), i.e., all points in be-

tween point b and point d.
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K
K

Figure 4.1: Phase diagram of a saddle point in Kc-plane.

A frequently used method for examining the stability properties of a discrete non-
linear system is linearization around some point, usually around the fixed point of
the system. The disadvantage of the method is that the results are valid only in the
neighbourhood of the point of linearization. The radius of the neighbourhood is a
function of the error term in the first-order Taylor approximation of the system. An
alternative method, where approximations are not needed is, Liapunov's method.
But the construction of Liapunov's function for dynamic systems such as the over-
lapping generations model is very difficult. For that reason we use the linearization

method, which is briefly described here.

Consider a discrete dynamic system, similar to equation system [2.7]:

[4.1] X+1 =F (X,p)

where x,=[k,c,,]'. Note that in equation [4.1] there is a relation c,,, ,=F(k,c,,),
which is different from the optimal relation of the consumption of the old generation

at period t+1 and the consumption of the young generation at period t,

Cro=F(k,c, ). We developed this optimal relation in the previous chapter. In
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principle we can use the same method to obtain the optimal relation c,,, ,=F(k,c,,).
We could write the first-order conditions for the young at period t and t+1 and
divide them side by side as we have done in the previous chapters. But because both
generations have their own budget constraints and a separate Lagrange multiplier
associated with it, this leads to two additional variables and the relation is not use-
ful. It is also very difficult or even impossible to study the stability of the steady

state of a system, where every generation makes the own dimension in addition to

capital.

The vector p represents all the exogenous parameters of the model, for example, the
elasticity of substitution in the household's utility function. In this subsection we
keep the p vector constant. In the bifurcation and the sensitivity subsections we ana-

lyse how the error in the exogenous parameters of the p vector effect the final steady

state.

The stability properties of non-linear systems can be analysed in the neighbourhood

of the steady-state x* (x*,_, = f(x*)) by using Taylor approximation.

[4.2] Xee = X¢ + %f— w(Xe— X¢)

where the Jacobian is

OF _ OXer1

axlx* —( axt ) ’
According to the Hartman-Grobman theorem [Azariadis (1993)] equation [4.2] is
topologically equivalent to [4.1] up to a certain distance around the fixed point x*.
This allows us to analyse the stability properties of equation [4.1] by examining the

eigenvalues of the Jacobian in equation [4.2].
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For a system such as our overlapping generations model in the previous chapter we
can simply copy the dynamic equation for capital accumulation, but the consumption
of the young at period t+1 cannot be solved in the closed form as a function of the
consumption of the young at period t and capital at period t, namely in the form

Ci+1y= F(c,, .k, ,p). However, we can write these relations in the form

[4.3] G(kt+lsct+l’kt’ct,ysp)=0

where G is a system of two non-linear functions:

Gl (kt+1 ’kt’ct,y ,P) = O, and

Gy(Cya1,y5C1ysKD) =0 .

ty?

We found a steady-state solution to equation [4.3] in last chapter so we have a sta-

tionary solution for equation [4.3].

G(kt+1’ct+laknct,y’p)=0’

where x,,, = X, .

Because the right-hand side of equation [4.3] is zero, we can use the implicit func-

tion theorem" [Rudin (1989)]:

4.4] OF(x:) _ 0w __[ oG, T 6Gt}
' 3X¢ axt B 6Xt+1 axt '

By analysing the eigenvalues of equation [4.4] we can check whether we have a

saddle point [Azariadis (1993)] and [Laitner (1990) and (1984)].

13 If the inverse matrix in [4.4] exists.
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4.2 A Method for analysing saddle point stability around the final

steady state: application to the overlapping generations model

In our overlapping generations model the component G, in [4.3] is:

[4.5]
K - ((1 + rt(Kt, Lt(ct,young, Kt)) * (1 - lt,young(ct,young> Kt))*
Wt(ct,young, Kt) * €young — Ct,young) =0

We obtain the component G, in equation [4.3] by combining [3.21] and the fact that
the portion of the good produced but not consumed by the households will be the

new invested capital, which is

ald

[4.6] Kei =FK, L)~ 2 Cis+Ki.

s=young

Component G, becomes

[4.7]

(1 F Tl (Kt+1 s Lt+1 (Ct+1,young,ct,younga Kt+1 ))) * (eyoung*

(1 - 1t+1 syoung (C t+1,young s I<t+1 ))W t+1 (C t+1,young s Kt+1 ) —Ct+1 ,young)

old
+ 2 Corp,e — (1 + 1% (K*¢ , Le(C*¢ young, K*1))) * (€young®

s=young

(1 - 1*t,young (C*t,young s K*t ))W*t(c*t,young s K*t ) - c*t,young ) = O
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The deep implicit structure of both G, and especially G, makes the use of the ana-
lytical solution method of section 4.1 quite difficult to apply. Instead we apply direct

numerical derivation around the final steady state.

We solve the differentials of equation [4.4]

[80 ]y [2)]
[5Xt+1:| and | 5,

numerically around the final steady state. The function G is defined by the equations
[4.5] and [4.7] and the values of the exogenous parameters in equations [4.5] and
[4.7] are the values after the technological change: table 3.2. We perform the nu-
merical calculation by calculating G, and G, at the final steady-state. The values are
practically zero, as they should be. Then we add a derivation step (e=1e-10) to each
of the variables K,, c,, c,,,, and k, one by one and subtract the new G values from

the G values before the derivation step and divide it by the derivation step, namely:

G(x +£) - G(x)
€

The right-hand side of equation [4.4] becomes

aF(xt)=(—1.07 0.68 )
O, 1.55 -0.91 )’

and the eigenvalues are 0.0436 and -2.02, which implies [Azariadis (1993)] that we
have a saddle point around the final steady state. The solution of the final steady-
state is very likely to be unique, at least the transition path in the neighbourhood of

the final steady-state is unique.
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4.3 Bifurcations of equilibrium, comparative statistics and the sensi-

tivity analysis

To define a bifurcation point of equilibrium, consider the steady-state version of

equation [4.3]:
[4.8] G(x*,p)=0

When the exogenous parameters (p vector) vary, so will the fixed point of the sys-
tem. In most cases small changes in p will not affect the qualitative structure of the
orbits of the dynamic system. For some critical values of p, however, small pertur-
bations can lead to qualitative changes in the system's orbit structure and its dy-
namic behaviour. When this happens, we say that a bifurcation has occurred

[Azariadis (1993)].

The mathematical methods for analysing possible bifurcation are quite similar to
those for analysing the uniqueness of the transition path, because both methods use

the implicit function theorem. We can write equation [4.8] in the implicit form :

[4.9] Gx*(p),p) =0

and utilising the implicit function theorem we obtain a useful result for comparative

statistics analyses of the final steady state

[4.10] %XF* = —[g;—i:i—ll:%%}] .

This comparative statistics results tell us in which direction the position of the final

steady state changes following the shock.
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The bifurcation point is where _6_)(% is not a full rank, i.e. if its determinant is zero.

The disadvantage of this method is the fact that the p vector includes several pa-
rameters which should be estimated from available data on the economy we want to
study, and therefore all the parameters are entitled to have some error simultane-

ously. Therefore a widely used' alternative is sensitivity analysis.

In sensitivity analysis the same model is solved again with slightly modified parame-
ters and checked to see to what extent the final steady state and the points in the
transition path vary. This is then repeated with different modification of the exoge-

nous parameters.

All the exogenous parameters are entitled to have at least some simultaneous error,
because they are estimated from the historical data. Therefore sensitivity analysis
should always be made in addition. The sensitivity analysis should include positive
or negative variation of all the exogenous parameters at the same time [Auerbach &

Kotlikoff (1987)].
4.4 Sensitivity analysis of the overlapping generations model

We performed sensitivity analysis to determine how a changes in the exogenous
parameters alter the final steady state. We added one percent to each of the exoge-
nous parameters one by one and calculated the change in the final steady-state. In
our final sensitivity analysis we added one percent to each of the exogenous parame-
ters simultaneously. The results are given in the table 4.1 and an illustration of the
change in the control and the state variable can be seen in figure 4.2. The values in
the table 4.1 are percentage changes in the steady state values of the endogenous

variables after a change in the exogenous parameters. The final row shows the

e For example Auerbach & Kotlikoff (1987) and Perraudin & Pujol (1991)



change in the endogenous variables after increasing all the exogenous parameters by

one percent simultaneously.

Table 4.1: Percentage change in the steady state values of the endogenous variables after 1%

change in the exogenous parameters.
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Figure 4.2: The changes in the control and state variables caused by a small shock in the
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The change in the exogenous parameter e,,,,. changes the amount of the production

young
capital most. The parameter e,,,, is the work efficiency of the young and it is logical
that the production capital, which is equal to the savings of the young, reacts
strongly to €,,,,,. The change in e, also causes an effect of almost the same size in
terms of absolute values. The negative effect on the production capital by an in-
crease in e,y is very logical. If the households can earn more when they are old
without wasting any more of their leisure time, they will not want to save up so
much for their old days, but consume or have more leisure when they are young,

before the discounting term "bites". The changes caused by the other exogenous

variables are significantly smaller in terms of absolute values.

The change in the production capital caused by small changes in the exogenous pa-
rameters is relatively small. Thus we can say that small variations in the exogenous

parameters will not cause huge changes in the amount of the production capital.

In terms of consumption when young, the change in the parameter e, also has
high absolute value. The change in the parameter €, the scaling constant for produc-
tion, has the highest absolute value. A small positive change in both of these exoge-
nous parameters causes a positive change in consumption when young. This is
logical, because both these parameters offer the young more possibilities to con-
sume, without forcing them to give up any leisure at any period or any consumption
when old. The change in the exogenous parameter o, has the greatest negative ef-
fect on consumption when young. This is also logical because an increase in the

leisure preference parameter o, means that the individual prefers more contempora-

neous leisure than contemporaneous consumption.

The one percentage simultaneous changes in the exogenous parameters cause the
biggest change in the production capital, which is a little over three percent. This is

not a sufficiently significant change, to be worried about. The sign of the change in
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each endogenous variable caused by the change in each of the exogenous parameters

is also logical.

Overall sensitivity analysis allows us to assume that a small variation in the exoge-
nous parameters will not cause significant changes in the position of the final

steady-state.
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5 CONCLUSIONS, CRITICISM AND FURTHER APPLICATIONS

In this final chapter we draw conclusions from the work that we have done. We also
discuss what kind of dynamic general equilibrium model is suitable for modelling
economic reactions for generational accounting. What kind of numerical methods are
practical for this particular model and how should its stability properties be ana-
lysed? At the end of the chapter we review critically the weaknesses of the dynamic
general equilibrium models as an economic method for analysing outcomes of the
reactions of economic agents in various circumstances. We also discuss very briefly

how to overcome or live with these weaknesses.
5.1 Conclusion

As stated in the introductory chapter we have divided the main purpose of this study

into three themes. '

The first theme was to study different numerical methods for solving discrete dy-
namic general equilibrium models. We solved the optimal growth model using sev-
eral numerical methods. We also solved a simple policy simulation using two self

designed models.

Our main findings are: the multiple and bounded shooting methods are very power-
ful numerical methods, especially for discrete dynamic equilibrium models. The
dynamic structure of the overlapping generations models makes them difficult to
apply. The bounded and multiple shooting methods are very suitable for the general
dynamic equilibrium models, which have no overlapping generations structure or the
steady-state calculations of the models with the 6ver1apping generation structure. For
the transition paths of the overlapping generations model we recommend arranging
the equations as suggested in the Fair-Taylor method and then applying either Jacobi
or Gauss-Seidel fixed point iteration methods as here and in Auerbach & Kotlikoff

(1987) or using Newton's search as in Perraudin & Pujol (1991).
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The second theme was to construct dynamic general equilibrium models and study
how the conditions of optimality are obtained under the assumption of perfect fore-
sight. We constructed two models, one with the long-lived agents structure and one
with the overlapping generations structure. These models are based on the models in
Auerbach & Kotlikoff (1987), Perraudin & Pujol (1991), Catez et al. (1992) and
Soderling (1989). We derived the conditions under which rational households and
firms behave under perfect foresight in both of these models. We did this using both
recursive discrete dynamic optimisation and the Kuhn-Tucker conditions of optimal-
ity. We have also simulated the consequences of a technological innovation. We did
this by solving both models numerically before and after a surprise shock in the

production function.

The third theme was to review some of the stability theories related to the discrete
general dynamic equilibrium models. We reviewed theories for determining the local
uniqueness of the transition path, bifurcations of the equilibrium, the comparative
statics of the final steady state and the sensitivity analysis. We also applied the the-
ory of local uniqueness of the transition path and sensitivity analysis to our overlap-
ping generations model. Our main findings concerning the uniqueness of the
transition path and bifurcation theorem was that these theories are very difficult to
apply and they do not give much extra information. Therefore such calculations are
not usually executed by designers of the dynamic general equilibrium models, ex-
cluding Laitner (1984) and (1990). Other designers of large-scale policy simulation
models have contented themselves with sensitivity analysis and its results. This is
perhaps because the other methods require a lot of work and seldom give much addi-
tional information compared to the sensitivity analysis. This brings up a question,
when one is analysing economics with difference equations and when one is only

analysing difference equations?
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5.2 A proposal for expanding the generational accounting approach with a

dynamic general equilibrium model

The key issue in generational accounting models is the comparison between different
generations' payments to the government and social benefits received from the gov-
ernment. Therefore the dynamic general equilibrium model should have an overlap-
ping generations structure, where each generation lives, for say, five periods.
Labour efficiency should be set at zero for the final period of each generation, im-

plying retirement in that period.

Secondly the government should be modelled. The government itself does not maxi-
mise anything; it just maintains the long term budget balance. This requirement is
provided by the following equation, which implies that the current value of the future
taxes must be equal to the current value of the future government spending minus the

initial net government debt.

510 SAIA+)T=5 A1 +r)Gi+Do,

where T, is the taxes, collected in period t and G, is government spending on social
and other services in period t. D, is net government debt at the initial steady state
and r, is the interest rate. We should let the tax variable T include three types of
taxes, namely, income taxes, sales taxes and capital taxes. This does not change the
behaviour of the firm (we keep the tax free price of the good as a numeraire) or the
direct utility function of the household. It changes the households' budget constraint
in our overlapping generations model together with the fact that generations live for

more periods, thus.

i eagewt(l - TL) * (1 — lt) — (1 + TC)ct _
IT(1+14(1 - 7))

§=2

[5.2]

0 >
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or as a form of discrete state equation:
[5.3] a1 = (1 +1(1 = tg)) * ag+ eageWe(l — ) * (1 = 1) — (1 + Tc)ce

where a, and a; are zero and where t, t, and t; are the tax rates for wages (income
tax), consumption (sales tax) and capital tax respectively. The other variables are
defined in chapter 3. Because we force each generation to retire in its final period we
cannot assume an interior solution in respect of the leisure constraint in all periods of

the households' life.

In our opinion, the best way to solve this model is to apply Newton's method for the
steady states, For the transition path we suggest arranging the equation as suggested
by Fair & Taylor (1983) and apply the Jacobi iteration. Because we cannot assume
an interior solution we must calculate leisure from the contemporaneous consumption
leisure ratio. If leisure becomes over 100% of all time in a period, we would have to
set the Lagrange multiplier associated with that particular constraint so that the con-
temporaneous consumption leisure ratio formula yields leisure value as 100% of all
time in that period, which is in line with the Kuhn-Tucker theorem. For analysing

the stability properties of this model, sensitivity analysis should be adequate.

53 Some weaknesses of the dynamic general equilibrium approach and

suggestions for overcoming these weaknesses

The use of numeric dynamical general equilibrium models by economists has in-
creased in tandem with computer technology. It is important to bear in mind the
limitations of dynamic general equilibrium models one uses. Here we list some of
the limitations of our models and discuss how these limitations should be taken into

account when performing policy simulations.
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The main weakness is the estimated exogenous parameters. In all the models we
have read for this study, the exogenous parameters of, say, the household's utility
functions are constants over time. So when comparing the utilities of different gen-
erations with a model which has an overlapping generations structure, we must state
that different generations in the model have the same values in their lives. On the
other hand we do not know what value future generations will attach to different
things, so it seems reasonable to use the utility function estimated for the current

generations for future generations also.

The assumption of perfect foresight has been used in almost all dynamic general
equilibrium models world-wide without there being any analysis how it affects the
position of the solution. Our opinion is that the assumption of perfect foresight is an
oversimplification. Azadiaris (1993), however, has introduced an alternative method,
referred to as least squares learning. Under the assumption of perfect foresight, the
economic agents are able to calculate future prices with certainty in non-stochastic
model structures. In least squares learning, agents forecast the future prices using an
autoreggressive formula, which has historical prices and their derivatives as depend-
ent variables. It is our hope that this or a superior method will oust the assumption of

perfect foresight from dynamic general equilibrium models in the near future.

We can argue that the unemployed person is unemployed in Finland, say, because he
refuses to take a job that pays FIM 1 per hour. Hence his unemployment is volun-
tary. But if the dynamic general equilibrium model is used in reality to analyse em-
ployment issues, it should have a better way of modelling unemployment, simply for
the sake of the its plausibility. One way to do this is to introduce trade unions into
the model as in Jensen et al. (1993). In this concept the workers authorise the trade

unions to negotiate the wage rate and the labour supply with the employees.
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It is often stated that by choosing the right parameters we can obtain whatever results
we desire. That is quite true, and therefore it must be stated clearly how parameters
are estimated and sensitivity analysis should be performed. An interesting idea would
be a write a program, which generates different parameter values for sensitivity
analysis by minimising the absolute value of the determinant of 6%?; in equation
[4.10]. Thus in addition to performing sensitivity analysis the program search for

bifurcation points.

A lot of aggregations also have to be made when constructing dynamic general equi-
Jlibrium models. In dynamic models all the households in the economy must be ag-
gregated to just a few households. And the same is true for the firms in the
economy. This makes it impossible to study how different policies affect different
typés of households and firms. In theory, of course, it is possible to add as many
different types of households and firms as one wants, but the problems of solving the
models increase vastly and thus this has not been done in practice. These types of
studies usually use a static equilibrium approach. In models with an overlapping
generations structure the households of different generations have been disaggre-

gated, and therefore comparisons between generations can be made.
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Appendix 1

FLOW DIAGRAM FOR THE MULTIPLE SHOOTING METHOD
- A DISCRETE CASE
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FLOW DIAGRAM FOR WILCOXEN'S MODIFIED
FAIR-TAYLOR METHOD
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Appendix 2

Generational accounting

Generational accounting is based on the fact that the present value of the future net
tax payments of the current and futufe generations must be sufficient to cover the
present value of future public consumption, as well as pay the initial public indebted-
ness. Failure to satisfy this constraint means that the governmeﬁt will default on its
liabilities, in essence satisfying the constraint through a tax on its creditors. If it does
not mean that the public debt will be paid off, the constraint is satisfied. The only
requirement is that the debt is serviced through tax payments by existing and future

generations. This constraint can be expressed by a simple equation:
EGT+FGT=FGC-GNT,

where EGT is the present value of the remaining net tax payments of existing gen-
erations, FGT is the present value of the net tax payments of future generations,
FGC is the present value of all future public consumption and GNT is public net

wealth.

In the generational accounting approach EGT and FGT are dependent on the labour
supply, savings rate, wage rate etc., which are naturally projections. In the basic
generational accounting approach these projections are considered to be independent

of projections of FGC.

This study analyses dynamic general equilibrium models from a mathematical point
of view, and in addition it attempts to construct a dynamic general equilibrium
model, suitable for expanding the generational accounting approach so that projec-
tions of the labour supply, saving rate, wage rate etc. are functions of the projections

of FGC. [Auerbach et al. (1994)].
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