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ABSTRACT: In contrast with regression models Tobit models
are not robust against specification errors such as hetero-
scedasticity and non-normality. There is thus a need for
specification tests which have power against a wide range of
alternatives and are easy to implement. In the paper the
transformation family introduced by MacKinnon and Magee is
applied in the Tobit framework to derive a score test for
misspecification with one degree of freedom. The test sta-
tistic is found to be sensitive for misspecification in the
first three conditional moments of the positive observa-
tions. The test is compared with the RESET-test as well as
with score tests which also have one degree of freedom and
test for linearity of the mean and the type of heteroscedas-
ticity related to the mean. An empirical example is presen-
ted in which the derived test clearly indicated excess
skewness in the residuals and simultaneously accounts for
the results given by the other two score tests. It is recom-
mended that the test statistic should be routinely used in
model diagnostics.
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TIIVISTELMA: Tavallisista regressiomalleista poiketen Tobit
mallit eivat ole robusteja spesifikaatiovirheille kuten
jdannosten heteroskedastisuus ja ei-normaalisuus. Tasta
syysta tarvitaan spesifikaatiotesteja, joilla on voimaa
useiden vaihtoehtojen suhteen ja joita on helppo soveltaa.
Soveltamalla MacKinnonin ja Mageen esittamda muunnosperhetta
johdetaan yhden vapausasteen pisteytystesti (score test)
Tobit mallin spesifikaatiolle. Testisuure osoittautuu her-
k&ksi positiivisten havaintojen kolmen ensimmdisen ehdolli-
sen momentin vaarinspesifioinnille. Testid verrataan seka
RESET-testiin ettd yhden vapausasteen pisteystesteihin,
jotka testaavat odotusarvon lineaarisuutta ja sellaista
heteroskedastisuutta, Jjoka riippuu odotusarvon koosta.
Tybssa esitetddn empiirinen esimerkki, jossa edellinen testi
viittaa selvasti residuaalien 1liialliseen vinouteen ja
samalla paljastaa jdlkimmaisten pisteystestien tulokset.
Testitunnuslukua suositellaan rutiinikayttéén osana mallin
diagnostista tarkastelua.

AVAINSANAT: Tobit mallit, vaarinspesifiointi, funktiomuoto
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1. INTRODUCTION

Tobit models and their multivariate generalizations invol-
ving several latent or partially observed normally distribu-
ted random variables are widely used in applied econometric
work. These models are usually estimated by solving numeri-
cally the nonlinear estimating equations given by the prin-
ciple of maximum likelihood. Therefore, investigators often
display a natural reluctance to test the specification of
the model with the thoroughness and vigor comparable to the
common practice in the normal regression framework. In
contrast it is well known, however, that Tobit models are
not robust against specification errors such as heterosce-
dasticity and violation of the normality assumption. There
is thus a need for specification tests of Tobit models which
have power against a wide range of alternatives and are easy
to implement and inexpensive to compute.

In this context it seems natural to consider the use of
score, or IM, tests because they require estimates only
under the null hypothesis and can often be computed by means
of artificial linear regressions. In this paper a misspeci-
fication test is presented which is derived by considering
a possible misspecification in the transformation applied to
the observed values of the dependent variable in the Tobit

model.

In the statistical analysis transformations of the dependent
variable are used to obtain three objectives. The first of
these is td normalize the random variable in question. The
second objective is to stabilize its variance. A classic
example of a simultaneously normalizing and variance stabi-
lizing transformation concerns the sample correlation coef-
ficient of a bivariate normal distribution, where the trans-
formation tanh' is used. In regression models the third
objective is to obtain linearity of the conditional mean for

data which have been conveniently transformed.

In econometrics the family of monotonic power transforma-
tions is widely used to obtain the above objectives (Box and
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Cox, 1964). However, the Box-Cox transformation cannot be
applied to variables which can have zero or negative values.
Therefore it cannot be used in limited dependent variable
models, eg. the Tobit model, where a normally distributed
latent variable is observed only at above zero values and
otherwise a limit value of zero is observed.'

MacKinnon and Magee (1990) have proposed a family of trans-
formations which can sensibly be applied to variables that
can take any values. It is interesting to apply their method
of analyzing ordinary regression models to Tobit models.
MacKinnon and Magee derive score tests for the null hypot-
hesis that the dependent variable has not been transformed
against the alternative that a transformation of this family
has been applied to it. These tests, which do not require
that the exact form of the transformation is specified and
are thus interpretable as implicit misspecification tests in
the sense of Hausman (1978), are in this paper extended to
the Tobit model where the underlying latent variable is
similarly transformed. The misspecification test is based on
the score under the null and has one degree of freedom.

In analogy with the results that MacKinnon and Magee derive
in an ordinary regression model, the score test presented
for Tobit models can be seen as testing simultaneously for
three restrictions that affect conditional moments. The
first of these, which is closely related to the well-known
RESET test of Ramsey (1969), is that there is no correlation
between the squared conditional mean of the latent variable
and the model residuals of positive observations. In this
case one has to correct the residuals for their expected
values which are generally non-zero in the ordinary Tobit
model.

' This problem could be overcome by adding a positive cons-
tant to the dependent variable prior to the application of the
power transformation. Alternatively the family of modulus trans-
formations proposed by John and Draper (1980) for obtaining ap-
proximate normality from symmetric long-tailed distributions
could be considered.
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The second conditional moment restriction is that there is
no such heteroscedasticity which results in nonzero correla-
tion between the conditional mean and squared residuals in
the Tobit model, after the heteroscedasticity induced by the
ordinary Tobit model is allowed for.

The third restriction is that the Tobit model residuals have
a third moment of zero, again after the positive skewness
induced by the ordinary Tobit model is allowed for. In case
of misspecification in a Tobit model, the estimated residu-
als of positive observations would be expected to suffer
from problems which would affect their first three moments
in a way not allowed by the ordinary Tobit model.

The above implicit test for misspecification based on the
MacKinnon-Magee family of transformations has some power
against a wide range of alternative models. This is attribu-
table to the way in which information on the non-linear
model of the mean is confounded with information concerning
the distribution of disturbances. The lack of fit detected
may be due to the mean model, or the disturbance model, or
both. This feature is common to all transformation families,
eg. Box-Cox, that affect only the values of the dependent
variable. To cater for the above situation two score tests
are considered in the remainder of the paper. These two
tests specialize in testing linearity of the mean, and
heteroscedasticity, respectively?. The relative success of
these three tests in rejecting the null would suggest whet-
her modifications in modelling the mean, or heteroscedasti-
city, or the type of non-normality which affects the third
conditional moment of the data would be necessary.

Heteroscedasticity causes the parameter estimates from a
Tobit model to be inconsistent. It is thus a more severe
problem than in the case of ordinary regression. In additi-

2 The heteroscedasticity test is a special (one degree of
freedom) case of the score test introduced to the regression
framework by Breusch and Pagan (1979) and to Tobit models by Lee
and Maddala (1985). The one degree of freedom form of the test
is based on an idea due to Anscombe (1961).
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on, because Tobit models are usually estimated using cross-
sectional data it is a problem likely to be encountered
quite often. Therefore a score test based on a specific form
of heteroscedasticity proposed by Anscombe (1961) is discus-
sed as an additional diagnostic tool in testing heterosce-
dasticity.

Finally the use of these tests is illustrated by applying
them to an empirical example of estimating a demand function
for alcoholic beverages using data from the 1981 Finnish
Family Expenditure Survey. In this particular case the
implicit misspecification test based on the idea introduced
by MacKinnon and Magee (1990) is quite successful in narro-
wing the type of misspecification present due to excess
skewness in the dependent variable.

2. THE MACKINNON-MAGEE TRANSFORMATION IN TOBIT MODELS

The following family of transformations introduced by Mac-
Kinnon and Magee (1990) is considered in this paper

g(yy)/v, (1)

where the function g is monotonic and satisfies the follo-
wing properties:

g(0) =0, (2)
g’(0) =1, (3)
g’’(0) * 0. (4)

If one allows for y to vary in a suitable way, the above
transformation (1) is homogeneous of degree one in y. This
property of scale invariance is not shared by the Box-Cox
transformation. In addition transformation (1) is applicable
to variables y that can have negative values. These features
make it interesting to examine the properties of (1) in
Tobit models. Property (4) is needed because otherwise the
partial derivative of the loglikelihood function w.r.t. ¥y
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would be zero at the point y = 0. This, however, rules out
skew-symmetric functions g (for detailed discussion, see

MacKinnon and Magee, 1990).

In the sequel one considers the following Tobit model, where
the observed variable y* is generated by

y* = max{o, y}, (5)

and the latent variable y which is partially observed is

‘generated by

r(y,¥) = 9(yy)/y ~ N(X'b, 0?). (6)

Here X is a column vector of k independent variables and b
. 1s a vector of parameters to be estimated together with a

dispersion parameter o?.

One important feature of (2) in Tobit models is that the
probability of a limit observation, i.e. P(y" = 0) is inde-
pendent of the transformation (1), and the transformatlon
affects only the distribution of nonlimit observatlons, i.e.
y > 0.3 In particular the straightforward use of an 1mpllcl—
tely defined Probit model would consistently estimate the
parameter vector B defined below in equation (8).

In the following we consider the score test for the null
hypothesis that y = 0. Under this null r(o, y) reduces to y
and the model (5) reduces to the ordinary Tobit model. This
is easily verified by taking the appropriate limit of
r(y, y) and using g’(0) =

In the paper Olsen’s reparametrization of the Tobit model is

used, giving new parameters B and h by

5 Cconsidering measurement errors in y, one may hypothesize
that the limit observations, i.e. zeros, are measured more accu-
rately than nonlimit observations. In addition the limit obser-
vations are typically less informative on the p0351b1e form of
misspecification and the resultlng loss of power due to the form
of representation adopted in the paper is probably not too se-
vere, especially so if the number of limit observations is small
compared to the total sample size.
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]

1/0, (7)
_1
B = Zb. (8)

The cumulative distribution function of the latent wvariable
y is given by

Y2
F(y) = P(y<y) = P(r(y,y)<r(y,y)) = P{r(y’%) Xb r(va;) ’XTb]

- Q[g(vy) _ﬂo] - @(Ml —xT;s).

Yo g Y (9)

The corresponding density function is given by

£(y) = hq’(vym(w—x‘ﬁ). (10)

Here & and ¢ are, respectively the cumulative distribution
and density function of a standardized normal distribution.

Example

Consider the transformation

g = x(27F), (11)

where x is a scaling constant to be determined later and F
is a given standardized cumulative distribution function,
with a median of zero, i.e. F(0) = %. In this case condition
(2) is satisfied and (3) holds if

/0y =x £ £(0) _
7O = FEom T e T (1)

where £ = dF. In order to satisfy (12) one must set x =
(/2% £(0)]1'. similarly



T¢oy = £/(0) , 1 Jrara2 - £(0)
g’ (0) =x -Eg(O)[g (0)] KE—(T)_)_' (13)

This expression reveals that in order to have g"(0) # 0O one
must have £/(0) # 0, i.e. the distribution F must be such
that the mode is not equal to the median which is zero.

In this case the cumulative distribution function of the

latent variable y is given by

r(y,y) -XTbs r(y,y) —XTb]

P(ySy) = P[ 3 A

(14)

In other words, one has taken a random variable distributed
according to F up to a scale factor y and transformed it to
get a normally distributed random variable, with mean X;'b,
where b = (x/y0)B, and deviation yo/x. The corresponding
density function is in this case given by

KhE€(yy) e (8 (F(yy)) o %@"(Fwy))-x%). (15)

The example shows that setting y = kx/0 ensures that the
score test derived below has some power if one considers the
alternative hypotheses characterized by a distribution
similar to F in the above example.



3. SCORE TEST FOR Hj: y = 0

The loglikelihood of an individual observation, y; = LY.,
X, k=1, ...,n, where I, is an indicator function for the
event (y, > 0}, is given by (leaving out the inessential
constant, -(1/2)log(2m))

h 2
g = 9y, h, B L, %) = I [log(h) + 1og(g’(vyk))-%[—9—(%’y—") - X.Iﬁ] }

+ (1-I,) log(1-&(X.B)).
(16)

The derivative of ¢ w.r.t vy is

_ o |9y v _(hg(vyk) _xTﬁ][hg/(YYk)Yk_hg(YYk) (17)
T vy Y ‘ Y ¥2

Applying l’Hopital’s rule to the term in the last brackets

implies
hg’ h
Yy 'Yz 2
giving

hy? 19
Yk - —z—k (hYk - xzﬁ) ( )

agﬂ( = g/
[—av}y =g’ (0) I,

The other derivatives of the loglikelihood function under
Yy = 0 are the same as in the ordinary Tobit model:

o
[—a%}\(-o = Iy [-1—]_; - (hyy - Xzﬁ)yk ’ (20)



as@] . ¢ (X;8)
=TI, (hy, -X8)X, - (1-I,) — %" x. (21)
[gﬁ v -0 k k kP ) Sk k 1—@O¢B)k

Under H; the maximum likelihood estimates of @ and h in the
ordinary Tobit model satisfy

£ =) LR > - W - B

Jh

~
N

A score test for y = 0 can always be interpreted as a test

for

I
o

plim, ;o [1_1137 (23)

Denoting the residuals of positive observations by I u,
hIy, - IkaTB, one can easily show using the properties of
truncated normal variables that the first three moments are

(L) = $(X8), (24 i)
E(T,uf) = 8(XB) - XB(XB) (24 ii)
E(T5) = (KB B(XB) + 20(XAB), (24 iii)

and the higher moments are give by the recursion formula

E(Tu]) = (-X8)" (X)) + (m-1) &Lyl ?), m22. (24 iv)
One can write

/1
[“ag]y 0 [ = 1(10)0] Z T (i“k‘xlﬁ +u)? - (X8 +uk)) (25)
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- ¢ (XB) .
= (-g”(0)0) | ¥ L1 (xIp)?|u - 2 (26 i)
ém 2(X18)

n T T .
¥ I (X.B) ui 1 - Xlﬁ P (X, B) (26 ii)
“om 3 (X,8)

n )

- E % uz - (Xlﬁ)zw - 2u.|]. (26 1ii)

K=1 ‘I’(Xlﬁ)

Using the properties (24 i-iii), one easily shows that each
of terms in (26 i-iii) have a probability limit of zero, as

n t o,

If one tests an ordinary Tobit model against an alternative
defined by (6), one tests simultaneously for three restric-
tions that affect conditional moments. The first of these,
(26 i), is that there is no correlation between (XkTﬁ)2 and
u, when the latter is corrected for its expectation under
condition y, > 0. This is what a popular RESET test by
Ramsey (1969) tests for. In Tobit models this form of the
RESET test tests for § = 0 in a ’HECKIT-regression’ using
only the positive observations when the regression equation
is given by

¢ (%)

-, (27)
®(X,B)

hy, = X,B + §(X,B)? +

where F is the maximum likelihood estimate of B in the
ordinary Tobit model.

The second restriction, (26 ii), is that there is no such
heteroscedasticity which results in nonzero correlation
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between (X,'B) and squared residuals in Tobit model, after
the heteroscedasticity induced by the ordinary Tobit model

is allowed for.

The third restriction,; (26 iii), is that the Tobit model
residuals have a third moment of zero, again after the
positive skewness induced by the Tobit model is allowed for.
Therefore, if the data were generated by (6) with y # 0, and
one estimated an ordinary Tobit model, the estimated residu-
als of positive observations would be expected to suffer
from problems which would affect their first three condi-~
tional moments in a way not allowed by the ordinary Tobit
model. These observations, made originally by MacKinnon and
Magee (1990) in ordinary regression models, carry over to
the Tobit model.

The RESET test will have some power against y # 0 in (6)
because of (26 i). If the fit of the Tobit model is very
good by which it is meant that o is small relative to the
variation of (Xﬂb), then any violation to the condition that
the probability limits of (26 ii) and (26 iii) are zero,
will contribute relatively little to the score test. If the
fit of the Tobit model is poor, however, RESET test will
have low power compared to the score test against the above
specific alternative hypothesis (6). This follows from the
observation that as ¢ { 0 then typically (X,'8)® t », and the
first term (26 i) will dominate over the other two terms (26
ii) and (26 iii).

The easiest way to calculate the score test for y = 0 is to

replace the information matrix of the parameter estimates

with its finite sample approximation by the "Outer Product

of the Gradient," or OPG,

plim, o [ [g%-"][g%]’] - 2’[ i 3 Y Y (28)
¥y=0 2600

y =0

The OPG test statistic, popularized by Godfrey and Wickens
(1981), can be computed as n minus the sum of squared resi-
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duals, or nR?, from the artificial linear regression

oy

1 = 33]0 + remainder, (29)

where 1 is an n-vector of ones and the regressor matrix is
an n x p matrix of the derivatives of the loglikelihood of
each of the observations evaluated at the restricted or-
dinary Tobit model estimates. Here n = k + 2, and the cor-
responding components are given in the formulae (19) =-(21).
Note that the actual value of g"(0) has no effect on the
test statistic and might as well be omitted.

Alternatively one can calculate the second derivatives of
the loglikelihood

%L,
dyoh

1/
- -3 (O g, y2(2ny, - X8, (30)

y=0

0°d,

g’/ (0) 1, hyiX (31)
EEZL:

2 ke

y=0

Partitioning the information matrix as

g = Ly 372 (32)
32'y 322

7

One can write the score statistic IM

0Y]?
.a?y=0

tyy 3ﬂ3§£§v

IM =

n 2
1
55 (o - - e )

7

T
Vi ~ 1,V
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where
=h21‘”=}n:8’I 1u(XTB+u)2-—(XTB+u)2 (34 i)
k44 m’i o k '2' k k k k k ’
I n 2 T 1
Y Z(5, hyl(2ny, - x8))
, = h , = % k=1 , (34 ii)
7/ o n
97(0) -y Z(Ik(hyk)zxk)
i k=1

and V is the estimated covariance matrix of the maximum
likelihood estimators of (h, B")T in the ordinary Tobit
model. The formulae for v, and 1, are given in the appendix.
They involve the moments of positive observations up to the
fourth degree and are straightforward, albeit relatively

tedious to derive.

The above score test based on the MacKinnon-Magee family of
transformations has some power against a wide range of
alternative models. This is attributable to the way in which
information on the non-linear model of the mean is confouded
with information concerning the distribution of disturban-
ces. The lack of fit detected may be due to the mean model,
or the disturbance model, or both. This feature of model (1)
is common to all transformation families, eg. Box-Cox, that
éffect only the values of the dependent variable. To cater
for the above situation two score tests are considered
below. These two tests specialize in testing linearity of
the mean (26 i), and heteroscedasticity (26 ii), respective-
ly. If any of these tests rejects the null substantially
more emphatically than the score test for y = 0 in (6), that
would suggest that (6) is not the appropriate model and
modifications in modelling the mean, or heteroscedasticity
would be necessary.
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4. SCORE TEST FOR THE LINEARITY OF THE MEAN*

One may consider instead of (6) the class of models

- 9’(6;(;5) ey, (35)

and test for § = 0 in (35).

The loglikelihood of an individual observation, y; = LY./
X, k=1, ..., n, where I, is an indicator function for the
event (y, > 0}, is given by (without the inessential cons-
tant -(1/2)log(2m))

2
§X!
g = 96,h, B| Ty, %) = I |log(h) - %[hyk - 9C6XA)

é
(36)
§X!
+ (1—Ik)log[1 - §>[E£_6"_ﬁ)]]
Using (18) the derivative of ¢, w.r.t §, under § = 0 is
given by
ag&] g’/ (0) (X;8)? T P (XB) (37)
= I, (hy, - X,B8) - (L-I, )| ——&"__1|.
[755 50 2 «(mc - ) - -1 1 - 8(Xf)

The other derivatives of the loglikelihood function under
Yy = 0 are the same as in the ordinary Tobit model (20)-(21).

The score test for § = 0 is easily seen to be asymptotically

“ In the rest of the paper the transformations considered
are defined to affect also the limit observations, i.e. the ze-
ros, in the Tobit model. The resulting discrepancy with the ear-
lier part of the paper seems, however, to have limited practical
consequences, when these tests are calculated in typical empiri-
cal examples (see footnote 1 and the example in section 6).
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equivalent to a form of RESET test in which one includes an
additional explanatory variable (XkTﬁ)2 in a second stage
Tobit model which uses all the observations, also the limit
observations, in contrast to (27). The score test may in
this case also be seen as a form of regression test, where
one tests for correlation between (Xkrﬁ)2 and the heterosce-
dastic ’‘residuals’ of in the ordinary Tobit model®’. The zero
mean residuals e, are defined by

e = Lyey + (1-Iy) ey, with (38)
¢ (X,B)
ex = Y - X85 ey = "———'-(—-T-—- (39)
1 - 8(X.8)

In analogy with (25) one can write

T
1{3 - [g”(o)] N T2 ¢ (X B) (40)
1 - (XeB)? [T + (1-T ) —%
n[”a%]s.o 2n k; “ o “|1-2(xlp)
n T

= 9'"(0)] L1 (xIg)? |y, - #(XB) (41)

( | IPYE ST #(X[B)

n XT | n XT

. E %Ik(xzﬁ)z _ ¢( kﬂ) _ _ E %(XIﬁ)z ¢( kp;) .

K=1 (X P)(L-8(XB)) k=1 1-9(X,.B)

Using (24 i) one easily shows that, under § = 0 both terms
in (41) have a probability limit of zero as n t .

5 For this definition residuals in Tobit models, see Lee and
Maddala (1985).
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5. SCORE TESTS FOR HETEROSCEDASTICITY IN TOBIT MODELS

Consider a Tobit model, where (6) is replaced by

hy = X,8 + o/ (86X'B) €, (42)

where g is a function which satisfies properties (2)-(4),
and € ~ N(0,1). In the above model the variance of the
latent variable y depends on its mean through the function
g’. In the sequel a score test for the hypothesis 6§ = 0 is
considered.

The motivation for basing the test on model (42) is that
heteroscedasticity is often related to values of some
important explanatory variables in the model. These variab-
les correlate with the fit, xJﬁ, and the test for 6 = 0 is
likely to have some power even in the case where heterosce-
dasticity is related to the values of a single important ex-
planatory variable. The above idea was proposed originally
for regression models by Anscombe (1961).

The loglikelihood of an individual observation, y: = LY.,
X, k=1, ..., n, where I, is an indicator function for the
event (y, > 0}, is given by (without the inessential cons-
tant —-(1/2)log(2m))

gk = G_P(S,h,ﬁ|Ikyk,Xk)
= 1, |log(h) - log(g'(6%8)) - — = (hy, - Xip)°
| 2(9'(6%,8)1°
T
+(1-I,)1log|l - & ___Egi__ . (43)

g’ (§X,8)
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The derivative of ¢, w.r.t §, under § = 0 is given by

B (X, 8) X B

X1l (aa)
1 - 9(X.B)

d
[?%L IR A O RS ((ny,-x[p)? - 1) + (1-1,)

The other derivatives of the loglikelihood function under
Hy,: § = 0 are the same as in the ordinary Tobit model (20)-

(21).

In this case the score test may again be seen as a form of
regression test, where one tests for zero correlation bet-
ween XJB and the squared ‘residuals’ in the ordinary Tobit
model. These squared residuals e? are defined by

ei = Ikefk + (1—Ik)egk, with (45)
B (X, 8) X, B
2 _ .2 L2 DR
e =W -1 ey T ——m—oo—— (46)

1 - @(XEB).

In analogy with (25) one can write

x;ﬁﬁb(xlﬁ) (47)

1[d } g”(O)] AR 2 _

1-9(X.8)
L XeB & (%,8)
= g’/ (0) k}; 2I,%p [uf - |1 - mk«p(prk) (48)
k
- 1 Tayv2 ¢(X|T<ﬁ) 1,7 2 ¢(X|T<ﬁ)
= = L (X B) + = (X B) | ————— |-
kz=:1 n B(X,B) (1-28(X,8)) k2=:1 no | 1-a(xIp)

Using (24 i) one easily shows that, under é§ = 0 both terms
in (48) have a probability limit of zero, as n t o,
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Possible functional forms for g, which define locally equi-
valent alternative models, include the exponential function,
e*, giving

g’/ (6X"8) = exp(86X'B), (49)

considered in the Tobit models by Lee and Maddala (1985), or
the affine function, 1 + (1/a)x, giving

g/ (§XB) = Z(a + 6X'F). (50)

In the affine case a positive constant a«, ¢ > 0, has been
added to the formula of the conditional variance to quaran-
tee that a + X'B8 stays positive over the sample range. This
is done in order to ensure that the negative values in the
conditional mean do not produce odd behaviour in the condi-
tional variance.® A similar augmentation with a translation
term a is used below, where an additional and related exam-
ple of a score test for heteroscedasticity is briefly dis-
cussed.

Consider a Tobit model, where (6) is replaced by

hy = Xlﬁ + h?(a+X"8)%e, (51)

where € ~ N(0,1). In the above model the variance of the
latent variable y depends on its mean through the parameter
§. A fixed constant o is chosen in such a way as to guaran-
tee that o + XJB stays positive over the whole sample.

Defining

g’(6) = h?(a+X'8)?, (52)
gives

g’’(0) = log(a+X'8)- log(h). (53)

¢ A problem in using the various score tests for § = 0 with
a specific transformation g’ in mind is that the curvature of
the likelihood function at the null hypothesis may be very dif-
ferent from that at the maximum likelihood estimate of §. This
may result in poor power properties of the score test in compa-
rison with the corresponding likelihood ratio test.
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Forming the loglikelihood of an individual observation, y,’
= LY. X, k=1, ..., n, where I, is an indicator function
for the event (y, > 0}, one gets the derivative of ¢ w.r.t
6, under 6§ = 0,

¢(Xzﬁ)xlﬁ ] (54)

ok | _ _xTay? - -
[_5_3_L=o_ o | B ((h - gy - 1) - (2 -3) 1 - #(XB)

where s, = log(a + X,'8) - log(h) = log(a + X,'b), say. The
other derivatives of the loglikelihood function under § = 0
are the same as in the ordinary Tobit model (20)-(21).

Using the Taylor expansion of (a + X;b)s w.r.t. § one has an

approksimation for a small ¢

(a +Xb)S~ 1 + Slog(a + X/b) =1 + &s,. (55)
k k k

Similarly with the previous case the score test may also be
seen as a form of regression test, where one tests for § =
0 using approximation (55), i.e. for zero correlation bet-
ween s, and the squared ’residuals’ in the ordinary Tobit
model. These squared residuals ef are defined by egs. (45)-

(46).
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6. AN EMPIRICAL EXAMPLE

The implicit misspecification test derived above was applied
to an empirical example analyzed earlier by the author
(Suoniemi, 1990). Finnish data from the 1981 Household
Expenditure Survey were used to estimate a demand function
in budget share form for household consumption of alcoholic
beverages. In the analysis an ALIDS-functional form (Deaton
& Muellbauer, 1980) was augmented with demographic variables
and possible nonlinearity in the Engel-curves was allowed.
There were twenty-four regressors and 7295 observations,
55.1 per cent of which reported no consumption of alcoholic
beverages. In the original analysis Tobit models and their
extensions with latent unobservable variables were used. The
Tobit model chosen as ‘the preferred specification’ was sub-
jected to the score tests for misspecification derived
earlier in the paper. Results are given in Table 1.

TABLE 1
PERFORMANCE OF THE TOBIT MODEL FOR ALCOHOL CONSUMPTION

Score Test statistic
Test x2-form t-form
IM(ff) 0.367 -0.605
IM(hl) 3.082 - =1.753
IM(h2) 3.521 -1.873
IM(y) -81.382 137.461 -11.815
LM1 -0.285 0.413
LM, 8.481 4.431
LM3 -89.577 143.000

The score test statistics are asymptotically x2(1) when the underlying Tobit model is actually
generating the data. First row gives the test statistic for misspecification in the functional form
of the mean, with score given in eq. (37). The second and third row give the test statictics for
heteroscedasticity, with the scores given in egs (44) and (54), respectively. The fourth row gives
the implicit test for misspecification given in eq. (33). In their calculation the outer product
forms were used, and corresponding asymptotically equivalent statistics based on Student’s t-
distribution are given in the last column. The values LMg, LM,, and LM correspond to the decomposi-
tion of the score, given in eqs. (26 i-iii), respectively, and indicate the contributions of the
misspecification of the mean, heteroscedasticity and skewness in the implied residual distribution
corrected for censoring.
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The highly significant test statistics LM(y) clearly indica-
tes that the model is misspecified. Interestingly enough
this rejection seems not have been dque to the misspecifica-
tion of the mean (row one) and is only mildly affected by
heteroscedasticity (rows two or three). In contrast the test
statistic IM(y) suggests that positive skewness in the
distribution is the main underlying problem.

An additional interesting feature of the example is that the
decomposition of the score (first column in Table 1) gives
practically the same information as the score-tests taylored
to test separately for the misspecification of the mean (row
one) and such heteroscedasticity which is related to the

mean (rows two and three).

In the original analysis of the data the problem of excess
skewness was detected by less systematic methods.’ An intui-
titively interpretable solution to the problem was formu-
lated using a model with two populations labelled as "normal
consumers" and "heavy drinkers", with heavy drinkers consu-
ming a fixed amount of alcohol while the behaviour of the
normal consumers is governed by a demand function.® The type
of drinkers is not observed but instead it is assumed that
heavy drinkers are uniformly mixed within the normal popu-
lation. The proportion of heavy drinkers in the population,
the mean of their consumption and the parameters affecting
the demand function of the normal consumers were estimated
by applying a Tobit-type model to a mixture of two normally
distributed distributions. The model was found to be able to
account for the distributional features in the data.

7 Note that the demand function was estimated in a budget
share form and that the test statistics for heteroscedasticity
which are based on a Student’s t—-approximation indicate that the
conditional variance is inversely related to the fit X'g8.

8 This is a common response to rejection of the null when
one uses tests that are interpreted as implicit misspecification
tests. One should first try to modify the model specification to
account for the poor properties of the model revealed by testing
rather than directly adopting the implicit alternative. The lat-
ter less appealing alternative would in the above case lead to
searching for a suitable normalizing transformation of the data.
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7. CONCLUSION

In the paper the transformation family introduced by MacKin-
non and Magee has been applied in the Tobit framework to
derive a score test for misspecification with one degree of
freedom. The test statistic is found to be sensitive for
misspecification in the first three conditional moments of
the positive observations in the Tobit model. The test is
compared with the well known RESET-test as well as with
score tests which also have one degree of freedom and test
for linearity of the mean and the type of heteroscedasticity
related to the mean of the latent variable in the model.
Finally an empirical example has been presented in which the
derived test clearly indicated excess skewness in the Tobit
residuals and simultaneously accounts for the results given
by the other two score tests mentioned above. Because the
test statistic is easy to implement it is recommended that
it should be routinely calculated and used in model diag-
nostics in applications based on the Tobit model.

Robust estimation methods are best seen as a complementary
rather than an alternative tool to diagnostic methods such
as the test developed in the paper. First since robust
estimation methods assume symmetric error distributions,
e.g. (Powell, 1986), tests for possible skewness in the data
should precede the application of such methods. Second
diagnostic methods may result in the recognition of impor-
tant phenomena that might otherwise have gone undetected.
This was demonstrated in the empirical example where the
outlying observations labelled as "heavy drinkers" may
indicate cases under which the consumption process works
differently. Indentification of phenomena like this may in
fact have at least equal scientific importance than the
analysis of the bulk of data.
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APPENDIX

Using repeatedly the equations for the conditional moments

of positive observations in the Tobit model (24) (i)-(iv),
one can write

h?1 En 1 T T 2
V. = Yy = 2 —_
v ——g//(o)z k =1 Z[Ik (§uk(xkﬂ * ) (xkﬁ * uk)) }

y [((X,Iﬁ)‘* + 10 (X48)2 + 7)a(x8) + ((x[B)3 + 9x;ﬁ)¢(X.Iﬁ)], (A1)
k =1

N

similarly,
r n )
Y Z’(Ik hy? (2hy, - x;p))
_  h 1| k=1
v S %y T 3 n
g’ (0) >
k=1

(A 2)
r

02 [((XZW + 5xig)e(xip) + ((x[g)2 + 4)¢>(XZB)]

=

n

_k2=:1 [((xlp)z + 1)<1>(x;ﬁ) + (Xlﬁ)cb(xlﬁ)]xk




