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ABSTRACT: In this study a non-parametric estimation method
for the Lorenz and concentration curves 1is presented. The
estimator is a collection of 1local fits each based on
weighted least squares utilizing a set of nearby observa-
tions. The method is well suited for grouped data with only
a few observations available. In the study parametric forms
for Lorenz curves are compared. These are the generalized
Gamma and Beta functions due to Kakwani and Podder and the
elliptical form presented by Villasefior & Arnold along with
a simple form based on a fourth degree polynomial fit. An
empirical example is presented in which the fits are com-
pared on their ability to estimate the Gini coefficient and
the location of the mean and mode of Finnish consumption
distribution. The easily applicable polynomial fit is found
to produce results on closely similar level of accuracy as
the other methods which are specially constructed for the
particular estimation exercise. This finding encourages the
application of the former method in situations where no
specially tailored functional forms are available, eg. in
the case of concentration curve analysis.
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TIIVISTELMA: Tutkimuksessa esitetddn ei-parametrinen mene-
telmd Lorenzin ja keskittymiskdyrien estimoimiseksi. Kay-
tetty estimaattori on kokoelma lokaaleja sovitteita, joista
kukin

perustuu painotettuun pienimmin nelidsumman estimointiin
kdyttden ldhiympdristdn havaintoja. Menetelmd soveltuu hyvin
myds sellaiseen luokiteltuun aineistoon, jossa on kaytdssa
vain muutamia havaintoja. Tutkimuksessa vertaillaan Lorenzin
kidyrille esitettyjd parametrisia funktioita. Kakwanin ja
Podderin esittdmid yleistettyjd gamma- ja betafunktioita
verrataan Villasefiorin ja Arnoldin esittdmddn elliptiseen
muotoon. Tarkastelun kohteena on myds suoraviivainen neljan-
nen asteen polynomisovite. Empiirisessd sovelluksessa sovit-
teita verrataan siind suhteessa, miten hyvin ne estimoivat
Suomen kulutusjakauman Gini-kertoimen ja jakauman keskiarvon
sekd moodin. Helpoiten sovellettava polynomisovite tuotti
ldhes yhtd tarkkoja tuloksia kuin muut menetelmdt. Tamd
havainto rohkaisee menetelmén soveltamista myds sellaisissa
tilanteissa, joissa rdatdldityjd funktiosovitteita ei ole.
Nain esimerkiksi on laita keskittymiskdyrid analysoitaessa.

ASIASANAT: Eriarvoisuus; Lorenz kdyrdt; Funktioesitykset;
Ei-parametrinen estimointi.
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1. INTRODUCTION

In the economic analysis of inequality and redistribution
much effort has been spent in developing methods to describe
income and consumption distributions. A popular approach
adopted in the literature is to analyse inequality with the
use of the more informative Lorenz and concentration curve
techniques in connection with derived inequality indicators,
generalized Gini and concentration coefficients (see eg.
Atkinson (1970) and Gastwirth (1972)). The theoretical deri-
vations do not, however, often take into account data imper-
fections 1likely to be encountered in practical empirical
analysis. A very severe problem concerns the error free
measurement of the various subcomponents of consumption and
income. An influential line of work starting with Kakwani
and Podder (1973) considers parametric proposals for a
functional relationship for the Lorenz curve  and its
econometric estimation, in contrast to an alternative strat-
egy of proposing a family of distributions as a descriptive
model of the income distribution (see eg. McDonald (1984)).

In this paper a chosen functional relationship for the
Lorenz curve is combined with a non-parametric local curve
fitting method due to Cleveland (1979). Here, a curve is
fitted locally to data using weighted regression with a set
of nearby observation with less weight given to the more
distant observations. The final fit is a collection of local
fits. The method is well suited for fitting grouped data
with information on only a few points on the Lorenz curve,
eg. quintile data. The present paper introduces a simple
fourth degree polynomial fit with endpoint restrictions for
comparisons with the generalized gamma and beta functions
(Kakwani & Podder, 1973 and 1976) and with the elliptical
form introduced by Villasefior & Arnold (1979). The fits are
compared on their ability to correctly estimate the Gini
coefficient, the mean and the mode from grouped data on

Finnish consumption.

Encouraging results from the comparisons with other func-
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tional forms suggest that the method based on a local poly-
nomial fit has a lot of potential applications in situations
where less demanding a priori restrictions are available for
the fitted curve so as to inhibit the application of
gpecially tailored functional forms. This is the case with
the concentration curve analysis. Note that after smoothing
out sample variability from the data, the estimated concen-
tration curves may allow for more precise statements con-
cerning marginal conditional stochastic dominance. This
concept introduced by Slemrod and Yitzhaki (1987) in turn
allows interesting statements to be made on social welfare
with quite weak reliance on behaviourial assumptions. The
author has previously used the method to analyze Finnish
data on consumption expenditures and the utilization of

public welfare services (Suoniemi, 1993).

The paper is organized as follows. Section 2 introduces the
analytical framework and various functional forms for Lorenz
curves. Section 3 presents the non-parametric estimation
method used in the study. In section 4 an empirical applica-
tion is presented. Here, the different functional forms are
compared on their ability to correctly estimate the Gini
coefficient, and the location of the mean and the mode in a
case where grouped consumption data with differing numbers
of groups are considered. The final section concludes the
study.



2. FUNCTIONAL FORMS FOR LORENZ CURVES

In this section methods for parametric estimation of Lorenz
curves are presented. The Lorenz (and concentration) curves
are frequently used to represent and analyze the size dis-
tribution of income and expenditure, respectively. The
Lorenz curve, L{(p), is defined as the proportion of income
which is earned by the least privileged p-fraction of con-
sumers, i.e.

F(p)
Ly (p) = ldey/%, withpe [0,1]. (1)

Above F is the cumulative distribution function of income,
y, and M, is the mean income. The concentration curve of
expenditure on a commodity, x, is defined similarly as the
proportion of aggregate consumption of x which is consumed
by the least privileged p-fraction of consumers w.r.t. the
distribution of y. More specifically, the integrand in (1)
is replaced with x which is defined as a function of vy,
E(x|y), and M, replaced with the mean expenditure M,. The
concentration curve is convex (concave) to the origin if the
income elasticity of the commodity is positive (negative).

Several families of distributions have been proposed as
models for the income distribution, see McDonald (1984). An
alternative research strategy is to consider a functional
specification for the relationship L(p). The following
characterization of Lorenz curves has been attributed to
Gaffney and Anstis (Villaseﬁor and Arnold (1989)).

Proposition 1 Assume L(p) is a continuous function on the
interval [0,1] with the second derivative, L". The function
L(p) is a Lorenz curve if and only if

L(0) = 0, L(1) =1, L'(0*) > 0, and L"(x) > O

for all x in the open interval 10,1[.
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An early proposal for an explicit parametric function was
put forth by Kakwani and Podder (1973). They set

L(p) = plexp{-n(1 -p)}, withl<d<2, 9 >0. (2)

The curve defined by (2) will below be referred to as the
generalized gamma function or the Kakwani-Podder I-form.

On the other hand, Villasefior and Arnold (1989) noted that
.segments of ellipses provide a flexible family of Lorenz
curves which perform "remarkably well in fitting the data".
Start by defining the general quadratic form

ax® + bxy + cy? +dx + ey + £ = 0. (3)

This includes many curves (x,y) passing through the points
(0,0) and (1,1) which satisfy the conditions of the preced-
ing theorem and hence may be considered as Lorenz curves.
The curve is a segment of an ellipse, a parabola or a hyper-
bola as b? - 4ac < 0, = 0, or > 0. In order of the curve (3)

to pass through the end points (0,0) and (1,1) one must have

f =0, (4 a)
and

e=-(a+b+c+d. (4 b)
If ¢ = 0, the curve (x,y) represented by (3) collapses to a

hyperbola. If ¢ # 0, one may normalize and set ¢ = 1 with no
loss of generality. Taking into account the end point rest-
riction (4 b) one may write (3) in the form

vyl -y) =a(x?-y) + by(x-1) + d(x-y), (5)

which is well suited for fitting the data. In this case the
equation (3) is a quadratic equation in y and it has two
roots

[—(bx +e) + (ozx2+48x+e2)"5] (6)

L(X) = 5 ’
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where e = -(a + b + d + 1), o = b*> - 4a, and 8 = 2be - 4d.

Villasefior and Arnold (1989) note that the root obtained by
setting the plus-sign in the middle of expression (6) corre-
sponds either to a bathtub shaped or a monotone density
function. Therefore, they have limited suitability as des-
criptions of say, income data. The class obtained under the
minus sign contains hyperbolic (a > 0), elliptical (a < 0),
and parabolic (a = 0) Lorenz curves. Villasefior and Arnold
(1989) focus on elliptical Lorenz curves and present necess-
ary and sufficient conditions on the parameters, for (6) to
represent an elliptical Lorenz curve. Furthermore, they
characterize the underlying density and the class of dis-
tributions with elliptical Lorenz curves. In the present
paper the location of the mode and the mean relative to the
median is examined as a summary way of describing the under-

lying density distribution.

Among the numerous other suggestions the modified Beta
function developed by Kakwani and Podder (1976) seems to be
the most influential. In this case the original domain of
the argument, [0,1], is first changed to [0,V2] by a change
of the coordinates (p,L) -» 2%(p+L,p-L) = (m,5). Geometri-
cally one now measures orthogonal distance of the original
Lorenz curve from the egalitarian line. In the conventional
Lorenz box-diagram this line is the diagonal through the
unit square (figure 1). Next the transformed (m,9)-
coordinates are connected by an application of a modified

Beta function

n = aw“(vai—w)ﬁ. (7)

In logarithmic form which is amendable for estimation the
result is (given in original (p,L)-coordinates)

log[2™(p-L(p))] = loga + alog[2™(p+L(p))]

.+Blog[%5—2%(p+14p))], (8)

The above expression will be referred to as the generalized
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beta function or the Kakwani-Podder II-form.!

Alternative specifications have been proposed by Baylock and
Smallwood (1982) who use the Box-Cox transformation to
extend the Kakwani-Podder II functional form while simulta-
neously allowing for heteroscedastic errors in fitting the
curve and by Rasche et al. (1980). These proposals are, how-
ever, not considered in detail here but a very simple form
is considered instead.

Here, one utilizes a fourth degree polynomial

y = ax* + bx® + ex* + dx + F. (9)

with the end point restrictions

l1=a+b+c + d.

Taking into account the end point restrictions one may solve
for d and write (9) in the form

X -y=a(x-x*) +b(x-x*) + c(x-x?). (10)
which can be readily applied in estimating the curve.
The following results are useful for examining whether a

given Lorenz curve is appropriate for representing an income
distribution. First differentiate (1) to get

Ly (p) = F'(p) /M, withpe [0,1]. (11)

Therefore,

! The Kakwani-Podder function has singularity at the end
points. This, however, has been found to produce no material
effect in empirical applications (Kakwani, 1980). Above the fun-
ction is given in the original form (Kakwani & Podder, 1976).
Note, however, that the extension of the domain which produces
the various -terms has no material effect on the subsequent
curve fitting.
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Li(p) s1 & Fl(p) =M, Vpel01]. (12)

The above formula shows how the location of the mean,
L' (p) = 1, is determined if the Lorenz curve of the dis-
tribution is known. By further differentiation one obtains
(Villasefior and Arnold (1989))

Proposition 2 If L"(p) exists and is positive (almost)
everywhere in an open interval Ip;,p,[ then the corresponding
distribution F has a finite positive density in the interval
IML (%) ,ML(x,) [ and the density is given by

f(y) =1/ML" (F(y)). (13)

Finally, one notes by differentiating (13) that the location
of the modes are obtained as the points of singularity of

the third derivative, L’’’, of the Lorenz curve.

The Gini concentration coefficient is widely used as a
summary measure of the extent of inequality. It is calcu-
lated as twice the area between the forty-five degree line
and the Lorenz curve, using either of the two formula

1

Gly) =1 - 2l'LF(p) dp (14)

= 2Cov(y, F(y)) /M, (15)

where M, is the mean of the variable y. Subsequently, in the
paper the functional forms of the Lorenz curve are evaluated
by comparing how successful they are in estimating the Gini
coefficient, and the location of the mean and the mode.
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3. LOCALLY WEIGHTED REGRESSION

Consider a random sample of size n, (X;, ) with (possibly)
unequal sampling weights w, 1 = 1,...,n. For notational
convenience let the weights be such that Y o, = 1, ignoring
the estimate on the size of the finite sampling population.
Let (X3, wg), 1 = 1,.., n, be the (ascending) order statis-
tics of X with the corresponding weights attached. The

frequency distribution function is given by

), (16)

- ()
X(i+l) X

i-1
1 (.0-+ Tw
Fn(x) =Ew0)+%w(i)+§ @i+1) (i)} (X_X
: (1)

where i is the largest integer with X; = X.

The corresponding non-parametric estimate of the Lorenz
curve 1is given similarly by, L,(0) = 0, L, (1) = 1, and
for p € 10,1[

i-1
W X, oy T X
E“’U)Xm + i“’(:‘)Xm S RGO R Qa3
2 2 X -X
- 1 (L +1) )
L (p) =

w, X,

(X_X(i))

—Pq:

(17)

where i is the largest integer with X; = X, and p = F (x).2

The Lorenz curves are estimated in this study by using a
non-parametric local fitting method based on an idea due to
Cleveland (1979). The raw data consists of a frequency
Lorenz curve (F,, L) which is based on the frequency dis-
tribution function of the data and is given in a parametric
form by (16) and (17). The estimation procedure used here is
a smoothing filter applied on the frequency Lorenz curve.

2 In the case of ties one orders the observations that are
affected w.r.t. the weights (in decreasing order) to guarantee
succesively increasing slopes on the piecewise linear Lorenz
curve connecting the points given by (16) and (17).
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This filter has two elements. First, a parametric function
which is locally fitted to the data near a given point, say
t using weighted least squares. Second, a weight function,
or a kernel, that assigns less weight to more distant obser-
vations. Therefore points that are close to t play a large
role in the determination of the fit u(t) while points far

away have a lesser role.

In this study the following specific kernel function

is used, for points t;, i = 1,..., n,
t,-t ,
w,(t,) = ¢[—'Y_]’ if |t - t] <2.5y,, and (18)
t
=0, if |t, - t| = 2.57,, (19)
where ¢ is the Gaussian function, ¢(u) = exp{-u?/2}.

In estimation one selects the bandwidth locally as to guar-
antee a sufficient number of observations, say 2k+1 that are
effectively involved in the local fit. This is done by
centering the data on t; and setting vy so that |t; - u| =
2.5y, at the 2k’th nearest neighbour of t;. In considering
the asymptotic properties of theynon-parametric fitting pro-
cedure one will select the bandwidth so as to guarantee that
the number of effective observations tends locally to infin-
ity while simultaneously the bandwidth gets to zero, as the
sample size goes to infinity.?

Congider using a local base of polynomial functions
{1, £t-u,..., (t-u)™} in the local fit of data on (t,y) near
a given data point t. Let T, = (1, t-t;, ..., (t-t,)™ denote

® In the procedure used in the present application the choi-
ce is done automatically depending on the total number of points
in the sample, n, so that the number of observations, 2k +1, ef-
fective at the local fit gets to infinity at order n*® (see Table
1) . By ordering the observations by t the computational burden
is considerably diminished. Estimation procedures that incorpo-
rate all the above features are written using GAUSS™ (Aptech
Systems) programming language and are available from the author

on request.
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the m+1 -dimensional column wvector asgsociated with the
observation i, i = 1,..., n, and T, be defined similarly.

The estimated local parameters are given by
-1

b(6) = | Y wi(g) TTT| | ¥ w(t) %L, (20
1 1

with the weights given by (16) and (17). The local fit at u
near data point t is given by

-1

/“l'n(ul t) = bn(t)TTu = T"T let(tj) T}'I}T Xl: M(tJ)YITJ * (21)

At the point u = t, T, = (1, 0,..., 0) and the local fit

u

Ua(t,t) 1s given directly by the parameter estimate of the
constant term in the local fit. Similarly

= k1 [b,(t) 1, (22)

n

i.e. the k’th coefficient of the Taylor expansion of the fit
¢ at point t is given by the k’th component of the vector
bn(t)l k = 1,..,m.

To arrive at the (local) smoothing filter interpretation

one can write the fit as a weighted mean of original obser-

vations

w,(u, t) =Y K(u, t,y,)y, (23)
1

where

(24)
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Generally the estimation procedure can be seen as a member
in the class of non-parametric regression. Another and
widely used non-parametric regression procedure is smoothing
splines (see Eubank, 1988). Splines have been popular
because they are the solution to an intuitively appealing
mathematical optimization criterion. But, on the other hand,
they optimize on a global criterion and are not generally
local. Secondly, since splines are results of optimization,
it may be difficult to determine how they operate on data.
In particular, it is considerably more difficult to deter-
mine the effective bandwidth of a spline estimate at a given
point whereas in the above case this is straightforward to
do.* In large data sets, a case less relevant to the appli-
cation examined in the present paper, the computational
requirements of splines are substantial.

In this study local fits are estimates using a fourth degree
polynomial fit (10), the elliptic form (5), and the general-
ized gamma (2) and beta functions (8). The Gini concentra-
tion coefficients are calculated analytically by piecewise
integration of the locally smoothed curve. In the case of
the frequency Lorenz curve, the area between the forty-five
degree line and the Lorenz curve can be calculated either
directly or by using the covariance formula (13). These
methods give values with no discrepancies at the reported

level of accuracy.

4 This is particularly important near the extreme points of
the data. Here, a local fit can often guarantee a better fit.
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5. AN APPLICATION AND COMPARISONS

Locally weighted regression is used to produce smoothed
Lorenz curves using both the elliptical and a simple fourth
degree polynomial fits of the data and the corresponding
forms due to Kakwani and Podder (1976). The data are drawn
from the Finnish 1985 Consumer Expenditure Survey, collected
by the Central Statistical Office of Finland, for general

information see Tilastokeskus (1987).

The goodness of fit of the various functional forms are
compared by utilizing data in tabulated form with diminish-
ing degrees of information (number of income groups). Here
the complete microdata for 1985 (with 8200 obs.) are used
along with data on fractiles of one part per 1000th parts,
percentage data, decile and finally quintile data.

In table 1 the relative success of the methods in estimating
the Gini coefficient for total consumption data is shown.
The first estimate is based on the area under the Lorenz
curve calculated directly from the frequency curve based on
grouped data. The other columns are obtained by analytically
integrating the locally smoothed curves fitted on the same
data (details available on request).

The last two columns give information on the characteristics
of the local regression involved in the estimation. The
first of these gives the number of observations effectively
used in each local fit, and the last column gives the number
of observations in the data used for estimation, eg. 10 in
the case of decile data (the third row). Note that the local
fit used in the case of the quintile data (the fourth row)
uses all the observations but naturally with greatly varying
weights across the local fits. Last row gives the results
for the whole sample available.

A notable feature of the results is that all locally fitted
parametric curves produce results that are superior to
simple formula using frequency data in cases of tabulated
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data at conventional levels of availability.’ The accuracy
in estimating the Gini-coefficient is remarkable even in the
case where only quintile data is available. To some degree
this is due the nice behaviour of the underlying specific

distribution.

Table 1: Estimation of the Gini-coefficients.

Gini coefficients Number of observations
Frequency Elliptic Fourth deg. Kakwani Kakwani '

distr. curve polynomial Podder 1 Podder 11 2K+1 N
0.3328 0.3327 0.3328 0.3331 0.3328 199 1000
0.3327 0.3328 0.3329 0.3325 0.3329 43 100
0.3289 0.3327 0.3331 0.3282 0.3329 . 9 10
0.3200 0.3323 0.3327 0.3285 0.3330 5 5
0.3328 0.3327 0.3328 0.3329 0.3320 813 8200

An additional property of the local fit concerns its ability
to estimate the dehsity of the underlying data. On this
point the simple polynomial regression is a priori on a less
solid ground than methods that incorporate the necessary
restrictions directly in the functional form. An examination
of the estimated parameters reveals that the parameter
estimates fulfil the constraints implied by proposition 2.6

In table 2 the estimates of the mean are given for the fits

employed’

5 some allowance in comparisons should be made for the fact
that the Kakwani-Podder I -form has locally one estimable para-
meter less than the other functions.

6 In fact one may run into some minor but annoying local
difficulties in some fits covering small segments of the inter-
val [0,1] if relatlvely disaggregated data are used (the first
and the last rows) in conjunction with greatly varying sample
weights across the original observations.

7 When local estimation methods are employed, the mean (and
the mode) are estimated in the following way. For each local
interval the corresponding local estimate of say mean is made.
If the estimate lies within the relevant interval it is chosen,
otherwise, it is discarded. :
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Table 2: Estimation of the Mean.

Fractile of the mean Number of observations
Elliptic Fourth deg. Kakwani Kakwani

curve polynomial Podder I Podder 11 2K+1 N
0.5790 0.5798 . 0.5775 0.5791 199 1000
0.5815 0.5863 0.5750 0.5821 43 100
0.5861 0.6040 0.5650 0.5911 9 10
0.5865 0.6098 0.5604 0.5915 5 5

Examination of the total sample gives the estimate of 0.5771
for the location of the mean of the distribution. In this
respect the fourth degree polynomial fit is slightly
inferior to the other fits when tabulated data with only few
groups are available.

Table 3: Estimation of the Mode.

Fractile of the mean Number of observations
Elliptic Fourth deg. Kakwani Kakwani

curve polynomial Podder I Podder 11 2K+1 N
0.2952 0.2711 0.1549 0.0842 199 1000
0.2736 0.2503 0.1566 0.0852 43 100
0.2456 0.2561 0.1552 0.1177 9 10
0.2478 0.2645 0.1509 0.1215 5 5

In table 3 the estimates of the mode are given. In this case
the results vary a lot with the elliptic fit and the fourth
degree polynomial fit giving comparable values. This may be
partly due to the fact that these two forms imply global
unimodality with a simple 1linear formula of parameters
- characterizing the modal value (Appendix). In the case of
‘the Kakwani-Podder forms the corresponding equations are
more complicated giving some possibility for bimodality.®

8 In the case of the generalized gamma function, KP-form I,
the modal values are given by the roots of a third degree polyn-
omial (Appendix). It turned out, however, that only one of these
is the proper choice for the mode in the case considered here.
Further details on the calculations are available on request.
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It should be noted that although unimodality is a common
feature of distributions that are frequently chosen to
describe, say income data, (McDonald, 1984} it is a conveni-
ent assumption and not necessarily a property of the actual
data. In the above case examination of the frequency density
distribution of the total sample gives indication of mul-
tiple local maxima. If one decreases the number of classes
the number of candidates for a modal values decrease. A
global maximum value of the density seems to emergence at
around the value 0.28 which is quite near the values given
by the methods corresponding to the first two columns of
table 3. In contrast, the methods proposed by Kakwani &
Podder give markedly different values. This probably illus-
trates the sensitivity of results in trying to estimate the
third derivative of a curve, although figure 2 shows that
all four curves fitted to quintile data are remarkably close
to each other both in actual values and in terms of the

derivative of the curve.’

The final point to be made concerns the performance of the
simple polynomial fit. This is on a similar level of accu-
racy as the other curves specially constructed for this
particular estimation case. This 1s probably due to the
local estimation method which is particularly successful in

our application (figure 2).

Furthermore, in the simple polynomial case the Gini concen-
tration coefficient and the mean and modal values of the
distribution can be estimated with considerably less compu-
tational burden than in the other cases considered in this
paper. The above comforting results make the polynomial
regression a particularly appealing method in situations
where a priori restrictions on the functioﬁal form are less
demanding or even non-existent. This is true for instance in

> A slight caveat concerns the rather tedious and intranspa-
rent formulae and calculations needed to produce the modal point
in the case of the generalized beta function, KP-form II (see
the Appendix). Although the calculations have been repeatedly
checked and double checked it is difficult to rule out a possi-
ble error definitely.
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the case of the concentration curves where one is only able
to set the end point restrictions on the fitted curve.

5. CONCLUSION

In this paper locally weighted regression has been applied
to produce a non-parametric estimator of the Lorenz curve.

Some influential proposals for a parametric form of a Lorenz
curve are compared with a simple polynomial function on
their ability to fit grouped data and correctly estimate the
Gini coefficient and the mean and the mode of the distribu-
tion. In these respects the simple polynomial method has a
similar level of performance with the rivals that incoxrpor-
ate the necessary restrictions directly in the functional

form.

The positive and encouraging implications of this study are
the following. The method based on a local polynomial fit
has many potential applications in situations where less
demanding a priori restrictions are available for the curve
to be fitted so as to inhibit the application of specially
tailored functional forms. This is the case with concen-
tration curve analysis. Here smoothing out sample variabil-
ity from the raw data and using estimated concentration
curves for inferential purposes may allow for more precise
statements concerning marginal conditional stochastic domi-
nance (Slemrod and Yitzhaki, 1987) between, say expenditures
on various consumption categories. This, in turn, allows one
to make interesting statements on social welfare with quite
weak reliance on behaviourial assumptions. The author has
previously applied this method to Finnish data to examine
consumption together with the utilization of public welfare
services (Suoniemi, 1993).
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APPENDIX

The location of a mode of the underlying distribution is
characterized by the condition, L’’'’(p) = 0. Here it is
ghown what the corresponding condition is in the (m,7n) -

representation of the Lorenz curve introduced by Kakwani &
Podder (1976).! Start by defining

IR .o

A gtraightforward differentiation gives

dn 1-L

= , (A 2)
o 1+ I

noting that dy/dp = 2"(1 - L’) and dn/dp = 27%(1 + L').

incidentally (A 2) shows that the mean (L’ = 1) corresponds

to the point where d9/dm = 0. This occurs at the point

n= V2o (A 3)
a+B
Similarly,
#n _ __2/21 (A 4)
d (1 + L)
Furthermore,
3 - n Y2
0 . _-aL% 127" (A 5)
am (1 +L)* (1L +L')S
Finally, one can conclude that the condition, L’’’ (p) = 0,

implies that

,n/// (1 + ,,’/) = 3(,'7//)2. (A 6)

0 The equations for the first two derivatives, (A2) and
(A4), were obtained already by Kakwani & Podder, in terms of the
underlying variable y. The derivation in terms of p and the ot-
her formulae seem to be new.



23

Considering the other functional forms the polynomial fit
gives the unique modal point at

p = _74%’ (a7 1)
The mean is one of the roots of a trinomial

4ap® + 3bp? + 2cp +d = 0. (A 7 ii)
The elliptic fit gives the mean as a root of

(b+2) (ap*+Bp+e’) % + = (20p+B) = 0, (a 8 1)

where the sign depends on which of the branches is selected.

The unique mode is simply given by

=—B A 3
p 20’ _ (A 8 11)

The generalized gamma function by Kakwani & Podder (1976)
gives the mean as a root of

(6-1)logp + n(p-1) +*log(np+d) =0, (A 9 i)

and an estimate of the mode as a root of

(np+6)% - 36 (np+d) + 26 = 0. (A 9 ii)
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Figure 1. Lorenz curve
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Figure 2: Lorenz curves fitted on Quintile data.
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