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ABSTRACT: The paper presents a discussion how firms rationally adjust the level
of their recruitment effort in relation to the ease of filling the vacancy through public
unemployment offices. This induces dependence between the durations in the two chan-
nels of recruitment. Multivariate models with random proportional hazards generated by
mixtures, the frailty distributions are used in the paper to discuss and estimate a compe-
ting risks model with mutually dependent recruitment channels using Finnish vacancy
duration data. The channels of recruitment are found to be (positively) associated.
Vacancy durations vary with respect to region, industry, occupational status and local
labour market conditions. The explanatory variables have a more moderate effect in the
private recruitment channel possibly reflecting a rational adjustment in the search effort

by the employer.
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mixtures, frailties.
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TIIVISTELMA: Tutkimuksessa tarkastellaan, miten yritykset sopeuttavat tyonteki-
jdn etsintdponnistelujaan suhteessa sithen, miten helposti avoin tydpaikka tdyttyy tydn-
vilityksen kautta. Tim3a saa aikaan riippuvuutta niiden kahden tiyttokanavan vélille.
Ty6ssd kiytetidn moniulotteisia malleja, joissa generoidaan suhteellisen satunnaishasar-
din malleja sekoitejakauman (frailty) avulla. Uudenmaan avointen tydpaikkojen aineis-
toa kiyttien estimoidaan kilpailevien riskien malli, jossa tayttokanavat ovat positiivisessa
yhteydessi toisiinsa. Kestot eri kanavissa riippuvat aluetta, toimialaa ja ammattiase-
- maa kuvaavista muuttujista seki paikallisesta tyomarkkinatilanteesta. Vaikutukset ovat
suhteellisesti suurempia tyénvilityskanavan kautta tapahtuneeseen tayttéén. Tama voi
viitata sithen, ettd ty6nantaja rationaalisesti sopeuttaa etsintdponnistelujaan.

ASTASANAT: Avoimet tydpaikat, kilpailevien riskien malli, moniulotteiset jakaumat,
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1 Introduction

Vacancy durations are in many empirical studies found to depend on various characte-
ristics of both the employer and jobs offered, on regional labour market conditions and
on the recruitment channel (van Ours 1989, and van Ours and Ridder 1991). Measu-
ring the effects of those determinants may provide information on the matching function
which is a key concept in the flow approach to labour markets (Blanchard and Diamond
1989). Van Ours and Ridder (1991) consider the role of hiring standards in search for
new employees. Employers may lower the job requirements if the waiting cost due to
an unfilled vacancy is high and the wage associated with a vacancy is given. They find
that job requirements are not lowered over the duration of the vacancy which suggests
- that the reservation productivity level does not decline over time. In a companion paper
Van Ours and Ridder (1992) present some evidence that employer search is nonsequen-
tial. The choice of recruitment channels and methods are rarely revised as the search
continues. These observations are used here to present the recruitment decision in a
simplified, 'reduced form’ framework.

In the present paper the focus is on the recruitment channels. It is argued that the
recruiment channels are endogenously affected by firms’ decisions how much resources to
spend in using private recruitment channels in contrast to using the public employment
offices that are free. In an environment where there are costs of obtaining information
the employers buy advertisement and make other efforts to lower the corresponding
information costs of jobseekers. There is a natural trade-off between the effort costs and
the waiting costs of an unfilled vacancy.

Various market frictions may affect that the duration of vacancies is too long. This
may hold even under the conditions of substantial unemployment and may inhibit firms
from fully exploiting their growth potential. In the case of an upswing these effects
may slow down the growth in employment. The examination in the paper gives some
indication that the recruitment costs may play a role here. Improving labour market
conditions for the employers make them reduce vacancy advertisement, and therefore
the duration of vacancies is longer than it would be without this rational adjustment in
effort level. The gain to the firms accrues both in terms of less advertisement costs and
~ partly in the form of reduced waiting cost. On the other hand, the improved performance
of public employment offices in their job-worker matching effort accrues to the society
partly in the form of reduced advertisement costs to the employers but is shown in a
dampened manner in the mean vacancy duration and unemployment rate.

Multivariate proportional hazards models with random coefficients of proportionality
generated by mixtures, the frailty distributions (Vaupel et. al. 1979 and Hougaard, 1984)
are used in the paper to consider and estimate a competing risks model with mutually
dependent recruitment channels using Finnish vacancy duration data. A related depen-
dency measure, the cross-ratio function (Oakes, 1989) is used to characterize association
between the durations. The present models are based on parametric assumptions such as
exponential, Weibull or Burr distribution which are widely used to analyze count proces-
ses in applied labour economics. The parameters are estimated by solving numerically




the nonlinear estimating equations given by the principle of maximum likelihood.

The remainder of the paper is organized as follows. Section 2 presents a simplified
model of job recruitment to discuss the choice of the optimal effort level by the employer.
Section 3 introduces a class of multivariate distributions that are generated by a mixture
model having a random proportional hazards component, called a frailty. Section 4
develops the analysis in a competing risks framework and reports the findings from the
estimations. Section 5 contains the concluding remarks.

2 A simplified model of job recruitment

Consider the following situation: a firm is about to fill a vacancy and incures losses L(t)
in present value if the vacancy is unfilled up to the time t.! The expected waiting cost is

L= /0 * L(t)dF, = /0 ~ S(t)dLs, (1)

by partial integration, L(0) = 0. Above F is the distribution function of vacancy dura-
tions, T, and S is the corresponding survivor function, S = 1-F, S(t) = Pr(T > t). In
the case of a constant current cost, Lo, dL; = e~% Lo, where § is the discount rate.

Introduce next competing channels for job recruitment. The first channel is through
unemployment offices, the use of which is free to the firm. In contrast, the second channel
can be affected by advertisement bought by the firm. It is assumed that the firm has
no preference over applicants from either channel.? The wage associated with a vacancy
is considered fixed. Lastly one allows for a withdrawal of an unfilled vacancy. In the
following one considers the model

S = exp{w log B; + walog B, + log B3}, (2)

where B; is the baseline survivor function of channel i, i= 1,2. Symbol a,a > 0 indicates
the effort level with an attached cost, c(a). We have assumed that the above survivor
functions B; and B, are dependent on firm and vacancy specific individual factors, w
which are known to the firm in making the decision how much resources c to spend to
get a desired effect by advertising.

In (2) the customary proportional hazard assumption in the two channels w.r.t in-
dividual effects w and advertisement decision a is invoked. The common dependence
through w is written in a form which will later prove useful in the econometric formu-
lations of the model, on the assumption that conditional on w, called a frailty (Vaupel

!Since the primary interest lies in econometric model building the decision problem is not presented
in a dynamic optimization framework with a sequential advertisement decision. At least in a time-
homogenous set-up no significant new insight was found. In contrast, in what follows the advertisement
decision is an once and for all decision made at the beginning of the vacancy duration. Empirical
studies by van Qurs and Ridder (1992) indicate that employer search is nonsequential. The choice of
recruitment channel and methods are rarely revised as the search continues.

In cases with adverse selection there may be a separating equilibria with self-selection of the
applicants and with employers specializing in the exclusive use of one of the search channels, see Barron
and Mellow (1989).



et.al. 1979), w > 0, the channels are independent. Note that the effect of advertisement
in the second channel is through the term A = wa which means that advertisement is
more effective for those vacancies that are easier to fill by the first channel, i.e. have
a high w, than for those that are generally hard to fill, i.e. have a low w. This does
not sound too unrealistic.® The final survivor function Bj captures the effect of vacancy
withdrawal. In addition the present value dL can be easily absorbed in the last term.*

To make things easier, assume that the baseline survivor functions satisfy By = B, =
B.? The firm minimizes total costs (TC) which are due to the direct cost of advertisement
(c), and expected waiting costs (L),

TC = o(a) + L(w,a) = c(a) + ]0 " exp{w(l + a)log B(t) + log Bs(t)} dt,  (3)

w.r.t advertisement effort a.
The first order condition for an optimum is

d(a)=—-L,= —%g— =—w /000 log B(t) exp{w(1l + a)log B(t) + log B3(t)} dt.  (4)

For fixed parameter values the R.H.S of (4) is decreasing in effort level, a.® Assume
increasing marginal costs, ¢ > 0, and that marginal reduction in waiting costs —L, is
decreasing in w. It is easy to show that the optimal effort level is a decreasing function
of w.” A simple comparative statics exercise reveals that at the optimum

dafdw ' —(1+a)f

Tew = = o ) (5)

where the positive function f is defined by
flayw) =w? [ ” (log B(%))? exp{w(1 + a) log B(t) + log Ba(1)} dt. (6)
0

It has been observed that under plausible assumptions the effort level is a decreasing
function of w, where the latter variable measures the effectiveness of employment offices.
However, below we are primarly interested in the observable effect of advertisement on
the hazard of job-fulfillment through the second channel, i.e. the variable h = wa(w)
and its dependence on w. Since a = h(w)/w is decreasing in w, -h is a star-shaped

3Later we will relax the assumption on the specific functional form h = wa.

4Consider waiting costs which stay (ex ante) constant in current value through time, Lo and a fixed
discount rate 8. In this case L(t) = Lo [ exp{—6u}du, and dL; = Lo exp{~6t}. The term exp{—6t} can
be included in B3 as an exponential stopping rule, and the advertisement costs can be measured directly
in units of Lg.

SHere some sort of normalisation of the distribution should be used in order to separate the effects
due to w and the effort level a from those of the baseline survivor function.

®In this paper the terms (strictly) increasing are used in lieu of (increasing) nondecreasing.

"Using these observations it is immediately obvious that advertisement effort increases if marginal
costs diminish, or equivalently, the fixed current loss Lo, see footnote 4, increases or the discount rate
é goes down, or the probability of withdrawal decreases.




function. Therefore b is a subadditive function suggesting that unimodality may prevail
in commonly encountered cases. Below examples and simple conditions are given that
guarantee unimodality.

Consider briefly the case: ¢” > 0. Now

dafdw d'a+c —f
a/w ~ ale'+f)

The denominator in (7) is positive by the second order condition for an optimum. The
numerator can be nonpositive only if ¢’a — f < —¢. To get some intuition on this
condition recall that ¢/(a) = —L,, and L,, = f. Variable L can be interpreted as
the expected value of a waiting time, T where the duration has the survivor function
B(t)“*+"¥) B5(t). At the optimal effort level, a* the above condition is therefore equiva-
lent with ac”/¢’ 4+ Laa/Lo < —1. The L.H.S is the sum of two terms. The first one is the
proportional change in marginal direct costs if advertisement is increased and the second
one which has a negative value is the corresponding proportional saving in marginal
waiting costs if the effort level is adjusted on the envelope.

In addition one can see that with a high value of the parameter w, i.e. with a very
short expected value L, the above condition is more likely to hold. This may result in
that an initially increasing dependence of h on w is eventually a decreasing one. In this
case the particular vacancy is so much sought after that it does not pay to use adverti-
sement. Let us examine some simple examples, to get further feel of the problem.

(7)

NMhaw = 1

Example 1. Consider the simplest possible case where B corresponds to a time-
homogenous Poisson arrival process with a unit time intensity parameter, and the with-
drawal process (Bs) is a similar process with the parameter §. The last parameter
captures the combined effect, i.e. it is the sum, of the discount factor and the actual
cancelling intensity. In addition, the proportional hazard of the second channel, A = vwa
where v captures the effectiveness of advertising effort relative to that of employment
offices.

In the present case one can write (4) in the form

where h = vwa. Duration T has an exponential distribution with parameter (w + A+ 6),
and has an expected value (w + A + §)~*. This gives

d(h/(vw)) = Brwior (9)

Let first ¢’ = +. Then the observed hazard of the channel 2 is
vwa = h=-w-§+\vw/y, (10)

if the R.H.S. is positive, and zero otherwise.



The upper left panel of Figure 1 presents the marginal cost of advertisement and the
corresponging marginal reduction in waiting costs with some values of w. The upper
right panel provides a typical shape of the observed hazard related to channel two,
h(w) = vwa(w), as a function of w. One can observe that if employment offices are very
effective i.e. w is high enough it is not worthwhile to buy any advertisement. In this
case the marginal reduction in waiting cost is everywhere below the line in the upper
left panel which refers to the constant marginal cost of advertisement. This corresponds
to the region in the right corner of the upper right panel.® Note that no advertisement
is bought in the region near the origin. In this case the non-zero discount rate (or
probability of vacancy withdrawal) makes it not wortwhile to advertise those vacancies
that are almost impossible to fill.

Assume next linear marginal costs, ¢ = ya. In this case the observed hazard of the
second channel is a root of a third degree polynomial in h. It can be shown that the
trinomial has only one real root which in addition is always positive. In the panels in
the centre of Figure 1 we have given the corresponding graphics for this case. The same
general apperance as in the fixed marginal cost is maintained execpt that with increasing
marginal costs the hazard is increased less steeply and gets later to those values of w
where the monotone relationship is lost. Furthermore, assuming zero marginal costs for
a zero level of advertisement removes the region in the right where advertisement is never
worthwhile in the fixed marginal cost case.

Example 2. Consider the case where B corresponds to a Weibull distribution with a
duration shape parameter o < 1. In the previous example both unemployment offices and
advertisement have a constant hazard, i.e. they had a time-homogenous, ’ever-lasting’
effect on the vacancy duration. In the present case it is assumed that the effects of their
efforts may decay over time. The waiting cost is now

L= /°° exp{—(w + h)t* — 6t} dt = - [1 + [7 exp{-6t} dexp{—(w+ h)t° }] . (11)
0 6 0
where k = vwa. Change of variables z = (w + h)/*t gives

L= % [t = (w + BYVoL[6(w + )] |, (12)
where L., is the Laplace transform of a standardized Weibull variable with the parameter
a, and L [u] = Ee™*2.

In the present case one cannot give any closed form expression on the dependence
between the two hazards. Instead we have given some numerical calculations on the abo-
ve relation in the two bottom panels of Figure 1. The marginal cost of advertisement is
here a linear function. The bottom panels are constructed similarly as those correspon-
ding to Example 1. Note that the improved performance of public employment offices

8The observation is intimately related to the fact that marginal cost is fixed. In a more realistic case,
see below, one would allow a very small amount of advertisement to be bought at a very low marginal
cost to ensure an interior solution for the optimal advertisement decision.




in their job-worker matching effort moves the marginal savings curve (in waiting costs)
inwards from —Lg(wp) to —Lg(wy). The benefit to the society is partly in the form of
reduced advertisement costs to the employers which is shown in the bottom left panel
as an area under the marginal cost curve and partly as an increase in the hazard of the
second channel (bottom right panel in Figure 1). If the labour market conditions for the
employers improve further they will reduce effort level more and there is practically no
observable effect in the recruitment hazard of the private channel. The total effect on
the labour market is shown in a dampened manner in the mean vacancy duration and
unemployment rate.

The following characterization of (1) is useful to derive sharper results in comparative
statics since it covers most commonly encountered classes of survival distributions. Start
with

Lemma 1 Assume that with a monotone change of variables® t — y the expected waiting
cost may be written using a member in a location family of distributions:

L(w,k) = [ exp{—g(y - u(w + b))} exp{¢(v)} do, (13)

where g is an increasing function with the location u depending on variables affecting
the first channel, w and the second channel, h, respectively, with u' < 0. Let the implicit
density g'e™9 be strongly unimodal, i.e. the logarithmic density is a concave function of
pt0 The function ¢ which subsumes the withdrawal, discount process and the Jacobian
of the transformation y — t defines a o—finite measure on B, B C R. In this case the
derivative

Lu(w) = [ o' exp{~g(y - u(w + b))} exp{€)} dy, (14)

and log L,(k) is a concave function of u.
Proof: By application of Artin’s theorem, see Marshall and Olkin (1979), p. 452.

The first order condition for an optimum corresponding to (4) is given by

log ey (w, k) = log(—4') + log Ly (u), (15)
and the dependence of h on w can be written as

_chw/ch + ﬁ‘”/ﬂl + ﬂ/Luu/Lu
chh/ch - .U'"/,“' - NILW/LM
_ChW/(/"ch) + ,“'”/(l‘/)'2 + Luu/Ly,
canf(Wen) — w'[(u")2 = Lyu/Ly
%In most cases one considers the transformation y(t) = logt.

19This faciliates relatively straightforward estimation of the location function i, using for example
ML- or L-estimators.

B(w) =

(16)




Since (16) is obtained through division by px' < 0 the second order condition implies
that the denominator is negative in the present formula. The map w — w + h(w) is
increasing everywhere if ¢j), > —chy. Furthermore, the distributional assumptions of the
lemma guarantee that L,,/L, is a decreasing function of x. This implies that ~L,,/L,
is a decreasing function of w, since w — w + h{w) is an increasing map. One obtains

Proposition 1 If car > —Chy, and p"/(u')? is decreasing in p (increasing in w) and in
addition cp.,/(p'ch) increases while h'(w) < 0 then the dependence w — h(w) is at most
unimodal.

As a sequel to Example 2 consider Weibull duration with the functions y : ¢ — logt,
g:z+— exp{az}, p:x — —<logz."! Assume that the marginal costs are represented
by a power function in w and k, loge(w,h) = co + (1 + ) logh — Blogw, with v > 8.
Now '

hol (1/5) = —aB(1 + h/w). (17

If 3 > 0, this goes to —oco as w | 0, if & has a nonzero limit on the right at zero.
Consider the smallest value, w,, with k'(w,) = 0. If w > w,,, A’ < 0, and the function
(17) increases having the limit value —af as w T co. Therefore & is at most a unimodal
function of w.

In the empirical part of the paper a model with lognormal durations is considered.
Similarly, as above the model can be subsumed under a setup guaranteing unimodality
using the above results.

3 Bivariate survival models induced by frailties

This section introduces two variants of the base line model (3) where the individual effects
w affecting vacancy duration are partly unobserved and follow a given distribution. Since
these individual effects are known to the firms in making the advertisement decision but
not to the econometrician this induces dependence between the channels of recruitment.
After optimisation on the part of the firm one can write the joint survivor function for
the channels 1 and 2 conditional on w as

B(t1,t2) = exp{wlog Bi(t1) + h(w)log Ba(t2)}, (18)

where B; is the baseline survivor function of channel j, j= 1,2.

Below the econometric model is based on a class of distributions which have proven
fruitful in survival analysis. These are generated by a mixture model having a random
proportional hazards component, w, called a ’frailty’ (see Vaupel et. al. 1979, and
Hougaard, 1984) on the assumption that coiiditional on w, the channels are independent.
Introduce a frailty distribution, G,,. Furthermore, assume to simplify things h(w) = vw,
see below.

Uln this example —p”/(1/)? = —1, a decreasing function of w, and the assumptions of the lemma
clearly hold.




Now the unconditional marginal survivor functions are
Si(tr) = [ exp{wlog Bi(12)}dGy = L[~ log By(t)) (19)
Sa(tz) = /exp{wulog By(t5)}dG,, = L, [—vlog Ba(ts)], (20)

where L., is the Laplace transform of w, L,[u] = £,e™**. The mixture with G, has
the following property, for any pair of G,, and S; there exist a B; such that (19) holds,
Bi(t1) = exp{—L'[S1(t1)]}-

Since the durations Ty, T, are conditionally independent the previous representation
extends to the bivariate survivor function S(t) = S(t1,82) = Pr(Ti > t1, Tz > 1),

Sit) = /exp{w[log Bi(t1) + vlog Ba(t2)]}dG,,
= L[~ log Bi(t1) — vlog Ba(t1)). (21)

Recall that all bivariate distributions having the joint survivor function S(t1,%2) sa-
tisfy the following inequality S) < § < S, where S, = min{S:(¢1), S2(¢2)} is the Fréchet
upper bound and S; = max{S;(t1) + Sa2(t2) — 1,0}. In the more general case where %
is an increasing function of w it can be shown that S(t) is a totally positive function in
t1, and ¢,.1%2 Therefore, the random variables Ty, and T3 are associated and in particular
there is no possibility of negative correlation.'®

Next we introduce some concepts which have been used by Oakes (1989) to develop
the analysis of frailty models. First, these models are a subclass of the archimedean di-
stributions studied by Genest and MacKay (1986) which have the marginal distributions
as parameters.!* These have a general form

S(t1,t2) = p(g{S1(t1)} + ¢{S2(t2)}) , (22)

where p is a nonnegative decreasing function with p(0) = 1 and nonnegative second
derivative, and q is its inverse function, and S;(¢;) = S(¢1,0), and S; are the marginal
survivor functions. Here p satisfies a stronger condition, it is a Laplace transform.
The cross-ratio function which forms the basis of Oakes (1989) work is defined by
S(t)D125(t
D1 S(t)D,S(¢)
where D; denotes the operator —8/9¢;. The cross-ratio function introduced by Clayton
(1978) may be interpreted as the ratio of the hazard rate of the conditional distribution of

12The result follows since w and A and monotone in the same direction, z¥, z > 0 is a totally positive
function, and by Theorem 18.A.4.a, p. 488 in Marshall and Olkin (1979).

13Random variables (T1,Ty) are associated if Cov(u(T1,T3), v(T1,T2)) > 0 for all increasing functions
u, v such that the covariance exists, see Marshall and Olkin (1989).

14Marshall and Olkin (1989) consider more general families of multivariate distributions having mar-
ginals as parameters which are generated by mixtures. These allow also for initially dependent survivals
and they consider their relation to the various concepts of dependence introduced by Lehmann (1966).
These are appropriate to survival analysis but space limitations refrain the discussion here.



T1 given {Ty = t5} to that of T given {72 > ¢;}. The former is equal to f(t1]t2)/S(t1]t2) =
D125(t)/ D,S(t) and the latter is f(t1|T2 > t2)/S(41|T2 > t2) = D;1.S(t)/S(t). Note that
the cross-ratio function is symmetric in (71, T%). In addition the function is dependent
only on the rank of the observations, i.e. the model is invariant under a monotone trans-
formation of the time-scales. This property enables one to consider, say the logarithmic
durations with no change in the definition of 6*.

Oakes has shown that for archimedean distributions the cross-product function 6*
depends on ¢ = (t,t,) only through some function 6(v) of v = S(t). The function 6 is
given by the formula (o)

—vq" (v
6(v) 70) (24)

In addition he shows that f(v) can be interpreted as a measure of local depen-
dence which is closely associated with Kendall’s (1938) coefficient of concordance,
T = Ssign{(Tl(l) - Tl(z))(Tz,(l) — Tz(z))}, where T, i = 1,2 are independent copies of
T = (T1,T3). A pair (T — T®) is called concordant if (" — TOWTYM — T > o,
and otherwise discordant. In fact the ratio (6(v) —1)/(6(v) + 1) is a conditional version
of Kendall’s 7 in frailty models.

Model 1. Consider the case where individual effects have a positive stricly stable
distribution. These have Laplace transforms £(u) = exp(—~u®), with 0 < § < 1.1® For the
bivariate model (21), 8(v) = 1+ (1 —6)/(—6log v) which decreases from infinity to unity
as the survivor function v decreases from 1 to 0. The case § — 1 corresponds to indepen-
dence between T) and T3, and as § — 0 we obtain the bound S(t) = min{S;(t1), S2(t2)}.
The corresponding joint survivor function is

S(2) = exp{— [(~log Sx(t))"* + (log Saft2))/*] '}, (25)

and (—T3,—T3) have Gumbel’s (1960) bivariate Type B distribution of extreme values.
The marginal survivor functions have the form 5)(t;) = exp{élog B:(t1)} Note that if
B has a proportional hazard property only the coeflicient of proportionality is changed
- in formula (25).

The foundation for Model 1 is that in view of the central limit theorem it has a close
analogy with normal random effects model. On the other hand, the gamma form is
both flexible in shape and tractable for the purpose of describing the common random
component.

Model 2. In this case one considers the class of frailty distributions with a constant
cross-ratio function 8(v) = 6. Solving for the differential equation corresponding to (24)
gives Clayton’s (1978) original model with q(v) = (1/v)?~! — 1, with ¢ > 1, giving
the Laplace transform of w, £,(u) = p(u) = (1 + u)~/~V. This corresponds to a
gamma(1/(6 — 1)) random variable, a class of heterogeneity distributions widely used in
econometric (univariate) duration literature.

15The following derivations are presented by Oakes in Example 5 of his 1989 paper.




For the bivariate model (22) the case § — 1 corresponds to independence between T
and T3, and as 6 — oo, the Fréchet upper bound S(t) = min{S1(¢1), S2(t2)} is obtained.
If 6 > 1 the corresponding joint survivor function is

S) = [(1/S: ()™ + (1/Salta))' = =] O, (26)

where the marginal survivor functions have the form S1(¢;) = (1 — log Bl(tl))"l/ (6-1).
If § < 1 the corresponding joint survivor function exhibits negative association
between T} and T5'¢

]1/(1—9) (27)

S(t) = [max{(5:(t))*™* + (Sa(t2))*~* — 1,0}
and the support depends on 6. As § — 0, one obtains the Fréchet lower bound
S(t) = max{S1(¢t1) + S2(t2) — 1,0}, a singular distribution concentrated on the cur-
ve, Sl(tl) + Sz(tz) = 1.

The above models are particularly attractive to examine cases where several separate
durations, say spells of unemployment are observable on identifiable individuals. In the
present study the model has to confined to a less informative case of a competing risks
model where the duration variables have a latent variable interpretation and only the
minimum duration is actually observed.

4 Competing risks with dependent duration chan-
nels

Below the previous model of job recruitment is assessed in light of estimation exercises
utilizing a competing risks framework. A common theme in the subsequent analysis is
the association among observable variables induced by an unobservable latent variable.
Here the underlying dependence is interpreted in terms of an endogenous advertisement
decision by the firms affecting the recruitment channel. An additional feature of duration
data is the possibility of censoring. The firm whose market environment affecting price,
sales or other characteristic change may adjust its labour demand in such a way that a
previously announced vacancy is withdrawn.

The data concern vacancies reported to employment offices in the province of Uusi-
maa, Finland in 1989.7 Vacancies are for a homogenous category of employees, with
upper secondary or lower leve] of high education in technology. In the data (2531 obser-
vations) two exit channels are considered. The first is recruitment through employment
offices (30 per cent of the cases) and the second, recruitment through other channels

1$However, this survivor function is not generated by a frailty distribution since no proper distribution
is defined by the corresponding Laplace transform, cf. footnote 13.

"The province is the most populated part in Finland, and the capital, Helsinki, is situated there.
The data have been provided by the Ministry of Employment, and it has been previously used by J.
Rantala. I thank them for giving me access to the data.



11

(45 per cent), and the mean duration in the data is 46 days. The exits through the
latter category of channels are here taken to reflect the endogenous recruitment efforts
by the firms.'® The remaining vacancies (25 per cent) were withdrawn by the employers
from the employment office registers. Observations in the last category are considered
as censored in the estimations. In most cases these consist of observations where there
exists no information on the recruitment channel.

The duration may end in, say m alternative ways which are called exit channels. Both
the length of duration and the label of the corresponding exit channel are observed.
A competing risks model for duration is obtained by defining m, possibly mutually
dependent random variates y;, j = 1,...,m, and setting the observed duration y,

y = min{y],...,ym c}- (28)

The censoring variable ¢ is independent of all y*’s, and has density function ¢ and
survivor function ¥.

Qakes considers in his work bivariate frailty models when both y}, and y; are obser-
vable. Here we have a competing risks framework and only min{yj,...,yy,c}, and the
channel indicators I{j),5 = 1,...,m are observed. The loglikelihood of an individual
observation, (yi, It(7)|Xk(5);7 = 1,...,m), k = 1,...,n, where Ix(j) is an indicator
function for a completed, uncensored duration through exit channel j, and X;(j) is a
vector of explanatory variables, is given by

b = LO|Ik(5), Y, Xi(7))
= > Ii(j) llog DiS((yks - - - > Y& ); X, 0) + log i ()]

=1

+ (1 - _ﬁ;fk(j)) log S((yks - - - > Yx); Xk, 0) + log ¥a(ye)] . (29)

where D; denotes the operator —9/dy; applied to the function S(y1,...,ym). The partial
hazard functions are defined by \; = D;log .S for each individual exit channel.

In the above formulation the censoring mechanism may vary between the observations.
The coefficients Wi(yx), and ¥i(yx) may be regarded as nuisance parameters which do
not depend on the direct objects of interest, §. Therefore it suffices to maximize that
part of the loglikelihood which involves the parameters of interest.

ek(e) = i Ik(]) log [’\j((yk7 s yk); Xk7 0)] + IOg S((yk7 st yk‘)a X/ca 0) (30)

=1

18Some contamination is naturally present in the data. For example the second channel includes
recruitment by direct contact which is only in part affected by employer’s effort. However, more elaborate
identification of the various search channels was not possible in the data. The stigma effect resulting
from a signalling equilibria of the applicants, see Barron and Mellow (1989) is not relevant to the present
data since the occupations do not have high educational requirements and the public employment offices
are reasonably successful as a recruitment channel.




4.1 Models with frailties

The first two of econometric models are based on frailty Models 1 and 2, with Weibull
baseline survivor functions. The baseline duration t, ¢ > 0, has the survivor function

B(t; XTp) = exp{—t*e X7}, (31)

The expression exp{—X7 3} defines the proportional hazard component of the model.
Here X is a column vector of k explanatory variables'® and f is a vector of parameters
to be estimated together with a shape parameter a. For the purposes of this study it is
convenient to work with the variable y = log.2° It is well known that y follows the type
I extreme value distribution, y ~ EV(X7 8, a), with the survivor function

B(y; X7B) = exp{—e>vX"#}, (32)

The variable, © = ay — XTS is a standardized disturbance term in the sense that
Eu = ¥(0), and Var(u) = ¢'(0).2

Introduce extreme value forms (32) for survivor functions in (25), after some simpli-
fications one can write the loglikelihood of Model 1, the observation index k is dropped
for convenience,

j=1 i=1

2 2
£0) = Elj [log5+ log a; + ajy — Xfﬂj +(6— l)logZexp{a,-y - Xfﬂj}

~ [E; exp{ajy — XJ ﬂj}} : (33)

19The following explanatory variables are used, dummy variables accounting for occupation (10 ca-
tegories), industry (5 categories), type of work (permanent/temporary), worktime (regular/shift work),
and region (3 categories). In addition U/V -ratios, i.e. the number of unemployed divided by the num-
ber of vacancies, are calculated separately for each sub-region. This continuous variable is used in the
analysis to capture the effects of local labour market conditions. To control for the aggregate level of
advertising effort we use the monthly vacancy advertisement volume in Helsingin Sanomat, by far the
dominant newspaper in the area.

20To study the dependence between the observable hazards of the two channels a competing risks
Weibull duration model was estimated subject to the restriction that the shape parameters of the two
exit channels are equal to get a close resemnblance with the theoretical model. The estimated logarithms
of proportional hazards, m;, j = 1, 2 are calculated for each observation. If the true hazards y;, j =
1,2, are dependent on each other, one would expect to see some correlation between the m;’s where
the latter variables are interpreted as loglinear approximations of the true form of the hazard. The
dependence was found to be a near linear one. In the examination allowance is made for the fact that
estimates are used instead of the true parameters (details available on request).

2 Disturbance term has a moment generating function, ¢(s).= I'(1+s), and % refers to the psi function,
Y(z) = dlog (1 + z)/dz. The higher order cumulants of u are obtained through the derivatives of the
psi function at zero, ¥(0) = —v, (Euler’s constant), and Var(u) = ¢/(0) = =2/6, Abramovitz and
Stegun (1970). The distribution is an asymptotic distribution of extreme order statistics. Therefore
an argument could be made that the distribution of durations really should be Weibull in the present
circumstances.
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In fact the model can be reparametrized in a more convenient way for estimation (Ap-
pendix A). The maximum likelihood estimates of Model 1 converge to a value § = 0 in the
data. This represents an extreme case of positive dependence between the channels with
the joint survivor function obtaining the upper bound S(y1,y2) = min{Si(y1), S2(y2)}.
However, as § — 0, the loglikelihood of the above model tends to the loglikelihood of
a model where duration is governed by a common Weibull distribution, and the choice
between the channels is determined by a logit probability model. This limit case may
be useful in some applications to describe markets with adverse selection and separating
equilibria in types of agents. However, in our data the highest value for the loglikelihood
is obtained for a degenerate case where the upper bound is obtained with the condition,
U1 = Ug, Where u; = oy — Xf;, 7 = 1,2, holding for all observations (Appendix A). In
this case the identification of separate channels is lost. In Model 2

2 2
£0) = Z I l:log6 + log o + ajy — X;‘"ﬁj —log (1 + Zexp{ajy - X}‘ﬁj})J

3=1 i=1

~ dlog [1 + iexp{ajy - X] ﬂj}J , (34)

J=1

where § = 1/(6* — 1) > 0, see Appendix B.

Model 2 represents a bivariate Burr distribution. In the univariate case it is a more
familiar one to economists and leads to the extended logistic (or Burr type XII) duration
model. The Burr distribution can be succesfully fitted to almost any set of unimodal data
and it has been widely used in the literature to control for unobservable heterogeneity,
see Tadikamalla (1980). In this paper the frailties are utilized to extend the setup to
include the case of separate and correlated duration channels. A nice interior solution is
obtained for the maximum likelihood estimation. If the likelihoods are compared Model
2 seems to perform better than the reparametrized form of Model 1 which maintains the
separate identification of the channels.

Table I presents the estimation results for the individual parameters of Model 2.2
There is significant positive association between the durations with the estimated value
for cross-ratio equal to 2.3. The structure of the frailty models allows only for associated
random variables. The implied parameter value for our gamma mixing variable is 0.78
and its density is a decreasing one and tends to infinity at zero. Returning to the earlier
"theory discussion’ this may imply that traces of the (possibly) decreasing part of the
function A are lost in the smoothing with the frailty distribution. However, the discussion
in the start of the paper broadly suggests that the coefficients relating to channel two
should be closer to zero in absolute value. At first glance this seems to hold. One can find
cases where a coefficient referring to an easily filled vacancy in channel one is associated
with a relative reduction in size in channel two, but the pattern is far from a consistent
one. In particular, the coefficients referring to the occupational status and especially

22The results of Model 1 are not reported here. The asymptotic normality of estimated parameters
should hold reasonably well since one utilizes maximum likelihood estimation within a location family
of distributions with a strongly unimodal density.




those of industry dummies are more difficult to interpret since here the current waiting
costs may differ due to differences in worker productivity.

If the parameters are compared between the channels the coeflicients of the regio-
nal variables suggest that channel two represents more integrated labour markets with
less regional variance. Similarly, the U/V -ratio has less influence on the exit through
channel two. Total advertisement level shortens the vacancy durations in both channels
implying that the variable which is constructed at the monthly level captures the seaso-
nal component in employer search. The effect is a more moderate one in channel two.
These observations may reflect that advertisement is adjusted on individual conditions
with an off-setting effect.

Figure 2 shows the forms of the partial hazard functions with the curves referring
to channel two lying highest. The baseline proportional hazard components have been
calculated at the mean values of the explanatory variables in channels one and two, res-
pectively. The dotted curves refer to calculations where the positive association between
the channels has not been accounted for.

4.2 The model with dependent lognormal variables

The third econometric model is based on a natural extension of a bivariate lognormal
model to a duration framework. In this case the proportional hazard property in baseline
survivor function is lost. However, the model is well-known and useful for comparison
purposes. Furthermore, it has the random effects interpretation if the the durations share
a common unobservable variable affecting the mean duration. In addition, the model
allows for negative dependence in contrast to the models that are based on frailties.

Here the underlying latent durations have lognormal distributions, where the loga-
rithmic durations y;, j = 1,2, have the marginal distribution functions,

1 ;— XTb;
fly;; X7b) = E}¢ (y—’—aj”—) , (35)

J = 1,2. The variables y are correlated, with the correlation coefficient p, —1 < p < 1.

To obtain close resemblance with the models used earlier in the paper reparametri-
size the model by setting o; = 1/0j, B; = (1/0;)b;, and finally for the convenience of
estimation r = p/(1 — p?) with —oo < r < o0, and p = r/(1 +r?)5. Now one can write
the bivariate survivor function S(¢) = S(¢1,¢2) = S(y1,92),

S(y1,y2) = alaz\/1+r2/y°° /yood)(awl - X781
X ¢ (\/1 + r2 (v ~ Xgﬂg) —r(oqv; — XIT,Bl)) dvidv, (36)

which can be easily computed.
To obtain the cross-ratio function (23) calculate D;S(y,y), where D; denotes the
operator —d/dy; applied to the function S(y;,y,). For example,

D15(y,y) = eng(ur) [1 — ®{usvT + 77 = rur}] , (37)
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where u; = ajy — XJT Bi, j = 1,2, define the two standardized disturbance terms of the

model.?

The estimation results are given in Table II and they are qualitatively similar to those
given by Model 2 (Table I). In addition the loglikelihoods are on closely similar levels.
The estimate of the parameter r implies a positive value for the correlation coefficient
equal to 0.40. The variance for the latent logarithmic duration through channel two is
less than half of that of channel one suggesting that variance reducing adjustment of
effort level may be operating here. The random effects interpretation implies that the
common unobservable variable accounts for about 26 and 62 per cent of total variation
in channels one and two, respectively.

5 Conclusion

The discussion about the effects of endogenous adjustment of recruitment effort is in
the paper used as a starting point to analyze the data. Unfortunately, we have not
been able to present specific parametric restrictions and tests to support the qualitative
implications of the theoretical discussion. Instead, the data have confined the analysis
to interpretation of individual coefficients with possibly introducing post-sample bias.
However, it is felt that the basic idea merits a more careful analysis and further evalu-
tion with possibly alternative data to get a feel of the quantitative significance of the
qualitative implications of theory.

Three models in the competing risks framework have been estimated with dependent
latent durations. The statistical models generated by mixtures with stochastic propor-
tional hazard components should find more extensive use in labour econometrics. In
the paper the parameters are estimated by solving numerically the nonlinear estima-
ting equations given by the principle of maximum likelihood. On the other hand, since
frailty models are constructed with the marginals as parameters they are amendable
to semiparametric analysis. Furthermore, the methods are immediately applicable to
situations where for example several spells of unemployment are observable. In this ca-
se the conditions for indentifying the models are far less restrictive than in the case of
competing risks, and they may offer additional tools to obtain insight to the functioning
of complicated real life labour markets.

23]n the present case the formula for the cross-ratio function 6* is far less transparent than in Models
1 or 2 (for details, see Appendix C). Furthermore, since Model 3 is not a member of the class of models
induced by frailties, the cross-ratio function is dependent on both y; and y». In Figure 3 the cross-ratio
is represented as a function of u; in the case of selected values of us.
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A Appendices
The joint survivor function of Model 1 is
5
—log S(t) = [(_ log Sy ()¢ + (—log sz(tz))w] : (38)

where —log S;(t;) = exp{ayy; — X7 B;}, y; = logt;, j = 1,2, and 0 < 6 < 1. Let
u; = a;y; — X Bj, j = 1,2. For the derivations below it is convenient to write?*

&
~log S(y) = em=x{unal [1 4 ¢~slaul]" (39)
Next differentiate, to get
—610g S(y) — alemx{ul,uz} [1 + e—%llug—u;[]] -1 6—21;'1"“2—“1“,
o
_alog S(y) - a2ema.x{‘u1,u2} [1 + e—%”’&"ul”] 5-1 e_%(l—l)“uz—ulll, (40)
Oya

The loglikelihood of an individual observation, (y,I;|X;j = 1,2), where [; is an
indicator function for a completed duration through channel j, is given by

1 1
£(0) = h [log on + max{ur, us} — 31“"12 —ug]| + (6 —1)log [1 + e’illuz-ulll]]

+ b [108 o + max{ur, us} — %(1 — Dljuz — wl[ + (6 — 1) log [1 + e'%””‘”‘”]]

_ emax{m w2} [1 + e—%“uz—u;“]s . (41)

Above both u; and u, are taken at the point y; = y» = y. Reparametrize the model
by setting a = (1/6)(a2 — 1), and v = (1/6)(f2 — B1). With this notation uz —u; =
6(ay — XT), and I = I{ay — X7y > 0}. Let v; = ay — XT+. Now one can write
ls = I[logay +uy+ 6Ivy — I|jva]| + (8 — 1) log [1 + eIl
+ I [log(al + 8a) + ur + §vy — (1 — D)f|vs)| + (6 — 1) log [1 + e'“”z”]]
— e[l +ev). (42)

For a fixed 6,0 < & < 1, the function (42) is concave in the estimable parameters.*®

%4To keep the R.H.S of (39) bounded, as § — 0. Note that max{u1,u2} = u; + I{uz — %), and
llug = uy|| = I(uz — w1) + (1 = I){u1 — u2), where I = I{ug > u1}.

25To see this establish first that the function is concave w.r.t. u; and ve. The result follows by
observing that these two ’residuals’ are linear in the parameters and since log o1, and log(o; + 6a) are
concave in the parameters.
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The above formula shows that as § — 0, the loglikelihood tends to the limit
[ —Iffvef|
Zo = Il -logal + U +10g i—m

r ~(1=Dfezl
+ Llloga;+u +log | ————= || — e

1+ e-liell
= I [log oy +u; —log (1 + e)]
4+ I Tlog oy + uy — log (1 + e"”")] —~e". (43)

An interesting observation is that as § — 0, the loglikelihood of the model tends to
the loglikelihood of the model where duration is governed by a common Weibull model,
and the choice between the channels is determined by a logit probability model with
log-odds 26
P 7'{12 = 1}
PT{I] = 1}

On the other hand, the limit model for survivor function is S(y) = min{S(y1), S(y2)}-
The direct derivation of the limit model gives the loglikelihood*’

lo og = V3. (44)

¢, = I [logoy + max{us,us} +log[l — I + ér(uy — u1)]]
+ I [log op + max{uy,us} + log[I + 61(us — u1)]] — emax{uiuz} (45)

In the model (45) the loglikelihood is bounded from below only if {I(j) =
1} € {u; = max{ui,us}}, for j = 1,2. Therefore, maximization entails that the above
condition holds and this is equivalent with {I(j) = 1} = S(y;) = min{S(y1), S(y2)}.
A special case is that u; = u; holds over the whole data set.?® Note that (43) shows
that the above limit condition can be obtained through our reparametrization. However,
the reparametrization produces an additional log-odds component (44) always having a
lower value of the loglikelihood than the previous degenerate special case where separate
identification of the channels is lost.
In maximum likelihood estimation of the reparametrized model (42) one may use

865 - 11 ]2 U2

doy al+a1+5a+[ll+12_e [L+e ]} (46)
Olg “ 216

5,-3: = —[11-{—[2-6 [1+6 ]]X, (47)

26This property is somewhat related to McFadden’s (1971) result, where he shows that independent la-
tent variables, u; and ug that follow type I extreme-value distribution generate logit choice probabilities,
P’7 Pr{u; = max{u1,u2}},j =12
ZTHere we extend differential calculus by considering dlstrxbutlons ie. mtegrable functionals that
satisfy a functional equation, see for example Rudin (1973). In this case the 'derivative’ of the Heaviside
function, I{z > a} is equal to the delta function é,, 8,(x) = 1, if z = a, and zero otherwise.
28In the data no parameter estimates could be found to satisfy the above condition with some ujs

unequal.
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R e r o) LR Al (R (RN
— e" 1 +e=] [1 + e‘”] Y, (48)
14
‘?9_75 = —[L+(6-1)[I+ L] [I 4+ (14 ell=lh)=1(1 - 21)] X
+ be“[1+e%) [1 + e"”z] X, (49)
0l al, —|juzli uy vy16 v
% = o +6a+[11+12] {Iv2+log(l+e 2 )] —e" 1+ e”]" log [l + €™].(50)
B
The joint survivor function of Model 2 is
1
—log S(t) = ) log [1 — log Bi(t1) — log By(t2)], (51)

where —log Bj(tj) = exp{ajyj - XTﬂj}, and Y; = log tj,j = 1,2. Let U; = o5yY; — XTﬁj,
j=1,2,and § = (§ —1)~! > 0. Differentiate, to get

—0dlog S(y)

= q;6e% [l +e“ +e*2]7?, 52
S e | (52)

for j = 1,2.

The loglikelihood for an individual observation, (y,I;|X;j = 1,2), where y =
log(min{T},T%}), and I; is an indicator function for a completed, uncensored duration
through exit channel j, is given by

£s = IL{log§+logoy +u; —log[l + e + e*]
+ ILflogé+logas +us —log(l + e + €*]
— 6logl +e" +e*]. (53)

Similarly as above one can show that (53) is a concave function in the estimable para-
meters.
In maximum likelihood estimation of the parameters in (53) one may use the gradient

formulae
Ols 1 ew Setiy
- - 1. |= - - —— 4
Oa; b [O’j - <1 l1+em+ euz) y] 1+eu 4 ew’ (5)
0l e¥i be¥i
= = 1. {1 - : — 55
0B; [1‘7 (1 I +eu + 6“2) 1+ ew + euz] X (55)
ol 1 w s
—6—6— = ‘5[]1+12]—10g[1+6 +e ] (56)

for j = 1,2.
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C

The logarithmic durations y;, j = 1,2, are normally distributed and have the marginal
distribution functions,

Ty,
flyjs XTb) = ;1_—}15 (M) , (57)

j 9;
j = 1,2. The variables y; are correlated, with the correlation coefficient p, —1 < p < 1.
Reparametrisize the model by setting a; = 1/0j, §; = (1/0;)b;, and finally for the
convenience of estimation r = p/(1 — p2)%. Now we can write the bivariate survivor

function S(¢) = S(¢1,%2) = S(y1, ¥2),
S(y1,92) = oaoeV1l+ 7‘2/ / ¢ (a1v1 - X;fﬁl)
1 Y2
X ¢ (\/1 + r2(0nvy — XT By) — r(cavy — XlTﬁl)) dvydvs. (58)

Differentiate to get

-35(y,

—a_z(!?-i) = o;p(uz) [1 = @ (uzvT+ 72 — ruy), (59)
J

where u; = a;y — X JT B, i = 1,2, define the two standardized disturbance terms of the

model. With the new notation the survivor function can be written

S = V1 7'2/ / é(m) 7'2\/1+r2-—7'7'1) dnidr,
= /_oo é(r1) @ (m(—uz) - r'rl) dry. (60)

The loglikelihood of an individual observation (y, /;), j=1,2 is

{ = f: I; [log a; + log ¢(u;) + log @ (Vl + 7 (—u3) — T“j)]

=1

(1 ilj) log‘/*u (r1) @ (\/l +r2(—ug) — 77‘1) dm, (61)

i=1

where J # 7,j = 1,2.
In maximum likelihood estimation of Model 3 (59) one may use the gradient formulas

R

b, ~ Ula T ) 1-2
. wolu)® (VIF T (—w) + 1)
62
+ ( J}:I]) SR : (62)
ot. . ro V142
7 = L (i) et




2 ¢(u;)® (m(—ui) + Wj)
- (1 — 4k S v % (o

oL, : ¢
or _JZIJ[\/ 472 “’]1-@

e~ ¢ (V1 + r2(—w) + ru
v (1=, o1 - (cw) +rus) (64)
=1 (1 +r2)S(y1,¥2)
In the above formulae the expression ¢/(1 — @) is taken at the point (1+r M ruz —ruy,
if it is associated with I;, j =1,2.
The formula for cross-ratio function, 6*,
o (t) = S(#)D125()
D, S(t)D,S(t)’
gives
(1) V1+r2é (uzx/l +r?— rul) [Caé(n)® (\/1 + r2(—ug) — rn) dm (65)

H(uz)® (\/1 + r2(—uz) + rul) ® (\/1 + r2(—uy) +~ru2)

In the present case the formula for 6* is far less transparent than in the case of
Models 1 or 2. Further, since Model 3 is not a member of the class of models induced
by frailties, the cross-ratio function is dependent on both y; and y;. In Figure 3 the
cross-ratio function is represented as a function of u; in the case of selected values of u,
using the estimate of the correlation coefficient.
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D Tables

TABLE I

Results with Weibull model and Gamma frailty

Channel 1 Channel 2

Parameters Estimates Est./s.e. Estimates Est./s.e.
CONSTANT 0.710828 20.744 0.912039 24.899
Region:

METROPOL 0.951115 8.073  0.347573 3.119
REST 1.056205 8.466  0.782241 6.402
Industry:

FOODBEV -0.084784 -0.218  -1.160932 -3.633
PAPER -1.139636 -3.810 -1.164215 -3.459
CONSTRUC -0.619560 -4.648  -0.262983 -1.961
SERVICES -0.166525 -0.489  -0.338069 -1.084

Occupation in the technical field:
SUPERVISOR  0.818951 3.5687  0.189975 0.869

BUILDER -0.842481 -4.256  -1.222486 -5.865
FOODBEV 1.300364 2.937  1.096900 3.075
METALWARE  0.637627 2.633  0.103596 0.540
WELDER -0.481188 -2.236  -0.079745 -0.363
FITTER -0.708089 -3.349  -0.408694 -1.855
MECHANIC 0.128924 0.650 -0.161166 -0.950
COATING -0.688885 -2.205  -0.009693 -0.027
PLUMBER 0.235692 1.302  0.263510 1.554

Type of employment:

TEMPORARY -1.149821 -5.753  -1.452177 -6.694

SHIFT 0.159423 0.813 0.809063 4.318

Labour market conditions:

U/V-RATIO -0.344437 -4.745 -0.274874 -3.554

ADVER VOL -1.602561 -3.763  -1.047493 -2.574
" Other parameters:

SCALE 1.554549 22.471 2.223473 25.696

LOGDELTA -0.252421 -2.493

Mean log-likelihood -1.67589
Number of cases 2531
The constant parameter has been divided by ten.




TABLE I1

Results with dependent lognormal variables

Channel 1 Channel 2
Parameters Estimates Est./s.e. Estimates Est./s.e.
CONSTANT 0.365080 21.170  0.479223 29.431
Region:
METROPOL 0.477766 7.949  0.149391 2.434
REST 0.506175 7.960  0.341954 5.413
Industry:
FOODBEV -0.062584 -0.300 -0.613835 -3.585
PAPER -0.490111 -3.096 -0.545158 -3.307
CONSTRUC -0.332000 -4.982  -0.080473 -1.108
SERVICES -0.104328 -0.588 -0.189184 -1.137
Occupation in the technical field:
SUPERVISOR  0.414786 3.585  0.071627 0.621
BUILDER -0.377309 -3.626  -0.672013 -6.344
FOODBEV 0.624787 2.749  0.564958 3.000
METALWARE  0.296172 2.455  0.078885 0.782
WELDER -0.274377 -2.381  0.018515 0.156
FITTER -0.299412 -2.592  -0.143942 -1.262
MECHANIC 0.075894 0.744 -0.092437 -1.039
COATING -0.338177 -2.035  0.095135 0.521
PLUMBER 0.105069 1.135  0.131079 1.501
Type of employment:
TEMPORARY -0.507202 -4.808  -0.656252 -6.038
SHIFT 0.093784 0.906  0.362440 3.766
Labour market conditions:
U/V-RATIO -0.176529 -4.762  -0.121250 -3.068
ADVER VOL -0.767484 -3.581  -0.474205 -2.307
Other parameters:
SCALE 0.720212 20.947 1.111453 47.723
R 0.434752 2.451

Mean log-likelihood -1.67240
Number of cases 2531

The constant parameter has been divided by ten.
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FIGURE 1: Marginal effort and waiting costs and optimal effort level

Constant marginal cost; exponential df.

Hazards w and h; exponential df.
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FIGURE 2: Particl hazards by channels
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