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Abstract

This paper contains a set of tests for nonlinearities in economic time series. The
tests comprise both standard diagnostic tests for revealing nonlinearities and some
new developments in modelling nonlinearities. The latter test procedures make use
of models in chaos theory, so-called long-memory models and some asymmetric
adjustment models. Empirical tests are carried out with Finnish monthly data for
twelve macroeconomic time series covering the period 1920-1996. Test results
support unambiguously the notion that there are strong nonlinearities in the data.
The evidence for chaos, however, is weak or nonexisting. The evidence on long
memory (in terms of so-called rescaled range and fractional differencing) is
somewhat stronger although not very compelling. Nonlinearities are detected not
only in a univariate setting but also in some preliminary investigations dealing
with a multivariate case. Certain differences seem to exist between nominal and
real variables in nonlinear behaviour.

Tiivistelmi

Tissd tutkimuksessa testataan taloudellisiin aikasarjoihin liittyvid epédlineaarisuuk-
sia. Testit koostuvat sekd tavanomaisista diagnostisista testeistd ettd eréistd uusista
epilineaarisuuden olemassaoloa selvittivisti testimenetelmisté. Jilkimmadiset testit
liittyvit kaaosteorian sovellutuksiin, ns. Pitkdn muistin malleihin ja epdsymmetri-
sen sopeutumisen malleihin. Empiiriset analyysit tehdddn 12 Suomea koskevalla
aikasarjalla, jotka kattavat kuukausitasolla ajanjakson 1920-1996. Testit tukevat
kiistatta sitd oletusta, etti aikasarjoissa on epilineaarisuuksia. Epilineaarisuudet
eivit kuitenkaan vilttimittd heijasta determinististd kaaosta. Aikasarjojen pitkdd
muistia koskeva evidenssi (joka perustuu ns. uudelleenskaalatun vaihtelun (resca-
led range) tarkasteluihin ja osittaisen differenssoinnin malleihin) on jonkin verran
voimakkaampaa, mutta se ei ole mitenkiin tilastoaineistoa dominoiva piirre. Edel-
14 mainittuja ominaisuuksia ilmenee sekd yksittdisten muuttujien suhteen mutta
" myos tutkittaecssa muuttujien vilisid riippuvuuksia. Nimellisten ja reaalisten ai-
kasarjojen vililld ndyttdd olevan jonkin verran eroja epilineaarisuuksien médrissa
ja luonteessa.







Contents

Abstract

1 Introduction

2 Thedata

3 The test statistics

4  The results with univariate models
4.1 Results from diagnostic tests
4.2 Results from analyses of the correlation dimension
4.3 Results from the tests for the long memory property
4.4 Results from the time irreversibility analysis
4.5 Estimates of adjustment equations
4.6 Results from stability analysis

5 Testing dependencies between residual moments

6 Concluding remarks

Tables 1-11

Figures 2-11

References

Page

19
19
20
21
24
25
25

26
28
30
40

58




1 Introduction

Even though economic relationships are thought to be fundamentally nonlinear,
most modelling practices start with linear tests and modelling. The obvious reason
for this has been the difficulty of choosing from among numerous nonlinear
alternatives. Economic theory rarely helps the researcher with anything other than
perhaps giving the assumed sign between the two variables. Given the amount of
tests and statistical theory based on linear spaces, it has been almost too easy to
restrict attention to linear models. However, the poor performance of these models
in forecasting e.g. business cycles suggests that maybe things are not so simple.

Apart from some almost self-evident nonlinear functions like the production
function or the utility function, nonlinearities have rarely been treated satisfactorily
in economics. Although the state of art in nonlinear economics has started to
receive more attention, the main problem is that we do not have any clear-cut
procedure for approaching these nonlinearities. Up till now, we have had no better
advice than just to begin with linear testing and to try to limit the nature of
nonlinearities to some well specified class of models.

This paper examines several long Finnish macroeconomic time series. The
purpose of the examination is to find out whether there are, in fact, any signs of
nonlinearities in these series. We carry out a set of tests analogously to Lee, White
and Granger (1993). Most of these tests are applied to univariate models although
a multivariate application would obviously be more interesting. When scrutinizing
the series we pay special attention to the distinction between nominal and real
series. This can be motivated by the fact that nonlinearities are presumably quite
different depending on whether nominal or real variables are involved. (For an
extensive survey of the literature, see Mullineux and Peng (1993).) Thus, it is of
some interest to compare a typical real series, say industrial production, and a
nominal series, say stock prices, in this respect.

Most monetary series - like relative prices, changes in price level and money
aggregates - display some form of nonlinear behaviour. Prices are often more
volatile than the real series, since they play a market-clearing role. Monetary
phenomena are based upon valuations that can be adjusted without any significant
cost. In the market-clearing situation it is often - but not necessarily always -
easier to change the price rather than the quantity. Although prices can easily move
in both directions, crises in the market produce excessively large negative
(positive) changes. Nominal price rigidities would also have similar effects.
Therefore it comes as no surprise that the real exchange rate, stock prices or
inflation seem to adjust asymmetrically to shocks.

This affects the volatility of these series. Another major observation
concerning the origin of “price shocks” relates to their unstable variance in time. It
has been shown that in many cases price changes - e.g. in the stock market -
cluster significantly. Forecasting price changes is therefore a harder task for
economic agents than forecasting smoother real variables.

Nowadays, a general response to situations of changing volatility
(heteroskedasticity) is to use an ARCH model specification. It may well be,
however, that the ARCH model is not the proper framework. It is possible that
prices possess the so-called long memory property, thus containing permanent
components. In particular, the long-memory property shows up in high and



persistent serial correlation over long lags between absolute values of the (linearly
filtered) series. It also shows up in so-called rescaled range analysis, which
provides estimates of the persistence of time series. Obviously, this kind of long-
memory phenomenom is at variance with a linear structure and therefore it may be
useful to consider it here as well.

However, in many cases real economic variables also vary in a nonlinear way.
Evidence of nonlinear adjustment is provided by e.g. the apparent and persistent
tendency for there to be cycles in most important production variables (see, e.g.,
Pfann and Palm (1993) for details). Whether these nonlinearities in real series arise -
from the generating process of a series itself or from random shocks is largely an
empirical question. So far, no agreement has emerged as to whether real or
monetary phenomena are responsible for business cycles. We hope that our
estimates of the nonlinearity of these series might shed some light on this issue as
well.

One general class of explanations for nonlinearities is chaotic behaviour.
Quite recently, there have been numerous theoretical and empirical applications of
"chaos theory". In particular, the behaviour of financial variables has been
analyzed from this point of view (see, e.g., the books by DeGrauwe et al (1993),
Greedy and Martin (1994), Peters (1993) and Vaga (1994)). The analyses have
concentrated on testing the existence of chaos; theoretical analyses have mainly
been presented as examples of various cases where (determinisitic) chaos might
arise. Here, we leave the theoretical developments aside and concentrate solely on
empirical testing. It is not easy to derive a theoretical model which would be
readily applicable to all macroeconomic series which are at our disposal.

Although the analysis mainly deals with univariate models, some preliminary
work is done to identify nonlinear relationships between variables. In this context,
we do not follow any specific hypothesis concerning the relationships between
variables. Rather, we simply make use of a cross-correlation analysis with respect
to different moments of our variables. Thus, the analyses represent some sort of
first step towards a generalized Granger test for nonlinear relationships. This
analysis gives us a general idea of the magnitude and nature of these relationships.
An obvious next step is to go back to theory and think about how the findings
coincide with different theoretical approaches.

The structure of the paper is very straightforward. First, we look at the data in
section 2, then we briefly present the test statistics and illustrate their properties
with some simulated data in section 3, and in section 4 we go through the test
results for univariate models. The results deal with various diagnostic tests
procedures and with a set of analyses ot the correlation dimension, rescaled range,
time irreversibility, nonlinear adjustment, parameter stability and long memory. In
section 5, we scrutinize the results from a cross-correlation analysis between
different moments of these series and, finally, in section 6 we present some
concluding remarks.




2 The data

The data are monthly Finnish data covering the period 1920M1-1996M9. After
data transformations the period 1922M5-1996M9 is covered. Thus, there are 893
observations in each series. The following twelve series are analyzed:

Industrial production (ip)

Bankruptcies (bank)

Terms of trade (tt)

Real exchange rate index (fx)

Yield on long-term government bonds (r)
Consumer price index (cpi)

Wholesale price index (wpi)

Banks' total credit supply (credit)
Narrow money (M1)

Broad money (M2)

UNITAS (Helsinki) stock exchange index (sx)
Turnover in stock exchange (st).

The first four series are real and the subsequenteightnominal. The data are
presented in Figure 1. For presentational convenience, most of the series are
shown in logs. To get some idea of the timing of changes in these variables the
recession periods are marked by shaded areas.

Otherwise, the details of the data are presented in Virén (1992), Autio (1997)
and Poutavaara (1996). We merely point out that the ip, bank, credit, M1 and M2
series are seasonally adjusted. This is simply for data reasons - only seasonally
adjusted data were available for the prewar period 1920-1938. As for World War
IT (1939-1945), the data are treated in the same way as for the peace years.

The overall quality of the time series is rather good. Only the interest rate
series are somewhat deficient, as can also be seen from Figure 1. The interest rate
series suffers from the fact that banks' borrowing and lending rates were
administratively fixed from the mid-1930s to the early 1980s and, therefore, bond
yields were not genuinely market-based but were, too, indirectly rationed.

3 The test statistics

Data transformations

It is preferable to start testing nonlinearities by estimating the linear model and
analyzing the respective residuals. Although economic relationships are more
likely to be nonlinear, there is a danger of unnecessary complication if the
difference in relation to a linear model is small.

The need for a nonlinear model also depends on the purpose of the model. For
short-run forecasting, linear models may suffice, but for long-run forecasts or
explanation of apparent nonlinear features more appropriate modelling is needed.
Since testing linearity is widely covered in Granger and Terdsvirta (1993), we



discuss only a few basic considerations here. The linearity tests can be divided into
two groups, depending on whether a specific nonlinear alternative exists or not.
Since our data do not refer to any specific nonlinear formulation, we concentrate
on testing against a general nonlinear alternative.

As was mentioned above, we analyze only univariate models. Some kind of
basic specification is provided by a linear AR(4), which turned out to be a
reasonably good approximation for all time series. In specifying the order of the
autoregressive models, we used model selection criteria (SC, HQ, AIC). In order
to study the dynamic dependencies between variables, we thought that in the first
place it would be best to filter the original series with the linear autoregressive
model of the same order. Thus, the residuals are not severely (linearly)
autocorrelated. A few exceptions do exist, however, for higher order
autocorrelation (for the lag 12, for instance). Anyway, we prefer the parsimonious
AR(4) model to more sophisticated specifications.' In fact, we also used first log
differences for all relevant variables instead of AR(4) residuals. The residuals were
qualitatively very similar, suggesting that the AR(4) transformation is not that
crucial. For space reasons, the results with the first difference data are not reported
here.

Log transformations were applied to most of the series. Thus, only the terms
of trade, the real exchange rate and the interest rate series were left untransformed.
To assess the validity of this transformation we made use of the Box-Cox
transformation. The results of this procedure generally supported the above-
mentioned choice. Only in the case of consumer prices and the terms of trade
could one not be sure whether or not to make the log transformation.

Dealing with nonlinearities is often easier after the linear dependencies in a
time series have already been taken care of. Therefore nonlinear adjustment can be
found in a series properly filtered with an autoregressive (linear) model. However,
empirical problems do emerge at this point. It often happens, especially in
multivariate analysis, that filtering is almost too effective, since all the significant
relationships between variables are removed. Therefore unduly long
autoregressive lag models that also affect the asymmetricity in the series should be
avoided.

Standard diagnostic tests

Given the autoregressive model, we compute the following sets of tests: First a set
which consists of some basic statistics on the residuals of this linear AR(4) model
(see Table 1). These statistics include the coefficients of skewness and kurtosis in
addition to the median. We intend to use these data to detect possible asymmetries.
The second set of tests consists of traditional specification tests for functional
misspecification/nonlinearity. The tests (reported in Table 2) consist of Engle's
(1982) ARCH test in terms of lagged squared residuals, Ramsey's (1969) RESET
test in terms of higher-order powers of the forecast value of x,, White's (1980)
heteroskedasticity/functional form misspecification test in terms of all squares and

! We are well aware that the remaining higher-order autocorrelation might invalidate the subsequent
test statistics which are related to the measure of the correlation dimension (see Ramsey, 1990, for
details).




cross-products of the original regressors, the Jarque and Bera (1980) test for
normality of residuals and Tsay's (1986) nonlinearity test in terms of squared and
cross-products of lagged values x,.? Finally, the Hsieh (1991) third-order moment
coefficients are computed. They should detect models which are nonlinear in mean
and hybrid models which are nonlinear in both mean and variance but not models
which are nonlinear in variance only.

The BDS test for chaotic process

In addition to these “traditional” test statistics we also computed the BDS (Brock,
Dechert and Scheinkman) test statistic (see Table 4) and Ramsey's (1990)
irreversibility G, , test. The BDS test is designed to evaluate hidden patterns of
systematic forecastable nonstationarity in time series. The test was originally
constructed to have high power against deterministic chaos, but it was discovered
that it could be used to test other forms of nonlinearities as well (see, e.g., Brock,
Hsieh and LeBaron (1991) Frank and Stengos (1988a) and Medio (1992) for
details).

The BDS test can also be used as a test for adequacy of a specified forecasting
model. This can be accomplished by calculating the BDS test for the standardized
forecast errors. The BDS test is then used as a specification test. If no forecastable
structure exists among forecast errors, the BDS test should not exceed the critical
value. The BDS test has been found to be useful as a general test for detecting
forecastable volatility. The key concept here is the correlation dimension, which
can be applied in detecting the topological properties of series. For a purely
random variable, the correlation dimension increases monotonically with the
dimension of the space and the correlation dimension remains small even when the
topological dimension of the space (embedding dimension) increases (Brock,
Hsieh and LeBaron (1991)).

For a single series x, for which x, , is the set of m adjacent values of this time
series X, = {Xp Xup» -or Xum-1)» also called m-histories of x, the m-correlation
integral C_(€) is defined as

C.(® =limeT'2[number of ordered pairs (x Xem) t#8, 0<s,t<N,

t,m’

such that Ix, ¢ —xsytll <e],

where T =N -~ m + 1 and N is the length of the series. x| denotes the maximum
norm (see, e€.g. Eckmann and Ruelle (1985)). Now, defining the correlation
dimension d(m) as

? For the properties of these test statistics see e.g. Petruccelli (1990) and Lee, White and Granger
(1993).
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dlogC_ (€)

d(m) =lim__, Floge

The correlation dimension is based on the fact that, for small €, C,(€) ~ €. In the
case of truly chaotic series, the correlation dimension is independent of m while if
the series are random i.i.e. processes C,(€) = C,(e)" and hence the (regression)
slope of log(C) on log(€) increases monotonicly with m.

The purpose of the correlation measure is to describe the complexity of the
true series and measure the nonlinear dimension (degrees of freedom) of the
process. Tests of chaos concentrate on low-dimensional deterministic chaos
processes, since there is no efficient way to tell the difference between high-
dimensional chaos and randemness.

Although the correlation dimension can be calculated and interpreted rather
easily, there are some major problems with the estimation of this measure, mainly
due to fact that economic data are relatively noisy and there are too few
observations available (see Ramsey (1990) and Ramsey, Rothman and Sayers
(1991) for more details). It can be shown that when the dimension of the data set is
based on this Grossberger-Procaccia measure, the estimate of it is necessarily
biased because of the following small sample problem: With a finite data set the
value of € cannot be too small because otherwise C,(€) will be zero and thus d(m)
is not defined. By contrast, with large values of €, C,(€) saturates at unity so that
the regression of log(C,,) on log(€) is simply zero. Thus, the smaller the number of
observations, the larger € has to be, and the more biased the estimate of the
dimension will be.

Although theory concerns the properties of C(€) as € ~ 0, the reality is that
the range of € used in estimating d(m) is far from zero and inevitably increases
away from zero as the embedding dimension is increased. Smaller values of €
require substantial .increases in sample size in order to determine a linear
relationship between log(C, (€)) and log(€). In fact, the relationship is linear only
for a narrow range of values for €. Thus, one should be very careful in evaluating
single point estimates of d(m). By scrutinizing the entire path of d(m) with respect
to € one may obtain a more reliable estimate of the true dimension. Alternatively,
one may use the test procedure suggested by Brock, Hsieh and LeBaron (1991) in
calculating the following BDS test statistic:

BDS(m,e) =/T(C,(€) - [C,(€)I"Va(m,e),

where o(m,e) is an estimate of the standard deviation. The BDS tests whether
C,,(¢) is significantly greater than C,(e)", and when this is the case nonlinearity is
present. Under the null hypothesis of x, following i.i.d., and for fixed m and €,
C.r(e)~C(e)", as T-», and BDS(m,e) has the standard normal distribution.
(Notice, however, that C_(€) = C(e)™ does not imply i.i.d..) The power of the test
will depend critically on the choice of .

The BDS test statistic is complicated since it depends on the embedding
dimension (m) and the chosén distance (¢) related to the standard deviation of the
data. The selection of m is important in small samples, especially when m is large,
since increasing m means that the number of nonoverlapping sequences will




become smaller. And when the sample is less than 500 the asymptotic distribution
may be different from the sampling distribution of the BDS statistic. The selection
of € is even more crucial and failure to detect non-normality in calculating the
BDS with small € is a consequence of too few observations. Brock, Hsieh and
LeBaron (1991, p. 52) suggest that for 500 or more observations, the embedding
dimension m should be smaller or equal to 5, whereas & should be 0.5-2 times the
standard deviation of the data. In the empirical application, some alternative values
of the dimension parameter m and the distance parameter € are used.

The problem with the BDS test is, however, that it does not have a simple
interpretation. Nonlinearity based on the BDS test could be a result of chaos or a
nonlinear stochastic process. However, the BDS test was originally designed to
test whether the data-generating process of a series is deterministic (chaotic) or not
(Granger & Terdsvirta (1993), p. 63). Since the BDS test is based on the null
hypothesis that the observations (here AR(4) residuals) are i.i.d., rejection merely
reveals that this is not the case. The specific form of nonlinearity is therefore an
open question.

As for the practical implementation of the test, it is done here by using the
residuals of the AR(4) model as inputs. The use of the autoregressive filter is
based on the invariance property of chaotic equations shown by Brock (1986).
Brock showed that if one carries out a linear transformation of chaotic data, then
both the original and the transformed data should have the same correlation
dimension and the same Lyapunov exponents.

In order to get some idea of the implications of deterministic chaos we
illustrate the case by comparing a truly deterministic chaos series with a random
N(0,1) series. A logistic map model which takes the form x, = 4*x,_,(1-x,_,) is
used to generate the chaotic series. Both series contain 2000 observations; the
initial value of the logistic map series is 0.3.> The figure on the following pages
illustrates the time paths of these two series (only the first 200 observations are
graphed), the respective autocorrelations for 60 lags, two dimensional plots in
terms of the current and lagged value of the variable, the correlation dimension
estimates with an embedding dimension 2-5 and the BDS test statistics with the
embedding dimension 2 over the € values 0.5-3.0.

It may be worth mentioning that all tests of chaos depend on the sampling
procedure (time aggregation). Thus, if the high frequency chaotic data is measured
only infrequently (for instance, daily observations are recorded only monthly), the
data appear to be just random data. This property is illustrated by Figure 11 in the
end of the paper (see also Table 4 for the BDS statistics in this case).

* The first value of the series is .300. The series are very sensitive with respect to this initial value.
If the initial value is changed to .30001, the new series diverges from the original series after 14
observations and never converges. In addition to the logistic map specification we used the Henon
map (which is equally often used a benchmark example). Here, the Henon map takes the following
parametrization: x,,; = 1 +y, + 1.4*x} and y,,, = .3x, with x(0) = .1 and y(0) = .1. Needless to say,
these series also depend very much on the initial values. Both the logistic map and the Henon map
are obviously very simple illustrations of chaotic behaviour and they should not be considered as
representative models.
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Figure 1. Comparison of logistic map and random series

Logistic map series (adjusted with mean) Random N(0,1) series
100 Logistic Map series 4 Random N(0,1) series
0.75 3
0.50 | 24

n n“u “\l\“l i HMnm LA ll ; IHIM ““i | 11“ AL o

0.00 1

1l Wil dim
-0.25 - -1
-0.50 - 2
-0.75 - 3
-1.00 T T T T T T T T T T T T T T -4 T T T T T T T T T T T T T

1 14 27 40 53 66 79 92 105118 131 144 157 170 183 196 1 14 27 40 53 €6 79 92 105 118 131 144 157 170 183 196
Autocorrelations
ACF of loglstic map series ACF of random normal serles
o027 027
0.8 0.18
0.09 0.00 -
000 4 000 'WMJ’L'
009 009
-0.18 <018
227 e e 027 T T T T T e T T
1 1] 1 18 2 26 El % 4 a8 8 56 1 L] 1 AL 2 26 an % 41 48 51 5

Two-dimensional plots

Logistic map series Random N(O,1) series

os i 7 \ R

oe [~ .' 7 \ R

4 ’.. X B

-/ \ 5 .
wld \ 2

L. ¢ \ :-
9% AN T U R NI B WIS SN SR TR S NP S S P

11




Correlation dimensions of logistic map and random normal processes
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Lyapunov exponents
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The purpose of Figure 1 is to show that the time series and the autocorrelations are
quite similar. In fact, one might at first glance consider the logistic map series to
be random walk series. The dimension plots show, however, that there is a
fundamental difference between these two series. The random N(0,1) series is
spread quite evenly over the plane while the logistic map series does not fill
enough space at a sufficiently high embedding dimension, which is a generic
property of chaotic processes. The clustering of two-dimensional plots also shows
up in the dimension estimates (and in the BDS test statistics). The estimate for the
logistic map series is about one irrespective of the embedding dimension (it can be
shown that the correlation dimension for the logistic map is 1.00 £0.02, see, e.g.,
Hsieh (1991)). Finally, the BDS test statistics clearly discriminate these two series.
Thus, the statistic for random normal series typically fails to exceed the critical
value while the test statistic for the logistic map exceeds the critical value by many
hundreds.

Lyapunov exponents

The Lyapunov exponents measure the average stability properties of the system on
the attractor. Frequently the presence of at least one positive Lyapunov exponent is
taken to be the definition of chaos. For a fixed point attractor, the Lyapunov
exponents are the absolute numbers of the eigenvalues of the Jacobian matrix
evaluated at the fixed point. Thus, the Lyapunov exponents can be considered as
generalizations of eigenvalues (see, e.g. Medio (1992) and Frank and Stengos
(1988a) for further details).

To define the Lyapunov exponents consider the following Nth order dynamic
system:

dx
__=Fx,
p (x)

where x is a vector with N components. Consider a trajectory x*(t) that satisfies
this equation and an arbitrarily small positive initial displacement from the start of
X*(t) denoted by D(t). Now, it can be shown under fairly general conditions that,
for given D(0), the following limit exists:

L, =lim__(t "'In|D(®)]), t=1,2,..N.

- 00

Notice that the Lyapunov exponents are not local properties as one might think.
Thus, the values of L; are independent of the choice of D(0). In fact, one may
interpret the exponent(s) to measure the average rate of separation over the entire
strange attractor.

A positive Lyapunov exponent measures how rapidly nearby points diverge
from each other. A negative Lyapunov exponent, in turn, measures how long it
takes for a system to reestablish itself after it has been perturbed. Basically, this is
the reason why the Lyapunov exponents offer a way to classify attractors.

14



The problem is that it is not easy to estimate Lyapunov exponents from
experimental data. Wolf et al (1985) have developed a FORTRAN program which
estimates the largest exponent L, from these kinds of data but it has been shown
(see, e.g., Brock (1986) and Brock and Sayers (1988)) that the estimates are very
sensitive with respect to the nuisance parameters used in the context of the
program. Thus, for instance, large positive Lyapunov estimates may be obtained
for pure noise data. Our own experience points in the same direction. Therefore we
are reluctant to use the Wolf et al (1985) estimates to characterize our real data.

Quite recently, McCafferty et al (1991) and Dechert and Genacay (1993) have
proposed an alternative algorithm using the so-called multilayer feedforward
networks, which appear to have superior properties with respect to the Wolf et al
(1985) algorithm. This will allow us to rescrutinize the values of the Lyapunov
exponents in a more affirmative way. Although we do not go through the analysis
of Lyapunov exponents with the real data, we may refer to Figure 1 in the text
where the largest Lyapunov exponent is presented for random normal and logistic
map time series.’ In the case of logistic map series, the exponent is large and
positive while with random noise series the exponent converges to a (small)
negative value.

The ARFIMA model estimates

Long-term memory often shows up in the form of nonperiodic cycles. This has
lead to development of stochastic models that exhibit dependence even over very
long spans, such as the fractionally-integrated time series models. The models
have autocorrelation functions which decay at much slower rates than those of
weakly dependent (mixing) processes. This example, the data generating process
of X, could be the following

(1-L)X =e,

where L is the lag operator and e the white noise term. d can be noninteger which
gives a “fractionally differenced” (or order d) time series. Now, if X is stationary
and invertible for de(-Y%,%2) and exhibits a unique kind of dependence that is
positive or negative depending on whether d is positive or negative. If d is positive
autocorrelation decay very slowly, indeed so slowly that their sum diverges to
infinity. If d<0, they sum collapses to zero, instead (see e.g. Lo (1991) for
demonstration of the effects of fractional differencing on the autocorrelation
function).

Estimating an ARFIMA model is not a easy task. Computational problems are
not of second order importance. In addition, one has to find out the proper

4 Lyapunov exponents have been estimated in several empirical studies; see, e.g., Frank and
Stengos (1988c), Frank et al (1988) and Peters (1993). The results have been somewhat mixed,
partly depending on the algorithm (thus, for instance, Frank and Stengos (1988) do not find support
for the existence of chaos while Peters's results point in the opposite direction). There is, however,
a lot of ambiguity concerning the results because of convergence problems and computational
sensitivity.
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specification for the estimating model. Here this problem boils down in
determining the lag structure for the AR part of the model.

The Hurst exponent (rescaled range analysis)

The Hurst exponent is a new measure which can classify time series in terms of
persistence (or "antipersistence"), stability of the data-generating mechanism and
the importance of outlier-type observations. Thus, it can distinguish between a
random series and a non-random series, even if the random series is non-Gaussian.
The Hurst exponent was first applied to natural systems (first, in analyzing water
reservoir control within the Nile River Dam project in early 1900) but recently
there have been numerous applications to financial data (see, e.g., DeGrauwe, et al
(1993) and Peters (1993)).

Computing the Hurst exponent (H) and the related V test statistic requires the
following steps:

K K
——Max Y(X;-X,)-Min E(X.-X )
8 () Lisken j=1 tsksn j=1

Q,

where

@=L Tx,-X, 2+ 2 f‘.wj(q){ > (xi-xn)(xi_j-xn)}
nj=1 n

j=1 i=j+1

where X is the sample mean (l/n)Zij. Si(q) is simply the square root of
consistent estimator of the partial sum’s variance. If there is no short-run
dependence, the variance is simply the variance of the individual terms X,. In the
presence of short-run dependence we have to modify the statistic (following Lo
(1991)) and include also the autocovariance terms.

Under the i.i.d null hypothesis, as n increases without bound, the rescaled
range Q, converges in distribution to a well-defined random variable V when
property normalized so that

1
_Qn=>V

/o

The fractiles of the (non-modified) V statistic are reported in e.g. Lo (1991). As for
the Hurst exponent, it can be estimated from the following model

Q,=(a*m)"
where « is the scaling constant.
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In detecting long-run dependence, the rescaled range analysis is probably not
the most efficient way of doing that. By contrast, estimating the fractional
differencing parameter directly (e.g. in the context of an ARFIMA model) would
be a better way. Still, the R/S analysis could be useful as a complementary tool in
assessing more general features of long-run dependence (for further details, see.,
e.g., DeGrauwe et al (1993) and Peters (1993)).

According to the statistical mechanics, H should equal 0.5 if the series is a
random walk. In other words, the range of cumulative deviations should increase
with the square root of time. For many (most?) time series from a natural system,
the value of H has turned out to be much higher than 0.5. In surprisingly many
cases the value of 0.73 is obtained (see DeGrauwe et al (1993)).

When H is different from 0.5, the observations are no longer independent in
the sense that they carry a memory of all preceding events. This memory can be
characterized as "long-term memory". Theoretically, it lasts forever. Thus, the
current data reflect everything which has happened in the past. Notice that this is
something which cannot be taken into account in standard econometrics, where
time invariance is assumed.’

Now, consider the case where H < %2 and H > %. In the former case, the
system is antipersistent or "mean reverting". Thus if the system has been up in the
previous period, it is more likely to be down in the next period. By contrast, when
0.5 < H < 1, the system is persistent or "trend-enforcing". If the series has been
down in the last period, then the chances are that it will continue to be down in the
next period.

A R/S plot for random N(0,1) and a logistic map series is presented in Figure
1 in the text. Note that the estimated slope (i.e., the Hurst exponent) is 0.59, which
is quite close to the theoretical value of 0.5. For finite series, the expected value of
H, E(H), is in fact somewhat larger than 0.5. Thus, the value of 0.59 may well fall
inside the confidence interval of E(H) (Var(H) = 1/n; see Peters (1994)). The
estimated slope of the logistic map series is instead 0.43 (as for the Henon map, an
estimate of .38 is obtained; for the logistic map series see Figure 1, see also Peters
(1994)), which says (in statistical terms) that this series has no population mean
and that the distribution of variance is undefined. Clearly, there is nothing we can
forecast with these series.

The Ramsey irreversibility test

The irreversibility test, which has been derived by Ramsey and Rothman (1988)
and Rothman (1993), deals with the concept of time reversibility.® Time

3 The values of the Hurst exponent can be related to a correlation (C) measured in the following
way: C = 2D - 1, Thus, when H = %, C = 0, and we are dealing with a random series. Its
probability density function may be the normal curve but it does not have to be. By contrast, if H is
different from 14, the distribution is not normal.

¢ A stationary time series {x,} is-time reversible if for any positive integer n, and for every t;,
t2, .oy & € Z, Where Z is the set of integers, the vectors (X,, X, ..., X,) and (X, X_g, ..., X_,) have the
same joint probability distributions. A stationary time series which is not time reversible is said to
be irreversible. Notice that, by definition, a non-stationary series is time irreversible. See e.g. Tong
(1983) for further details.
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irreversibility is a concept which is useful in analyzing possible asymmetries
(nonlinearities) in economic time series, for instance, in output series. According
to the conventional Mitchell-Keynes business cycle hypothesis, cyclical upturns
are longer, but less steep, than downturns (see also the "plucking model" of
Friedman (1993)) If one traces out the behaviour of cycles in reverse time it can be
seen that the symmetric cycle is time reversible and that the asymmetric cycle is
time irreversible.

Ramsey and Rothman (1988) propose that the presence of time irreversibility
should be checked by estimating a symmetric bicovariance function in terms of x,.
The test statistic which is obtained from this bicovariance function is of the
following type:

Gk=T“>T3[(x Fix ) -xYx )} k=12,.K
ij t=1 tl t-k t t-k yergessyie

If the time series is time reversible, Gilfi =0 for all k. As for the choice of

exponents, i and j, we assume here that i =2 and j = 1 (here we just follow Ramsey
(1990)). In addition, we experiment with the pair i = 3 and j = 1. The maximum lag
length K is set at 120. To ensure stationarity, we also use here AR(4) residuals
instead of the original time series. The significance of the G statistic is tested by
computing the confidence limits according to the following formula for the

variance of Gf, 5t
Var[Gf,z] =( (TL—k)) [M,;pz - Hz],

where p, =E[xf] and p 4=E.{x‘:]. Assuming that the data are independent and

identically distributed N(0,0%), the right hand side of the above formula can be
4

(T-1)
normality assumption does not hold, nor are the variables uncorrelated. However,
it is not at all clear how the variance terms should be computed when x, is not i.i.d.
but follows e.g. some general ARMA(p,q) model (see Ramsey and Rothman
(1988) for various experiments). The test statistics and the respective confidence
limits are displayed in Figure 8.

[pi] This is clearly a crude approximation because the

simplified to (

A nonlinear adjustment equation

Instead of just computing test statistics for nonlinearity, it would be tempting to
estimate a general nonlinear time series model and compare its properties with a
linear model. Unfortunately, such a general nonlinear model does not exist nor is
there any agreement on a reasonable approximation which could be used to
capture the possible nonlinear elements of the data. Still, the situation is not
completely hopeless. There are some interesting candidates for a nonlinear
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specification. The first which deserves to be mentioned is the threshold model
specification introduced by Tong (see e.g. Tong (1983)). Another specification
which is clearly worth mentioning is the nonlinear employment (output) equation
introduced by Pfann (1992). This (estimating) equation takes the following form:

_ 3 3
X =y rat+aX ) +aX ,+a, (X, X, 5) +aiX X ) *agX_ ~X )" +H,

where p is the random term. According to Pfann (1992) and Pfann and Palm
(1993), the parameter of the nonlinear terms can be unambiguously signed in the
case of employment equations. Thus, a, should be positive (if hiring costs are
higher than firing costs, or in general, if the cycle spends more time rising to a
peak than time falling to a trough). Moreover, parameter as is expected to be
negative if the asymmetry (skewness) of magnitude (i.e. the magnitude of troughs
exceeds the magnitude of peaks) is negative and parameter a is also negative if the
asymmetry (skewness) of duration is negative (i.e., it takes longer for a series to
rise from a trough to a peak than to fall from a peak to a trough).

Although this model may make more sense with (productive) input and
output series, we also apply: it to all ten (here, in fact, thirteen) Finnish series partly
to see whether the real and nominal series can be discriminated on the basis of this
equation. The results are reported in Table 9. This table also includes a comparison
of this model with a linear alternative.”

4 Test results with univariate models

4.1 Results from diagnostic tests

The message of the empirical analyses is quite clear and systematic: the data do
not give much support to linear models. Thus, all the test statistics reported in
Tables 2 and 3 indicate that at least a linear AR(4) model is in trouble.® According
to Table 2, the residuals from the AR(4) model suffer from heteroskedasticity and
non-normality. The ARCH(7) statistic is significant for all variables (perhaps
excluding the interest rate). Thus, even with real series like industrial output an
autoregressive conditional heteroskedasticity effect can be discerned. This is
something new. Nobody is surely surprised to find an ARCH effect in stock prices
but here a similar result applies to other variables as well.

7 Here, we merely replicate the experiments by Pfann (1992). Thus, we take the same detrending
procedure (see the second term on the right hand side) and the same lag structure. Obviously,
extending the lag length beyond 2 would enormously complicate the model.

% In addition to the test statistics reported in Table 2, we also computed the Keenan (1985) and
McLeod-Li (1983) test statistics. Both of these turned out to be highly significant. Thus the
marginal significance levels were in all cases well below 5 per cent. The test statistics were also
computed for the post-Second Word War period. Results were quite similar to those reported in
Table 2. Thus the war itself cannot explain why the results lend support to nonlinearities.
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Non-normality is clearly a severe problem. It is quite obvious that normality is
violated because of outlier observations. Clearly, some observations can be
classified as outliers and it might well be that these observations contribute to the
rejection of linearity. This can be seen from Figures 2 and 3 which contain the
time series and frequency distributions for the AR(4) residuals. In accordance with
Table 1, the main problem seems to be excess kurtosis, not so much excess
skewness. Although the normality assumption is rejected, the graphs suggest that
the distributional problems are not, after all, so severe as the Jarque-Bera
normality test statistic suggests.

Unfortunately, there is no obvious remedy for non-normality and outlier
observations. One alternative is, of course, to use robust estimators and examine
whether the results (e.g., the properties of residuals) change importantly as a result
of the change in estimators. In fact, we did do this but it turned out that the results
with the least absolute deviations estimator were qualitatively very similar to the
OLS results. Another possibility is to reconsider the relevant sampling
distributions of the nonlinearity tests statistics in the light of observed behaviour of
OLS residuals. Here, we have not yet worked out this alternative.

After these considerations, some comments on the RESET and TSAY
nonlinearity test statistics merit note. Both tests do suggest that the (linear)
functional form is misspecified for most of the variables. The results are, however,
very systematic. Thus, for instance, industrial production and bankruptcies, on the
one hand, and narrow money and credit supply, on the other hand, behave in a
different way in these tests. Moreover, the test results do not allow us to draw a
clear line between real and nominal variables. As far as Hsieh's (1991) third-order
moment coefficients are concerned, one can see that with some variables the
coefficients are very high. Some of the highest coefficients are, in fact, quite
similar to those of the logistic map series! High coefficient values are obtained for
the real exchange rate, consumer and wholesale prices, money and - somewhat
surprisingly ~ stock prices. By contrast, the values for industrial production,
bankruptcies and the terms of trade are somewhat lower although all of them are
not “’clean”. Thus, nonlinearities do exist and nonlinearities are not only a problem
for real variables. Since the third-order moment coefficients are not intended to
test models which are nonlinear in variance, one may conclude that the high
coefficient values for the nominal series not (only) reflect some ARCH effects but
also other sorts of nonlinearities (say GARCH-in-Mean effects or long-memory
behaviour).

4.2  Results from analyses of the correlation dimension

Next, we turn to results from the analysis of the correlation dimension. These
results are presented as follows: First, the two-dimensional plots of the AR(4)
residuals are presented in Figure 5, then the correlation dimension estimates are
presented in Figure 6 (Figure 6 consists of two plots showing the correlation
integral and the derivative of C(€) in terms of €; the respective numerical values
are reported in Table 3) and, finally, the BDS test statistics are reported in Table 4.
Unfortunately, the results from these exercises are somewhat different. First,
the dimension plots are not consistent with the existence of low-dimensional
chaotic behaviour (notice, however, that we just look at things very informally in
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two dimensions). Although there are some differences between variables, none of
the variables behaves in a chaotic manner. Stock prices may best correspond to a
random variable (observations are evenly distributed over the x,, x,_; plane) while
some clustering takes place in consumption and wholesale prices.

As one might expect on.the basis of the dimension plots, the estimates of the
correlation dimension (the embedding dimension running from 2 to 5) lend very
little support to a model of chaotic behaviour. The estimate of d(m) increases
almost linearly with the embedding dimension m. Only wholesale prices give an
opposite result. The estimate of d(m) remains in the neighbourhood of one even if
the embedding dimension is increased to 5. Figure 2 may explain why this result
emerges. The behaviour of prices in the 1920s and 1930s was completely different
from the rest of the sample period (i.e. the price level was practically stationary
during the pre-war period while after the outbreak of the Second World War the
rate of inflation turned out to be stationary). If the 1920s and 1930s are dropped
from the sample, the correlation dimension estimates behave well in accordance
with the other variables.’

Somewhat contrary to these results, the BDS statistics turn out to be very
high, suggesting that the data-generating mechanism is not linear. The null
hypothesis that the series are random i.i.d variates is rejected in all cases with
standard significance levels. The same result emerges when ARCH residuals are
used instead of OLS residuals. A completely different result emerges, however,
when the series are shuffled, i.e. the observations are arranged in a random order.
Then the null hypothesis of independent observations is typically not rejected,
which suggests that the distributional assumptions are not very critical in terms of
the outcome of the BDS statistics. By contrast, the time-series structure is the
important aspect which produces the very high values of the BDS statistics.

But how should we interpret this conflicting evidence? Should more stress be
given to the correlation dimension estimates or the BDS test statistics. The answer
is not easy. Perhaps the best way to summarize this evidence is to conclude that
there are definitely some signs of nonlinearity but not necessarily of deterministic
chaos.

4.3  Results from the tests for the long memory property

As pointed above, the analyses make use of the ARFIMA model estimates and the
rescaled range test statistics. In addition, we carry out more informal tests by
scrutinizing the autocorrelation structure of AR(4) residuals in terms of different
transformations. This research menu may reflect the fact all of these analytical
tools are used in assessing the presence of long-run dependence.

In time series, a long-term memory property is said to be present if absolute
values of a stationary variable r, have significant autocorrelations for long lags, i.e.
p(rl, |r]) # O, when k is large. This property was first noted for speculative
price series by Taylor (1986) and thereafter also called the Taylor effect (see

® For the period 1939M9-1996M9 the following set of dimension estimates was obtained: m = 2:
1.901 (1.02); m = 3: 2.709 (1.30); m = 4: 3.617 (1.94) and m = 5: 4.226 (1.01). These values are
clearly in accordance with the other values in Table 3 and hardly consistent with the existence of
deterministic chaos.
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Granger and Ding (1993)). In practice, this property implies that the simple
random walk model does not hold for stock prices, even if the price changes are
serially uncorrelated. This phenomenon also shows up in the rescaled range
analysis with the Hurst exponents. High (H > 0.5) values of the Hurst exponent
imply strong persistence - the fact that the observations (residuals) are
independent but they have a memory. Thus, the data are not generated with a
random walk but, instead, with a biased random walk or, in other words, with
fractional brownian motion.

For instance, if we consider stock price changes, it seems intuitively
appealing to observe that they are uncorrelated, but this does not explain anything
about the heteroskedasticity found in them. Statistically, stock prices could be
martingales with non-constant innovation variance (see e.g. Spanos (1986)).
However, from the economic point of view, the problem is to find out whether
residual variance from the linear model follows conditional heteroskedasticity
(ARCH), a generalized version of it (GARCH), asymmetric power ARCH
(A-PARCH as defined in Ding, Granger and Engle (1993)) or some other form of
heteroskedasticity appropriate for the particular time series. However, univariate
models could be helpful in identification and prediction of the type of
heteroskedasticity, but probably insufficient for understanding these processes.°

Heteroskedasticity in residuals already shows that stronger forms of rational
expectations rationality, which imply efficient use of all information, does not hold
for higher moments of the process. In fact, expectation errors are not white noise,
but rather innovation processes with non-constant variance. The long-memory
phenomenon also puts emphasis on the long-term cyclical swings often
encountered in economic time series. These cyclical swings could relate to
business cycles or even Kutznets and Kontrajev cycles or a tendency to generate
serious financial crises like those withnessed in the 1930s and 1980s. However, as
Granger and Ding (1993) emphasize, caution should be observed in interpretation,
since it is not the series themselves but their absolute values that have the long-
memory property.

If the efficient market hypothesis were to hold strictly, the random walk
property would imply that r, is an i.i.d process. In addition, any transformation of
1, like || or r? should also be an i.i.d process (Ding, Granger, Engle (1993), p.
87). The sample autocorrelations of the i.i.d process will have finite variance
1/V(T) and larger correlations for |r,| will indicate the long-memory property.
Ding, Granger and Engle (1993) show that, if |r,|? is taken as a yardstick in
measuring the strength of autocorrelation for long lags, the long-memory property
is strongest around d = 1,

In the same way as Ding, Granger and Engle (1993), we found that all
variables in our data set showed clear evidence of long memory, and thus the
sample autocorrelations for absolute values of residuals were greater than the
autocorrelations of squared residuals. This resemblance could indicate that
economic time series have characteristics of models not fully described or
understood so far.

1 Granger and Terisvirta (1993, pp. 51-53) note that a series may have short memory in mean,
and long memory in variance, but that the opposite is not so likely, i.e. long memory in mean with
short memory in variance. Short memory in mean is often found in stationary series, whereas long
memory is present in integrated "level” series.
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Series which had |r,| well above r? were industrial production, the terms of
trade, the real exchange rate and the interest rate. Slightly different were series
such as bankruptcies, wholesale prices, money supply (M2) and stock prices,
which mostly shared the same characteristics. This could be due to rare, but large
discrete changes in these series, such as e.g. the effects of devaluations and strikes.
The results from these long-memory tests performed for AR(4)-residuals of our
time series are presented in Table 5 below. Graphs of sample autocorrelation
functions for the absolute values of the AR(4) residuals are shown in Figure 7.

Among other things, the results indicate that linear filtering with an AR(4)
model is not sufficient to remove dependence on the distant past in these series,
even though model selection criteria would suggest at most times that the fourth-
order autoregressive polynomial should be long enough. Despite the fact that these
series have dominant long-run features like unit roots and trends, parsimonious
linear models seem unable to account for these. Observations therefore point to the
conclusion that trends in economic time series are more likely to be stochastic than
deterministic. Hence we come up against nonlinearities again.

The main message is, however, there is significant long-run dependence in all
of the real and monetary series. In addition, there seems to be no clear difference
between real and monetary variables as regards how fast autocorrelations would
die out for long lags. Whether that dependence can be accounted for specific long
memory models is analyzed next.

Now, turn to estimation results with ARFIMA models. Estimation is carried
out using both original time series and fitting an ARFIMA(4,d,0) model to these
series and using the AR(4) residuals and fitting an ARFIMA(1,d,0) model to these
series. The ARFIMA/OX program by Doornik is used estimation. Both the
Maximum Likelihood (ML) and the Nonlinear Least Squares (NLS) estimators are
used here."

The estimates are presented in Tables 6-8 below. Table 6 contains the NLS
estimates for the ARFIMA(4,d,0) model for unfiltered time series (a log
transformation is taken for all series except for tt, fx and r). The ARFIMA(1,d,0)
estimates are reported in Table 7 (for the AR(4) residuals)) for both ML and NLS
estimators. Finally, we report in the difference parameter estimates which have
been obtained by using the Geweke-Porter-Hudak (1983) approach. The estimated
fractional difference parameters correspond here again to the AR(4) filtered series.

All in all, the results lend some support to the long-memory property but the
overall evidence is quite moot. In the case of unfiltered data, there are some
examples (i.e., tt and r) in which the fractional difference parameter is significant.
With filtered data, the evidence is much weaker (for quite obvious reaons).
Turning to the Geweke-Porter Hudak differencing parameter estimates in Table 8,
one may notice that they give a bit more evidence of fractional differencing.
Results with money and credit series (in addition to consumption prices) suggest
that the differencing parameter may indeed be fractional and thus the series may be
long-run dependent. What makes this observation important is the fact the
subsequent results with rescaled range analysis point to the same direction.

UThere were several computational problems with the Maximum Likelihood estimation, i.e.
computational failures and great sensitivity with respect to initial values. The nonlinear least

squares alternative performed much better in this respect.
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The results for the rescaled range analysis are reported in Table 9 and in
Figure 8. Table 8 contains the V statistics for all time series in addition to the
estimates of the slope parameters, i.e. the Hurst exponents H. The time series
graphs for Q are presented in Figure 8 to illustrate stability of pattern of (possible)
short and long dependence.

Looking at Table 8 shows that the Hurst exponent is generally above 0.5. One
has, however, to take into account the fact that in finite samples the expected value
of H is well above 0.5 (see Peters (1994) for simulated values of E(H)). Thus, if
one scrutinizes the values of the test statistic V, it comes out that they are generally
not statistically significant. In other words, there is only weak evidence of long
memory. The series which show long-memory properties are in fact quite the same
which showed similar properties in the case of Geweke-Porter-Hudak estimator.
Thus, money and credit series together with prices behave in a manner which is
consistent with long memory. For all other series, the evidence is less compelling
- and for “real” series there is no evidence of long memory.'?

An interesting question is how long is the long-memory phenomenon. Is there
a certain time span - say one year - during which observations are not
independent. One could, for instance, argue that for various reasons (see, e.g.,
Peters (1993)) the stock market is not efficient in the short run but efficient in the
long run. In other words, we have some cycles which just reflect these
inefficiencies (or, more generally market imperfections). This might show up in a
change of the R/S slope. In fact, this kind of reasoning seems to apply to the
Finnish stock price series. There is quite a clear change in the slope after 300 data
points corresponding to a cycle of about 12 years. In the short run, stock prices
seem to follow the random walk model (H equals to .48) while in the long run
stock prices can be characterized as independent or even antipersistent. Thus, an
estimate of .18 is obtained for the data points exceeding 300 (see Figure 7).
Clearly, this finding is consistent with the results obtained by Peters (1993) in
terms of behavioral changes but equally clearly the finding is at variance with the
long-memory property of stock prices.

4.4  Results from the time irreversibility analysis

A similar result emerges with Ramsey's (1990) irreversibility test statistics
reported in Figure 8.1. Although, the confidence limits are only indicative, some
signs of nonlinearities can be discerned with all series. Somewhat surprisingly,
stock prices do not seem to be the most striking example of this sort of
nonlinearity. Thus, for instance, the test results for industrial production tell more
about nonlinearities than the results for the stock index (see Figure 8.2).
Bankruptcies and banks' total credit supply seem to be more obvious candidates.
Perhaps this is something which is in accordance with the observed nature of

"The results changed only marginally when the original rescaled range statistic was replaced by the
modified rescaled range statistic. As with Lo (1991), the values of V did generally decrease

although the changes was on average quite small. More important change took place when the
AR(4) residuals were replaced by first (log) differences. The evidence on long memory was in this
case even weaker than with the AR(4) residuals.
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indebtedness and the relationship between indebtedness, credit supply and
bankruptcies (see, for instance, Stiglitz and Weiss (1981) and Bernanke (1983)).

Recently, Rothman (1993) has shown that the Ramsey-Rothman
irreversibility test is relatively powerful against the threshold model. Thus, our
findings could also be interpreted from this point of view. In other words, there are
nonlinearities but not of deterministic chaos type but rather resulting from
nonlinear model structure or parameter instability. In the subsequent sections, we
consider these alternatives.

4.5 Estimates of adjustment equations

Can anything else be said about the nature of nonlinearities? Tables 2 and 6
suggest that this is the case.”® Table 1 indicates that the real series and the nominal
series behave in a very different way. The nominal series do not show any signs of
negative skewness. Moreover, the nonlinear adjustment equations (reported in
Table 6) behave very badly, for instance, in terms of stationarity.'* It is particularly
interesting to compare the behaviour of industrial production and stock prices.
Industrial output is characterized by clear negative skewness (in magnitude) while
there is no apparent skewness in stock prices. With industrial production, positive
residuals are much smaller and obviously more numerous than negative residuals.
Intuitively, this makes sense since capacity constraints limit increasing production
while a decrease in orders or bankruptcies may lower production more rapidly.
With stock prices, there is no difference between positive and negative residuals.
Thus, adjustment of stock prices does not contain significant asymmetries. See
Figure 9 for details; notice that positive and (absolute values of) negative AR(4)
residuals are presented here in an ascending order.

4.6 Results from stability analysis

The adjustment properties could, of course, be scrutinized in a straightforward way
by looking at the parameter stability over depressions and booms. Table 10
contains some indicators of parameter stability for the univariate AR(4) which is

13 Here, we have introduced three additional real variables: the real interest rate and the (inverses
of) money and credit velocities.

4 With consumer and wholesale prices, there seems to be positive skewness indicating that prices
tend to increase faster than they tend to decrease, which obviously makes sense. The behaviour of
the long-term interest rate may only reflect this same fact. The real exchange rate, in turn, is
characterized by gradual deterioration of competitiveness and once-for-all devaluations of the
currency. Money and credit seem to behave in the same way as stock prices in terms of skewness
although the estimations results are somewhat different. With bankruptcies, the results represent
some sort of puzzle. Industrial output and bankruptcies do not seem to be just mirror images -
quite the contrary. Thus, there are some (although not very significant) signs of negative skewness
indicating that peaks in bankruptcies are smaller than the corresponding troughs. This clearly
indicates that bankruptcies are perhaps more related to financial and institutional variables than
just to demand and output.
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used as some sort of point of departure in this study. Thus, we have computed the
average lag length for depression (the shaded areas in Figure 1) and non-
depression periods, the Chow stability test statistic in terms of the sample split and
an F-test statistic for the significance of multiplicative (x,_;*depression dummy)
terms. It turns out that the stability property is at variance with the data. Moreover,
there is some, although not very strong, evidence of asymmetric adjustment in the
sense that the average lag length is shorter in depressions than in "normal years".

The stability measures are to some extent consistent with the evidence from
the nonlinear adjustment model but some clear inconsistencies also arise. For
instance, somewhat conflicting results are obtained for bankruptcies and stock
prices. It should be noticed, however, that the classification of observations is
based on output behaviour and the cyclical behaviour of other variables, such as
stock prices, do not coincide with output movements and, therefore, the results
cannot be identical.

Thus, if anything can be learned from this exercise, it is the fact that
nonlinearities do seem to exist with the long Finnish series but there are clear
differences between nominal and real variables. Thus, it is perhaps futile to
analyze all sorts of nonlinearities using a single model as a frame of reference.

5 Testing dependencies between residual moments

The purpose of first applying an autoregressive model to the series is to remove
the potential trend component from them. The deterministic or stochastic long-
term trend could be removed in other ways as well, e.g. by differencing or
modelling with structural time series models and then eliminating the trend
component. We proceed by calculating dependency measures of different
transformations of these AR(4) residuals.'® Different moments of residual series
and absolute values of residuals are considered as transformations. Therefore we
calculate dependence tests from cross-autocorrelations between these univariate
residuals as a first step in searching for dynamic relationships.

As can be seen, this procedure looks like an extension of the Granger
causality test. However, we start by calculating Portmanteau test statistics without
conditioning on past observations of the transformed residuals of the series itself.
Portmanteau tests give us potential evidence about the direction and strength of the
dynamic dependencies between variables. If the relationship is one-sided, it greatly
simplifies the identification of the sources of shocks in these series.

To test whether residuals of the autoregressive model satisfy the properties of
independent white noise, this can be seen by calculating the Portmanteau (Q)
statistic. This test is designed to detect departures from randomness among the k
first auto- or crosscorrelations. The test has the following form

M
Q=T(T+2) X (T-k)'¥,
k=1

1> We also computed the same measures with respect to the ARCH-model residuals. The results
turned out to be so close to the results with squared OLS residuals that we do not report them.
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where r? are the squared correlations of the residuals.

This modification of the basic Box-Pierce statistic was first presented in
Ljung and Box (1978). The test statistic is asymptotically x*(M) distributed when
the original residuals are independent. There is no clear solution in choosing M,
but in our case too small values could result in failure to detect dependencies
between important higher order lags. As might be expected, increasing M will, on
the other hand, lead to lower power of the test (Harvey (1981), p. 211).

The Portmanteau statistic could also be applied to the higher moments or
absolute values of stationary series as a general test against non-randomness.
McLeod and Li (1983) have shown that squared residuals have the same standard
asymptotic variance (1/T) as the original series if the residuals are random. In the
following tests we assumed the lag order of 24 (2 years) to be large enough to pick
up long term dependencies between different moments of residuals. In our
application economic theory has rather little to say about the lags between shocks
leading to variation in other variables.

Table 11 presents a summary of the estimated Q test statistics. Only the
number of significant cases is reported here. The test statistics have been
computed both for leads and lags to get some idea of causality. A more detailed
report of the results from cross-correlation analysis is available upon request from
the authors.

With reference to the table we point out that in general the number of
significant values is very high. Almost two-thirds of the coefficients are significant
at the 5 per cent level of significance. Particularly in the case of absolute values of
the AR(4) residuals, the dependencies are very strong. In accordance with the
results from univariate long-memory tests, the results in Table 11 suggest that the
long-memory phenomenon also applies to co-movements of different variables -
and not only within real and nominal variables but between all macroeconomic
variables.

As for the role of different variables, one may note that the bankruptcy
variable is very important in terms of the correlation structure. In fact, the number
of significant correlations for bankruptcies is bigger than with all other variables.
By contrast, the money supply series M1 and M2 and the terms of trade tt are only
moderately correlated with other variables.

The test results do not tell very much about causation. In general, the cross-
correlation coefficients are of the same magnitude with respect to leads and lags.
Therefore, it is very hard to draw any far-reaching conclusions on this matter.

Calculating the contemporaneous correlations between variables does not
have any dynamic causal interpretation as it only indicates instantaneous linear co-
movement (positive or negative) within a-month. As can be seen from Table 11,
about one-third of the off-diagonal correlations are significant at the 5 per cent
level. The interpretation of (significant) correlations is in most cases rather
straightforward, Thus, for instance, consumer prices correlate in an expected way
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with, wholesale prices, monetary variables like credit, money aggregate, stock
prices and the real exchange rate but not with other real variables.
Altogether, the correlations between higher moments of the AR(4) residuals -

in the same way as between the absolute values - are so strikingly high that further
analysis in a multivariate nonlinear set-up is clearly required. The first step is

simply to find out why volatility changes are so much related. In addition, one has
to think about a possible explanation to the observed strong co-skewness between
variables. Finally, one has also to take into account the fact that the long-memory
property also seems to apply to the co-movements of different series - both
nominal and real. It seems at least that a (multivariate) ARCH model is not a
sufficient or a proper specification to account for these features of the data.

6 Concluding remarks

The empirical analyses presented in this paper have given strong and unambiguous
support to the existence of nonlinearities in Finnish historical time series. The
univariate case is very clear but it seems that nonlinearities may be even stronger
and more important in the multivariate set-up. Obviously, this calls for further
research in this area.

It is surely not surprising that the exact nature of nonlinearities cannot be
identified. We are inclined to conclude that deterministic chaos is not the probable
explanation. It is to be noted that Brock and Potter (1993) arrive at a similar
conclusion when they review some recent evidence from macroeconomic and
financial data. Another explanation which is often mentioned in this context
concerns ARCH and GARCH effects. It is typically found that, after these effects
are accounted for, the evidence for nonlinearity and chaos is weakened (see, e.g.,
Hsieh (1991)). In this study, we found the ARCH effect to be of minor importance.
Thus, the explanations for nonlinearities must be sought elsewhere. Nonlinearities
may, for instance, reflect neglected nonstationarities but we would prefer to argue
in favour of the specific (asymmetric) properties of the short-run (cyclical)
adjustment process. There could well be various institutional arrangements and
constraints, informational deficiencies, capacity constraints and so on which
prevent immediate and symmetric adjustment and which, in turn, explain the
empirical findings. Finally, various stability tests clearly indicate that the
behaviour of macroeconomic variables is quite different in recession and
expansion periods.

It seems highly possible that nonlinearities may change some widely accepted
assumptions or results. Thus, for instance, the neutrality of money may not be so
good a approximation as it seems in the context of linear models. It may also be
that the conventional symmetric adjustment mechanisms represent a very poor
framework for dynamic specification. Also, the short and long-run properties of

' On the other hand, it is interesting to note that wholesale prices do correlate with both real and
monetary variables. Industrial production correlates only with wholesale prices and bankruptcies,
but in both cases the sign of the correlation seems to be the opposite than expected. It is also hard
to interpret why interest rates correlate positively with stock prices. According to present value
formulae, the relation should be just opposite.
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different time series and the way in which the corresponding markets function
need to be carefully rethought in the light of, for instance, the long-memory results
obtained in this study. Finally, it may be that the importance of certain variables
(and unimportance of the other variables) in the propagation mechanism of
nominal and real shocks in the economy will change a lot if nonlinearities are
taken into account. The Finnish data suggest that, for instance, bankruptcies are
such a neglected variable.
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Table 1. Descriptive statistics for the residuals of a linear AR(4)

model

skewness kurtosis median med(-) med(+) stand.dev.
ip -.66 5.52 222 -2.058 2.443 .056
bank -.59 4.70 747 -12.968 14.141 306
it .66 26.37 .037 -21.609 23.849 2.263
fx 4.18 69.66 -.142 -725 540 3.010
r 45 16.87 .002 -.026 032 274
cpi 3.34 30.36 -.126 -.460 324 013
wpi 3.04 21.42 -.115 ~-.506 325 012
credit .04 8.38 016 -.428 450 011
M1 22 12.55 -.183 -1.612 1.372 .029
M2 -3.08 51.47 -.035 -.525 472 011
sX -.13 5.09 -.096 -2.699 2.337 .050
st -.085 2.73 -.455 -20.621 21.848 .366

Skewness and kurtosis denote the coefficients of skewness and kurtosis, respectively. Median
denotes the sample median, med(-) and med(+) denote the 25 and 75 per cent (quartile) values. In
the case of log transformation, the values of the median, med(-) and med(+) have been multiplied
by 100. ip denotes (log) industrial production, bank (log) bankruptcies, tt the terms of trade, fx the
real exchange rate index, r yield on long-term government bonds, cpi the (log) consumer price
index, wpi the (log) wholesale price index, credit the (log) banks' total credit supply, Mt (M2) the
(log) narrow (broad) money, sx the (log) Unitas stock price index and st the turnover in stock
exchange. The sample period is 1922M5-1996M9. (1) Not significant at the 5 per cent level.

Table 2. Diagnostic test statistics for a linear AR(4) model
ARCH RESET2 RESET3 Func. WHITE J-B TSAY
form

ip 20.65 0.65 1.72 14.61 11.72 306.88 10.94
bank 18.34 4.51 7.50 15.55 25.02 255.34 27.22
tt 10.69 7.60 8.76 3.74 464 2632.10 31.61
fx 8.24 4.18 8.84 2.89 470 1121.00 86.74
r 2.91 0.73 0.84 2.26 1.09 1636.60 23.55
cpi 41.43 3.39 3.72 23.05 13.64 473.89 106.39
wpi 8.06 4.36 5.22 8.60 9.44 563.05 29.67
credit 22.68 16.25 8.12 7.14 14.08 746.08 46.96
M1 20.57 5.17 5.96 24.64 9.13 1204.4 137.35
M2 2.94 17.79 10.73 17.34 9.22 1661.2 122.35
sX 44.23 0.12 0.37 41.73 6.88 380.38 48.10
st 17.02 0.46 6.45 18.15 9.26 154.74 52.55

ARCH denotes Engle's ARCH test statistic (with 7 lags), RESET?2 test statistic adds the second
power of the fitted value as an additional regressor RESET3 includes both the second and third
powers of y. Func. form is the F-test of the second power of the explanatory variables and their
cross-terms included in the regression. White denotes White' heteroskedasticity/functional form
test statistic, J~B the Jarque-Bera test statistic for residual normality and TSAY Tsay's nonlinearity
test statistic for 4 lags. 1 % and 5 % denote the critical values of the respective test statistics.
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Table 2. continued

L (12 (13 114 rQ22) 123} Q24 r(33) r(34) r(d4)

ip -142 112 -011 -119 114 -006 031 -.144 019 086
bank 194 005 -.101 .021 A15 -.115  -.049 206 -.019 192
tt -237 -002 -.123 -.041 .106 032 018 -262 -083 -.027
fx -494 -370 -404 152 -560 345 -634 -547 193 -351
r -237 -.049 013 038 -039 -056 -046 -.142 -.121 -.418
cpi 619 303 -498 -598 -042 -019 353 007 796  .796
wpi -353 .13 -.118 001 137 052 302 -378 124 044
credit 124 -147  -212 .055 112 -113 .148 069 198 009
Ml -495 -089 313 134 -837 -040 266 -638 035 -297
sx 208 188 -038 015 -429 -.133 .48 058  .115 -.031
randomN(0,]) -.040 -015 ~-011 ~-016 -005 .020 -050 -.055 -039 -0I5
logistic map .669 .536 .556 558 .848 544 .561 .833 .669 .536
1,'s are Hsieh's (1991) third-order moment coefficients [x x,_x,_/TV/ [EXZ/T 1"
i -t t :

Table 3. Estimates of correlation dimension with AR(4)
residuals
Embedding dimension
1 2 3 4 5

ip 1.22 191 2.73 3.53 448
(0.10) 0.11) (0.16) 0.17) 0.31)

bank 1.37 2.07 2.84 3.78 4.82
. (0.55) (0.53) (0.46) (0.68) (1.05)

it 1.26 1.99 2.74 3.35 3.94
(0.88) - (1.03) (1.14) (1.00) 0.97)

fx 1.06 1.71 245 3.32 4.22
(0.30) (0.50) (1.00) (2.37) (4.99)

1y 0.55 0.57 0.59 0.62 0.63
5.51) “.12) (2.62) 2.37) 2.29)

cpi 101 - 177 2.52 2.23 3.80
(0.16) (0.28) (0.40) (0.40) (0.68)

wpi 0.81 1.28 1.37 1.40 1.42
(10.08) (28.56) (82.97) (144.18) (188.76)

credit 1.00 1.75 2.59 3.50 4.39
(0.18) (0.33) (0.54) (1.03) (1.55)

Mi 1.14 1.87 2.70 3.65 4.69
{0.14) (0.15) (0.15) 0.27) (0.56)

M2 1.22 1.97 2.83 3.75 481
(0.10) (0.10) 0.11) (0.19) 0.48)

SX 1.17 1.92 2.79 3.61 425
0.17) (0.18) (0.22) (0.12) (0.24)

st 1.12 1.86 2.72 3.62 4.56
(0.21) (0.23) (0.25) (0.30) 0.41)

random N(0,1) 1.05 1.85 2.80 3,78 4.61
(0.14) 0.11) (0.16) (0.26) (0.09)

Henon map 0.97 1.27 1.29 1.30 1.32
(0.01) 0.03) 0.02) (0.05) (0.05)

Logistic map 0.83 0.90 0.96 0.98 1.00
(0.14) (0.04) (0.01) (0.02) (0.08)

Numbers inside parentheses are chi-square test statistics for the goodness of fit.
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Table 4. BDS test statistics for the residuals of a linear AR(4)
model

m=2 m=3 m=4 m=5 m=2 m=5
€=0.5 €=0.5 €=0.5 €=0.5 e=1.0 e=1.0

Original AR(4) residuals

ip 14,08 20.75 27.47 37.04 12.26 22.62
bank 8.76 13.08 11.68 -6.37 9.95 6.66
tt 11.90 14.84 18.77 2471 9.52 1475
fx 13.42 16.29 19.18 2253 1148 12.67
r 14.42 17.84 20.74 23.45 10.99 13.83
cpi 11.09 15.31 18.49 22.44 10.45 15.09
wpi 7.33 10.07 12.49 16.02 8.85 12.28
credit 10.95 14.24 17.65 22.62 11.21 17.66
Mi 3.28 4,67 5.7 6.45 491 7.78
M2 6.70 1041 13.59 16.83 7.35 14,10
$X 8.01 9.40 10.92 12.25 8.37 13.05
st 2.00 2.66 3.69 4.54 1.82 4.75
random N(0,1) 0.6 0.2 -0.3 -0.4 0.7 0.1
Henon map 165.9 280.8 428.9 7177 76.0 91.3
logistic map 669.1 881.1 1152.1 1570.0 282.0 250.3
logistic map(4) 2.0 2.0 1.8 -8.1 -1.3 2.0
logistic map(30) 0.7 -2.1 -1.8 -2.2 -1.6 -0.9
ARCH(4) residuals of an AR(4) model
ip 1043 14,35 16.16 18.06 5.06 10.40
bank 11.91 14.53 16.63 18.28 9.98 12.39
tt 3.19 430 5.57 5.77 1.96 5.34
fx 6.03 8.94 9.08 8.99 1.60 4.40
t 6.21 7.76 8.20 8.40 3.37 5.36
cpi 14.03 14.84 14.63 14.61 9.05 9.50
wpi 10.33 10.63 10.36 9.77 11.08 9.97
credit 13.46 15.25 15.78 16.26 11.31 12.73
M1 6.61 9.21 10.47 10.78 2.80 7.35
M2 6.10 8.44 9.04 9.12 7.55 8.38
8X 9.44 1298 15.28 17.22 8.03 12.57
st 4,18 5.50 6.56 7.70 451 5.87
Shuffled AR(4) residuals
ip -22 -14 -1.0 0.4 -2.5 -13
bank -0.8 -0.2 -0.3 0.4 -09 1.1
tt 1.6 2.1 2.0 1.9 1.9 1.7
fx 04 1.0 0.7 0.5 14 1.5
r 1.9 1.6 1.3 1.2 1.7 1.0
cpi 2.7 2.6 23 02 0.7 12
wpi -1.0 -1.6 -1.5 -1.2 -13 -1.6
credit 04 -0.1 -0.6 -0.4 -0.6 -0.8
Mi -0.6 -0.4 -0.3 -0.7 -1.3 -0.2
M2 -12 -0.7 ~0.7 -0.8 -09 -0.3
sX 1.0 1.1 0.6 0.7 1.8 1.6
st -04 0.1 0.1 0.2 -0.9 -0.1
Henon map 0.6 0.3 0.2 03 0.1 -0.0
_logistic map 1.0 1.3 2.2 0.2 -0.2 1.2

The test statistic is BDS = T"‘[Cm(e)-C,(e)'“]/om(e), where T=N - m + 1 and N = the number of
observations, C,(e) = the correlation integral = T**[number of ordered pairs (i,j) such that
| X = Xem | < €] where x,,, is the m-history of the time series x and o0, (€) is the respective
standard deviation. Under the null that the series is independently and identically distributed, the
BDS has a limiting standard normal distribution. Here, € = 0.5 corresponds to € = 0.5%{the
standard deviation of the residual series}. € = 1.0 is defined in the same way. The shuffled series
are obtained by sampling randomly with replacement from the data until a shuffled series of the
same length as the original is obtained. The sample period is 1922M5-1994M9. The generated
series include 1000 observations. logistic map(4) indicates that every 4:th observation is picked up
from a generated series which originally include 30000 observations.
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Table 5.

Autocorrelation tests for different residual

transformations
Significance level of the  First-order autocorrelation
Ljung-Box Q(60) - coefficients for residual
statistic for residual transformations
transformation
Variable u, |u,] w u, Ju,| ul
ip .000  .000 000 -.007 326%*  167**
bank 000  .000 000 -.026 346%%  247**
tt 000 .000 .000 .018 189** 038
fx 430 000 159 023 362%x  (O88*
r .000 .000 000 -.010 284**  (72*
cpi 000  .000 000 -.008 397**  308**
wpi .001 .000 .000 -.006 332%kk  182%*
credit .000 .000 000 -.013 343%*  3]4**
M1 .000 .000 000 -.007 219**  166**
M2 000  .000 000 -.008 265%*  129%*
sx .000 .000  .000 .002 253%*  161**
st .000 000 .000 -.018 116**  [197**

* (*¥) = significant at the 5 (1) per cent level.
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Table 6. NLS estimates for the ARFIMA (4,d,0) model
Variable ip bank tt fx r cpi
d ~.0377 .8829 4895 -.1098 4523 .0873
(.0327) (.0483) (.0872) (.0799) (.1930) (.0316)
&, 6691 -.5650 6249 1.1537 4517 1.2517
(.0462) (.0566) (.0926) (.0866) (.1933) (.0450)
6, .1948 -.3134 1327 -.0660 2181 -.0383
(.0404) (.0597) (.0382) (.0682) (.0366) (.0578)
e, 1072 -.1826 2744 -.1851 1181 -.2125
(.0378) (.0516) (.0378) (.0467) (.0478) (.0327)
e, .0285 -.1255 -.2225 .0895 .0971 -.0013
(.0274) (.0387) (.0374) (.0284) (.0606) (.0064)
8 .0031 .0906 4.8806 8.8599 0957 .0002
Variable wpi credit M1 M2 $X st
d 1421 0741 .0187 .1038 .0609 9139
(.0374) (.0159) (.0667) (.0319) (.0501) (.0556)
e, 1.2378 8519 97717 1.2547 1.2339 -.0939
(.0487) (.0368) (.0745) (.0438) (.0599) (.0627)
&, -.0132 1378 0096 0860 -.2869 -.1506
(.0595) (.0441) (.0567) (.0568) (.0627) (.0452)
e, -.2188 -.0005 .0053 -.3362 0574 -.0512
(.0309) (.0331) (.0462) (.0301) (.0385) (.0415)
&, -.0068 0099 .0035 ~.0047 -.0051 -.1211
(.0060) (.0088) (.0363) (.0035) (.0188) (.0376)
8 0002 .0001 .0008 .0001 0025 .1268

Numbers inside parentheses are standard errors, 6 is the error variance.
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Table 7. ML and NLS estimates for the ARFIMA(1,d,0) model
for AR(4) residuals
ML estimates NLS estimates Geweke
Variable : Porter
a al & a (21 8 Hudak
ip -.0621 0528 .0031 -.0631 .0544 .0031 202
(.0429) (.0551) (.0429) (.0552) (.112)
bank -.1001 0654 .0926 -.1007 0659 0926 238
(.0365) (.0498) (.0365) (.0499) (.121)
tt -.0086 0273 5.1148 -.0093 .0284 5.1113 -.118
(.0461) (.0582) (.0458) (.0579) (.152)
fx 0393 -.0169 9.0370 0593 -.0549 8.7906 116
(.0418) (.0530) (.0387) (.0494) - (.108)
r .0370 -.0468 0753 .0376 -.0474 0752 -.142
(.0410) - (.0520) (.0412) (.0521) (.138)
cpi .0373 -.0461 0002 .0378 -.0468 .0002 .386
(.0362) (.0484) (.0364) (.0485) (.144)
wpi .0239 -:0296 .0002 .0249 -.0318 .0002 .168
(.0357) (.0482) (.0354) (.0479) . (.162)
credit .0420 -.0553 .0001 .0421 -.0554 .0001 575
(.0308)  (.0443) (0309)  (.0444) (.142)
M1 0745 -.0845 .0008 0747 -.0848 .0008 402
(.0330) (.0455) (.0331) (.0456) (.153)
M2 0676 -.0787 .0001 .0680 -.0791 .0002 .626
(.0306) (.0439) (.0307) (.0440) (.142)
sX -.0069 .0084 .0025 -.0071 .0086 .0025 -.342
(.0454) (.0565) (.0457) (.0568) (.172)
st -.2032 .1675 .1314 -.2054 1726 1311 -.167
(.9450) (.0581) (.0438) (.0573) (.120)

Numbers inside parentheses are standard errors. Geweke-Porter-Hudak denotes the respective
differencing parameter estimate.
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Table 8. The rescaled range V statistics and the estimates of the
Hurst exponent (q=0)

v H
ip 1.28 0.59
bank 1.36 0.49
t 1.34 0.46
tx 1.66 0.51
r 1.73 0.60
cpi 1.69 0.80
wpi 1.95 0.83
credit 2.77 0.70
Ml 2.27 0.72
M2 2.56 0.66
sX 0.83 0.34
st 1.14 0.44

The graphs of the R/S series are presented in Figure 8. On the basis of
this figure, one may conclude whether the slope (i.e., the estimate of
the Hurst exponent) is almost constant over all data points. The 5 per
cent confidence interval for the V statistic is 0.85-1.75.
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Table 9. Estimation results of a nonlinear AR model
a, a, a, a, a, a. a. SEE  DW F3
ip 273 105 580 201 043 -.623 223 056 208 1.79
(2.81) (3.10) (10.5) (3.13) (2.23) (2.15) (0.26)
bank 921 071 273 146 096 -.761 -.013 318 224 17.80
B (135 (3.41) (124) (288) (245) (0.34)
tt 216 008 1.110 -~.603 333 -4.427 -5617 .023 206 9.96
(245) (147) (12.7) (449) (251) (2.82) (4.02)
fx 416 002 830 -.819 648 -7.859 -1.701 .030 190 14.71
4.05) (049) (8.83) (4.98) (4.13) (434 (4.33)
r 005 000 774 027 2006 -59.76 181.12 276 198 0.74
(0.85) (0.16) (8.08) (0.17) (0.86) (0.97) (0.83)
cpi - -.002 033 1344 -340 -.002 .047 3.467 013 214 10.65
(144) (331) (31.9) (8.03) (3.31) (242) (1.39)
wpi -164 024 1563 -.497 -.007 .019 -1264 013 217 1270
(370) (258) (392) (115 @337 (331 (3.39)
credit -.017 .019 1486 -.480 -.001 .000 -1068 010 217 19.89
, (093) (1.93) (36.0) (11.5) (1.03) (042) (5.14)
M1 -390 115 809 292 -.007 .008 5225 .029 200 9.70
(344) (4.00) (204) (6.39) (3.74) (3.35) (3.06)
M2 -118 023 1037 -.011 -001 .001 -.511 .011 200 1755
(1.52) (1.25) (25.5) (0.25) (1.63) (1.12) (0.12)
sX 006 .140 1256 -281 .001 -.006 240 050 198 0.89
096) (3.32) (31.3) (7.00) (0.62) (0.25) (0.25)
st -492 1375 736 080 .021 -.129 -.011 362 2.03 3729
(744) (7.45) (18.5) (1.92) (6.94) (4.28)  (0.40)

The estimating equation is of the form: x,=a +at+ax ,+a;X ,+a,(x X, ,)+ as(xf_1 X )t

ag(X,,-X,) +H,, where p is the random term. If we restrict a, = a; = a, = 0, we end up with a
standard linear model. F3 represents an F test statistic for this restriction. The corresponding 5 %
(1 %) critical value(s) is 2.64 (3.86). ip denotes (log) industrial production, bank (log)
bankruptcies, tt the terms of trade, fx the real exchange rate index, r yield on long-term
government bonds, cpi the (log) consumer price index, wpi the (log) wholesale price index, credit
the (log) banks' total credit supply, M1 the (log) narrow money, sx the (log) Unitas stock price
index and st the turnover in stock exchange. The sample period is 1922M5-1996M9. Coefficient
a, has been divided by 1000.

37




Table 10. Some stability test results

Average lag length Stability tests
1 1 Chow Dummy test
ip 1.44 1.80 5.08 5.18
bank 2.12 2.12 0.68 0.30
tt 042 0.74 3.06 3.24
fx 0.88 0.89 3.05 3.03
T 0.79 1.01 1.32 1.55
cpi 0.30 0.83 8.14 10.10
wpi 0.33 0.46 3.64 3.77
credit 0.48 0.38 2.51 241
M1 0.68 1.52 8.92 11.75
sX 0.72 0.68 3.77 452
5% . . 222 2.38
1% . . 3.04 3.34

The average lag length is computed for the depression periods (I) and non-depression periods (II).
Chow notes a Chow test statistic for the hypothesis that the coefficients of the AR(4) model are the
same for these two subperiods. The dummy test denotes a F test for the multiplicative dummy*x, ,
-terms.
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Table 11. Number of significant Box-Ljung test statistics for the
cross-correlation coefficients of different powers of

AR(4) residuals

u u’ u’ lu] u,
ip 3(6) 5(8) 2(6) 10(10) 1
bank 5(7) 8(9) 8(9) 10(10) 3
tt ' 5(1) 5(1) 5(1) 11(3) 1
fx 7(6) 5(7) 2(5) 8(9) 2
r 5(4) 5(6) 3(3) 8(9) 1
cpi 10(8) 7(6) 6(5) 9(8) 5
wpi 8(9) 8(7) 7(6) 9(10) 4
credit  10(8) 8(8) 8(7) 10(10) 5
M1 4(7) 3(3) 1(2) 6(8) 4
M2 7(6) 4(3) 1(0) 10 2
sX 7(5) e 6(5) 10(11) 6
st 6(6) 7(7) 4(4) 8(11) 1

The first number indicates the number of significant Box-Ljung test
statistics at the 5 per cent level of significance for the first 24 positive
lags of the other variable. The second column (inside parentheses)
indicates the corresponding number for the same number of leads. u
indicates untransformed residuals, u® squared residuals, u® third power
of residuals, |u| absolute values of residuals and u, contemporaneous
values of residuals (these values are computed from simple correlation
coefficients).
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Figure 2. Historical Finnish time series
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Figure 3. Time series of AR(4) residuals
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Narrow money (M1)
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Figure 4.
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Figure 6.
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Figure 7. Autocorrelations of absolute values of AR(4)

residuals
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Figure 8.
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Figure 9.1
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Figure 9.2 Ramsey irreversibility test statistics for ip and sx
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Figure 10.
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Figure 11.
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