
THREE-DIMENSIONAL FOURIER ANALYSIS OF ELECTRON MICROSCOPY TO

CHARACTERIZE DIFFUSION TENSOR IMAGING DATA

Kaveh Nik Jamal

   Master´s thesis

                                                   Åbo Akademi University

                                                   Faculty of Science and Engineering

                                                   1.11.2016

                                                   Master´s degree in Biomedical Imaging

                                                   Credits: 45 ECTS

                                             Specialization theme:

                                             Mathematics, image processing

                                             using Matlab

                                                   Supervisors :

1. Alejandra Sierra, PhD.

2. Raimo Salo, M.Sc.

                                                   Examiners:

1. Olli Gröhn, PhD.

2. Joanna Huttunen, PhD.



Åbo Akademi University

Department of Biosciences

Faculty of Science and Engineering

Kaveh Nik Jamal, knikjama@abo.fi , matriculation number: 38126

Three-Dimensional Fourier Analysis of Electron Microscopy to Characterize Diffusion

Tensor Imaging Data

Master´s thesis, 67 pp, 1 Appendix

MASTER OF SCIENCE

October 2016

Abstract

Diffusion tensor imaging (DTI) is a highly sensitive MRI method that unveils the changes in

brain microstructures. By estimating the movement of protons through different areas of

complexity in the brain, DTI provides a remarkable contrast between white matter and grey

matter fibers three-dimensionally (3D), as tissues differ in causing restriction to the

movement of water protons. Particularly after neuropathology, DTI reveals significant

changes in the measured parameters.  However, the contrast provided by DTI, reflecting the

organization of fibers is not clearly understood.  In addition, there has been a gap thus far, in

direct characterization of DTI due to limitations in planar images of histology. In this work,

we first improved the two-dimensional (2D) histological characterization of DTI data. 2D

Fourier analysis was applied to the digital photomicrographs of myelin and GFAP stainings

in order to probe the changes that occur after status epilepticus in rats. It revealed a significant

change in the fiber orientations and anisotropy after status epilepticus as compared to the

controls in the CA3b region in the hippocampus, concurring with DTI results. With the aim

of providing the third-dimension to the histological characterization, we implemented

Fourier analysis in stacks of serial block face scanning electron microscopy (SBEM). It gives

a distinct advantage of providing all the obstacles (membranes) for the water diffusion.

Consequently, we obtained anisotropy and orientation for the grey and white matter in 3D at
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the same level of DTI voxels. After traumatic brain injury, we observed a remarkable

decrease in 3D anisotropy, ipsilaterally to the injury both in the cortex and external capsule.

This decrease was associated with an increase in the number of reactive astrocytes and axonal

damage. The development of a novel method for 3D Fourier analysis of SBEM is the first

step in the validation of DTI data for future studies focused on detecting the changes in brain

tissue after pathological conditions.

Key words: anisotropy, DTI, three-dimensional Fourier analysis, GFAP, grey matter, myelin,

myeloarchitecture, fiber orientations, SBEM, white matter.

Abbreviations

AI                                                              anisotropy

DTI                                                           Diffusion Tensor Imaging

FA                                                             fractional anisotropy

GFAP                                                        glial fibrillary acidic protein

MRI                                                          Magnetic Resonance Imaging

ROI                                                           region of interest (two-dimensional)

SBEM                                                       serial block-face scanning electron microscopy

TBI                                                           traumatic brain injury

2D-FT                                                        two-dimensional Fourier transformation

3D-FT                                                        three-dimensional Fourier transformation



VOI                                                           volume of interest (three-dimensional)
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1. INTRODUCTION
1.1. Background

The brain is the control center of the body. It is a highly complex organ, both functionally

and structurally. The fundamental element of the brain is the neuron. A neuron is responsible

for encoding and transferring the information by firing electrical signals in reaction to various

stimuli (Bear et al., 2007). From the body of the neuron, dendrites and axons are projected

three-dimensionally (Longstaff, 2000). Axons are responsible for transferring information

over long distances by creating synapses to other neurons. Dendrites are the branches

projected from the neuron body, with specialized membranes incorporating receptors for the

detection of neurotransmitters. Among others, glial cells are another type of cells in the brain,

estimated to be ten times superior in numbers compared to the neurons (Longstaff, 2000).

There are several  types of glial  cells.  Astrocytes form the majority of the glial  cells  in the

brain, providing support to the neurons. They are located between neurons and also between

neurons and vessels. Microglial cells assist the brain by providing immune support to the

neurons and their vicinity (Bear et al., 2007). Oligodendrocytes, another type of glial cells

create insulation for the axons by spiraling them with myelin sheaths (Levitan and

Kaczmarek, 2002). Bundles of the myelinated axons together form the white matter. The

grey matter, by contrast, is predominantly composed of cell bodies. Hence, the brain

embraces a sophisticated structure constituted upon various levels of cellular components.

Neurodegenerative diseases leave their marks on function and structure in the brain which

can be uncovered by neuroimaging techniques. Early detection of the brain pathology is

essential for prompt interventions and therapeutic measures by neurologists and healthcare

professionals. One example of the neuropathology is the Alzheimer’s disease (AD). Patients

with AD have significant neurodegeneration of the cortex and subcortical structures. One

specific feature of AD is the presence of diffuse plagues, encircled by neurodegenerative

neurites and glial cells. Another example is the multiple sclerosis (MS) which is a

demyelinating disease affecting white matter (Filippi et al., 2012). MS is caused by the

immune system attacking the proteins which myelin is made from, leading to destruction of

the myelin sheaths. Epilepsy is one more instance of pathology, involving the recurrent



2

seizures associated with the abnormal firing of neurons. The factors causing epilepsy may

include traumatic brain injury, genetic inheritance, and even alcohol withdrawal. Epilepsy

could inflict structural abnormalities in cell count and organization in specific brain regions.

Traumatic brain injury is a significant cause of disability and death affecting millions of

people worldwide. Diffuse axonal injury (DAI) is one of the most common neuropathological

consequences of trauma in the white matter, ranging from focal disruptions of axons to total

neural degeneration. At microscopic levels, DAI can impose damage in the molecular

transport of axons, initiate neuroinflammation and eventually disruption of axons (Husain

and Scott, 2016). In addition, a recurrent loss in the brain volume has been found in grey

matter as a consequence of post trauma pathology (Benson et al., 2012). For detecting these

alterations in the brain during the above mentioned pathological processes and many others,

neuroimaging techniques have been developed and constantly improved. Computed

Tomography (CT) is one of the primary tools for diagnosing the previously mentioned

injuries.  CT has  limited  contrast  for  soft  tissue  and  is  highly  restricted  in  the  detection  of

microscopic-level alterations in brain structures, particularly axon fibers. Positron Emission

Tomography (PET) provides information about the function and metabolism of the brain by

detecting the gamma rays generated from annihilation of the positrons with the electrons.

Although it is a very useful tool for monitoring the metabolisms and molecular activity in the

brain over time, the spatial resolution provided by PET is relatively low.

Magnetic resonance imaging (MRI) techniques are capable of revealing anatomy, function,

and metabolism of the brain (Kinnunen et al., 2010). Through using pulsed radio frequencies

for nuclear magnetic resonance, this technique is not harmful to living cells compared to

ionizing  radiation  of  CT  or  PET.  Conventional  MRI  methods  are  already  widely  used  in

clinics and research used in diagnosis and prognosis of diseases. T1- or T2-weighted, proton

density, or diffusion MRI create a broad spectrum of mechanisms of contrast which makes

MRI a highly versatile imaging technique. Particularly in neurology, MRI provides excellent

contrast between white matter and grey matter of the brain tissue with submillimeter

resolution, allowing a more detailed probe compared to CT or PET (Tardif et al., 2016).
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Yet, conventional MRI often fails in detecting more subtle microstructural alterations in the

brain, which can be used as markers for neurodegenerative diseases. Novel and more

advanced MRI techniques, such as diffusion tensor imaging and susceptibility weighted

imaging among others, have been implemented in recent years. Such new approaches are

likely to open completely new windows for detecting pathological changes in the brain, and

establishing noninvasive reliable markers for disease diagnosis and progression.

1.2. DTI, the method of choice to infer tissue microstructure

1.2.1. Diffusion tensor modelling

Diffusion tensor imaging (DTI) is a method among MRI techniques which is capable of

determining the microstructural alterations in the white matter and also grey matter (Andrade

et al., 2014). This is due to the versatility of magnetic resonance imaging, which can be made

sensitive to the movement of water. Water molecules randomly diffuse through the biological

matter between two particular spatial locations. While the primary cause of the diffusion

process is the thermal fluctuations, it is also modulated by interactions of the water molecule

with cellular and subcellular membranes, including the organelles (Alexander et al., 2007).

Diffusion can take place in, out, through or around the various cellular components of these

structures. Each element of the whole brain MRI image is a three-dimensional cube, referred

to as “voxel”. Each voxel embodies a considerable volume of microstructures that will cause

resistance for free movement of a water molecule. The general concept of the diffusion

imaging technique includes fitting to a Gaussian model in order to extract a diffusion map,

which is subsequently put into a tensor model for each individual voxel throughout the whole

MRI image (Mori and Tournier, 2014). In practice, this is achieved by imposing strong pulses

by the gradient coils of MRI scanners, which is the essential process for sensitizing MRI to

diffusion.

The application of the tensor model for diffusion measurements was presented by Basser and

colleagues as a multivariate normal distribution as a function of displacement (r) and time (t)

(Basser et al., 1994):

,ݎ⃗∆)ܲ (ݐ∆ =
1

ඥ(4ߨ.Δݐ)ଷ|ܦ|
݌ݔ݁	 ቊ

−Δ்⃗ݎ ݎଵ.Δ⃗ିܦ.
4Δݐ ቋ
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In which the diffusion tensor is included as a covariance matrix of diffusion displacements

normalized three-dimensionally:

ܦ = ቎
࢞࢞ࡰ ௫௬ܦ ௫௭ܦ
௬௫ܦ ࢟࢟ࡰ ௬௭ܦ
௭௫ܦ ௭௬ܦ ࢠࢠࡰ

቏

where the diagonal elements (in bold) are the variances in diffusion measurements along the

x,y and z axes and off-diagonal elements of this matrix are the covariance terms which are

symmetrical based on the diagonal elements (ܦ௜௝ = ௝௜). Subsequently, this matrix isܦ

mathematically diagonalized in order to yield three eigenvalues (ߣଵ, ,ଶߣ ଷ) and threeߣ

eigenvectors (݁⃗ଵ, ݁⃗ଶ, ݁⃗ଷ). The diffusion tensor can be visualized for each voxel by an ellipsoid

with  a  volume and  a  direction.  The  eigenvalues  define  the  radii  for  this  ellipsoid  and  the

eigenvectors indicate the directions of the principal axes (Rodriguez and Concha, 2015).  The

diffusion ellipsoid shows the overall dominant diffusion direction at each voxel in MRI.

Generally, several diffusion maps are acquired by imaging over different directions and

averaged, which can be further analyzed for quantification purposes (Nilsson et al., 2013).

1.2.2. Anisotropy and orientation

Fractional  anisotropy  (FA)  is  a  DTI  quantity  reflecting  the  degree  of  homogeneity  of  the

tissue microstructures. FA was initially developed by Moseley and coworkers for

understanding the demyelination disorders in the white matter (Moseley et al., 1991). FA is

basically the degree of variance between three eigenvalues (λ) from the covariance matrix

[D]:

ܣܨ = ටଷ
ଶ
ඥ(ఒభିఒഥ)మା(ఒమିఒഥ)మା(ఒయିఒഥ)మ

ටఒభ
మାఒమ

మାఒయ
మ

in which the mean diffusivity is:

ߣ̅ =
ଵߣ + ଶߣ + ଷߣ

3

FA is a scalar value between zero and one, zero for isotropic diffusion and 1 for anisotropic

diffusion. In order to understand the concept of anisotropy, one should know the process of

diffusion for a water molecule in the biological media. For instance, in the compact pattern

of white matter fibers, such as the genu of the corpus callosum, the cell membranes including
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axonal myelin sheaths cause impediment to the water diffusion more remarkably across their

length, compared  to  the  parallel  direction  (Fig.1).   In  other  words,  the  water  diffusion  is

significantly lower (more anisotropic) in perpendicular direction to the fibers. As a result, in

DTI images, the corpus callosum is far brighter compared to a conventional MRI, because

the water molecules cannot flow freely in perpendicular pathways to these fibers. This

specific phenomenon is translated into anisotropic diffusion.

On the other hand, in isotropic media such as the spinal fluid, there is no restriction for

diffusion of water in any possible direction. As a result, the diffusion will be isotropic and

consequently the diffusion profile will be in a spherical shape. An example of isotropic

diffusion in the brain is the grey matter fibers. With the presence of crossing fibers, the water

molecules go through approximately similar displacements among all directions. This is

Fig.1.  3D  visualization  of  the  diffusion  tensor  by  an  ellipsoid. Left) The homogeneous,
parallel organization of the packed fibers in white matter, for example the genu of the corpus
callosum. Each tubular shape shows a myelinated axon. These uniformly orientated bundles
restrict the diffusion of water more significantly, perpendicularly to their directionality (z
direction, marked in red). Thus, the movement of a water molecule through the uniform
packed fibers, from point 1 to point 2 (red dashed arrow), is highly hindered due to the
existence of bundles (z direction). However, in parallel to the directionality of the same fibers
(x direction), a water molecule can diffuse far more easily from point (1´) to point (2) (green
arrow), with less resistance because of the inter-tubular space between the bundles. Right)
The diffusion  tensor  model  for  the  same molecule  through the  same (white  matter)  fiber
bundles (left) in all three dimensions: x (green), y  (black) , z  (red), originating from the
center of the ellipsoid (O´) as the reference point. This ellipsoid is an indication of a highly
anisotropic diffusion of water molecule perpendicular to the direction of fibers in the left
side.

x

y

z

O'
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similar to a more isotropic diffusion, the characteristics of a free and unrestricted movement

of water molecules (Beaulieu, 2002). For instance, in an early study of anisotropy by Moseley

and colleagues found that in the white matter of cat brain and spinal cord, water diffusion is

anisotropic while in the grey matter it is more isotropic (Moseley et al., 1990).

1.2.3. The need for in-depth DTI quantifications

Anisotropy corresponds to the changes in the coherent microscopic organization at the

cellular scale (Basser and Pierpaoli, 1996). DTI has revealed reductions of fractional

anisotropy in the corpus callosum and external capsule of patients with traumatic brain injury,

a phenomenon which cannot be detected by conventional MRI (Xu et al., 2007; Rutgers et

al., 2008; Matsushita et al., 2011).

Despite all the studies using DTI in normal and pathological conditions, the contrast provided

by DTI is not fully understood. A decreased fractional anisotropy is believed to indicate the

loss of tissue integrity, a significant tool in exhibiting the white matter anatomy (Werring et

al., 1998). It is also believed to be reflecting axonal and myelin injury in the white matter.

Thus, a reduction in anisotropy may indicate degradation in the directional organization

among the fibers which are considered as barriers to the water diffusion (Beaulieu, 2002).

An increase in FA could be revealing axonal regeneration and plasticity (Budde et al., 2011).

Furthermore, if a voxel contains single fiber directionality (see Fig.1) the tensor model is

accurate for diffusion characterization (Basser et al., 1994). Thus, the directional dependence

of DTI anisotropy can be fully quantified by the diffusion tensor, solely when the diffusion

process has spatially homogenous increments, as in the corpus callosum (Frank, 2002).

Moreover, alongside other conventional diffusion MRI techniques, DTI makes an average of

the random movements of water molecules regardless of the exchange between intra- and

extracellular features (Basser and Jones, 2002). Among several directions, DTI generates a

diffusion tensor from the apparent diffusion coefficient of the water molecules (Assaf and

Basser, 2005). This coefficient could be measured in parallel and perpendicular directions to

the homogeneous fiber packs, ensuing immense discrepancies in the white matter (Basser

and Jones, 2002). Although white matter contains a homogenous tubular structure, it also

encompasses other cells whose membranes can be a factor for altering the diffusion after

pathology. It is believed that changes in the intrinsic characteristics of the fibers and their

varying angular distributions in a voxel may lower the anisotropy in DTI (Anderson, 2005).
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1.3. Histological characterization of DTI and its limitations

For studying the cellular components that assumingly contribute to the changes in fractional

anisotropy and orientation, various histological stainings have been used (Mac Donald et al.,

2007; Mädler et al., 2008; Li et al., 2011; Seehaus et al., 2015). Furthermore, long-term

quantification of DTI by exploring the histopathology of epileptogenesis are of paramount

necessity (van Eijsden et al., 2011).  For example, after epilepsy and traumatic brain injury,

the astrocytes (Fig.2A) are believed to have a role in helping to preserve the tissue by

increasing their domains. Such changes among these star-shaped cells can be revealed by the

GFAP immunostaining since the growth of astrocytes is associated with increased expression

of this protein.  In addition, the regrowth of astrocytes may not be limited to a planar domain.

As shown in Fig. 2, there are some structures which are in plane, while others are

perpendicular to the field of view and not considered in 2D analysis of the conventional

histological preparations. For this reason, planar histology not only lacks all the barriers

influencing the water diffusion within the tissue, but also the 3rd dimension that facilitates a

correlation with the 3D voxels of DTI.

1.3.1. Fourier analysis in 2D

In mathematics, a two-dimensional image can be represented as a function, f(x,y).  If  we

assume the magnitude of the image in x direction is M, and in y direction is N, the image can

be viewed as a matrix with M rows and N columns. Fourier transformation decomposes an

image to its sine and cosine components. The input of transformation is the image in the

Fig.2. The limitations of planar histology. (A) GFAP-stained section showing astrocytes
in the CA3b in the hippocampus of the rat brain. (B) Myelin-stained section of the same
region which shows myelinated axons. Arrows indicate some features which are mostly
perpendicular to the field of view. Therefore a three-dimensional histological approach
is needed to be able to compare with 3D DTI data.
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spatial domain f(x,y), and the output is the Fourier image, the frequency domain F(u,v). For

digital images, it is sufficient to have a discrete Fourier transform that includes only the most

relevant set of frequencies sufficient to represent the spatial image:

,ݑ)ܨ (ݒ = 	 ෍ ෍ ௜ଶగቀି݁(ݕ,ݔ)݂
௨௫
ெା௩௬ே ቁ

ேିଵ

௬ୀ଴

ெିଵ

௫ୀ଴

where i = √−1 .

For DTI quantification, cell membranes are particularly the most important target due to

causing restriction for diffusion of water protons. Having the image transformed in

frequencies by Fourier, it is possible to specifically take into account the frequencies

representing the membranes by means of singular value decomposition of the Fourier image.

Budde and collaborators recently used the above mentioned concept for exhibiting the

intelligible organization of white matter as well as grey matter (Budde et al., 2011). They

applied Fourier transformation to the images of Dil-stained sections to investigate the

microstructural changes after TBI in the rats. Dil (1,1'-Dioctadecyl-3,3,3',3'-

Tetramethylindocarbocyanine Perchlorate) is a lipophilic membrane stain which diffuses

laterally to stain the whole cell and is used to reveal cellular membranes and lipids in neural

tracking. However, this method lacked the 3rd dimension because the histological

preparations were still two dimensional. Moreover, several stainings were necessitated after

Dil staining in order to understand which microstructures contributed the most to DTI data.

In each DTI voxel, there are numerous fiber structures that contribute to the analysis output,

for which conventional histology may not be sufficient to quantify. Furthermore, the

necessity of multiple histological stainings for correlating the data with DTI is a challenge to

be dealt with. On the other hand, various sorts of cells and fibers have different impacts on

tissue properties based on their organization (Marquez, 2006).

1.3.2. Microscopy methods used for providing the 3rd dimension

There are several histological methods which could overcome the problem of the missing 3rd

dimension by incorporating z stacks using confocal or multi-photon microscopy (Axer and

Keyserlingk, 2000; Napadow et al., 2001; Jespersen et al., 2012; Schrauwen et al., 2012;

Khan et al., 2015; Kullkarni et al., 2015; Petroll et al., 2015). This could be applied to Dil
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staining or other specific markers, to obtain the 3rd dimension that may aid for further

validation studies (Axer et al., 1999). Most recently, full characterization of the fiber

orientations has also been conducted by stacking histological images using confocal

microscopy, combined with the structure tensor analysis (Schilling et al., 2016). Among

others, 3D-polarized light imaging has also been exploited to obtain unit vectors which reveal

the voxel-wise fiber tract orientations, found on the birefringent characteristics of the myelin

sheaths (Axer et al., 2011 a; Reckfort et al., 2015). The lipid membrane of myelin makes the

light elliptically polarized and turns it into a direct tool for measuring 3D spatial orientation

of axons (Axer et al., 2011 b). Thus, it has the capability to probe the long range and single

fibers in a scale from macroscopic to microscopic range (Menzel et al., 2015). Although these

methods provide the 3rd dimension,  they  are  still  restricted  to  specific  stainings  for  the

targeted histopathological substrates as the subject of the study. Uneven staining and

alignment problems are common limitations to these methods.

1.4. Electron microscopy containing all diffusion barriers three-dimensionally

The necessity of evaluating the tissue organization by optical or electron microscopy has

been proven to be indispensable for the direct visualization of cellular and subcellular

structures (Budde and Annese, 2013). Among various areas of the brain, neural fibers

constitute a highly dense and complex network which causes a significant challenge for

unveiling their structure. All the structural components of axons are longitudinally oriented

that can be barriers to water diffusion perpendicular to the length of axons (Beaulieu, 2002).

Hence, the influence of cell membranes including myelin sheaths on anisotropy must be

scrutinized. Moreover, a typical voxel in diffusion MRI experiments ranges about 10 mmଷ

(Fig.3A) enclosing numerous cells and tissue components (Assaf and Basser, 2005). One

advanced technique that might overcome these problems is serial block face scanning

electron microscopy (SBEM). It is an electron microscopy technique which produces stacks

of images at a mesoscale level (Denk and Horstmann, 2004) and fills the gap between the

high resolution transmission electron microcopy (TEM) and optical microscopy (Zankel et

al., 2014). SEM has been a typical method utilized for surface quantification based on the

interactions of electron beams with the sample surface (Miranda et al., 2015). Since SEM

uses the backscattered electrons from the surface of the specimen for generating images, it is

capable of imaging large volumes of tissues in a block-face with nanometer resolution range.
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In SBEM, first the face of the tissue sample is imaged, then a microtome included in the

chamber cuts a thin section, and subsequently the face is imaged again producing a 3D stack

of images in a high resolution. Consequently, it is expected to generate a volume which

contains cell bodies, axons, dendrites, organelles and synapses all together. This is owed to

the sufficiency of the SBEM resolution for probing the neural connectome and structures

(Mikula et al., 2012; Sawai et al., 2013). Due to the use of back-scattered electrons, it also

creates an atomic contrast and an inverted image of the sample similar to TEM (Borrett and

Hughes, 2016). Contrary to TEM, the problem of data loss and deformation of images does

not exist in SBEM, since the block face is scanned after the cutting (Wernitznig et al., 2016).

Recent improvements in staining techniques have made the block face preparation less time

consuming (Thai et al., 2016). The block face imaging method prevents section distortion

and has an improved Z resolution (Denk et al., 2012) that is essential for tracking the neural

processes over long distances. On the other hand, SBEM provides improved alignment of the

sections and its focused beam creates thinner sections, resulting in advanced segmentation

(Lichtman et al., 2014). SBEM analysis can provide a direct quantitative comparison between

DTI and histological analyses and close the gap in the characterization of pathological

substrates. Nevertheless, the enormous data volume of SBEM requires a time efficient and

automated analysis method which could be used as a gold standard tool.

Fig. 3. From voxels to 3D-electron microscopy. (A) Directionally encoded color map of a rat
brain. Each square element of this image is a 2D view of a 3D voxel in the whole brain image.
For each individual voxel the diffusion tensor estimates a dominant fiber directionality for
the whole tissue substructures, exhibited by red, green or blue color. For example, the red
color of the corpus callosum indicates that the fiber orientation is medial-lateral. (B) Myelin-
stained section of the same animal, only indicating the myelinated axons, while being limited
to 2D. (C) One image from a SBEM stack of the corpus callosum in 3D, containing all the
membranous structures with a remarkably higher resolution. Scale bar: (B) 1mm and (C) 25
µm. SBEM: serial block face electron microscopy, 2D: two-dimensional, 3D: three-
dimensional.

C
A B
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2. AIMS
2.1. Fourier analysis in 2D histology

In  this  project,  first  we  will  explore  the  possibilities  of  2D-FT  analysis  in  conventional

histological  stainings.  We will  investigate the contribution of two different components to

water diffusion in control and pilocarpine rats in the corpus callosum, cortex and CA3b of

the hippocampus. This can help understand the specific role of each sub-localized

membranous structure in contributing to DTI anisotropy, myelin sheaths and astrocyte

membranes, by histology. DTI analysis will be performed by a voxel-based approach. Three

consecutive voxels will be chosen, analyzed and averaged for each region of interest.

2.2. Fourier analysis in 3D electron microscopy

The main aim of this study is to measure the overall 3D anisotropy and orientations of the

dominant tissue structures in the rat brain, contained in a stack of 3D electron microscopic

images generated by SBEM and compare the results with DTI data. In these stacks, all the

microstructural components or membranous barriers responsible for restricting the water

diffusion could be taken into account. It will indeed be a gold standard, direct, and principled

method for full characterization of the diffusion tensor imaging, regardless of the various

levels of fiber complexity.

The specific aims are:

· to use the already existing 2D-Fourier analysis to analyze white and gray matter areas in

the rat brain in normal and pathological conditions.

· to develop 3D-Fourier analysis for the SBEM image stack.

· to analyze 3D-EM data with the novel Fourier analysis for creating anisotropy in 3D, a

reliable biomarker tool to probe the changes that occur after neropathology.

· to compare data from 3D-Fourier analysis to DTI data from selected brain areas, in order

to scrutinize the fractional anisotropy.

2.3. Hypothesis

We hypothesized that Fourier transformation can be applied to 3D stacks of SBEM and

further analyzed by the principal component analysis, with the aim of measuring anisotropy

and orientation of the dominant fibers.
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3. METHODS AND MATERIALS
The flowchart of this project is presented by the following graph (DTI: diffusion tensor

imaging 2D: two dimensional, 3D: three dimensional):

The implementation of the analysis of this work was performed by Matlab software (Math

Works, version R 2011a). The 2D and 3D analysis performed for this project involves the

discrete Fourier transformation. DTI analysis was done by AEDES (free Matlab toolbox for

MRI analysis, http://aedes.uef.fi/).
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3.1. Experimental animals

All the animals were housed in individual cages in climate controlled room (22°C ± 1°C)

humidity (50% to 60%) with 12 hour light/dark cycle with an ad libitum diet. All animal

procedures were approved by the Animal Ethics Committee of the Provincial

Government of Southern Finland (for TBI 2008-05812, for epilepsy 2010-05651), and

conducted in accordance with the guidelines set by the European Community Council

Directives 86/609/EEC.

Status epilepticus was induced in male Wistar rats (10 weeks old, weight 300-350 g,

National  Laboratory  Animal  Center  Kuopio)  (n  =  8).  They  were  injected  with

scopolamine (s.c., 2 mg/kg; #S-8502, Sigma, Chemical Co., St. Louis, MO, USA) for

decreasing the peripheral adverse effects of pilocarpine. After thirty minutes, status

epilepticus was induced by pilocarpine (i.p., 320 mg/kg, #P-6503, Sigma, Chemical Co.,

St. Louis, MO, USA). The development of status epilepticus was observed visually for 3

hours and the only animals included in this work were the rats that developed recurrent

generalized seizures. Finally, diazepam (i.p., 10 mg/kg, StesolidNovum, Dumex-

Alpharma) was administered aimed for curbing the mortality. Age and weight-matched

controls received saline (n = 6). Rats were first anesthetized with isoflurane.

TBI was induced using lateral fluid-percussion (LFP) injury model (Kharatishvili et al.,

2009) in male Sprague-Dawley rats (10 weeks old, weight 300–350 g, Harlan

Netherlands  B.V.,  Horst,  Netherlands).  Briefly,  rats  (n  =  5)  were  anesthetized  by  an

injection of a mixture (6 ml/kg, i.p.) containing sodium pentobarbital (58 mg/kg), chloral

hydrate (60 mg/kg), magnesium sulfate (127.2 mg/kg), propylene glycol (42.8%), and

absolute ethanol (11.6%). A craniotomy of 5 mm in diameter was performed between the

bregma and lambda on the left convexity (anterior edge 2.0 mm posterior to the bregma;

lateral edge adjacent to the left lateral ridge). LFP injury was induced by a transient (21–

23 ms) fluid pulse impact against the exposed dura by using a fluid-percussion device

(AmScien Instruments, Richmond, VA). The impact pressure was controlled to 3.2–3.4

atm, to induce severe brain injury. After impact, the dura was checked to ensure it had

remained intact. Sham-operated control animals (n = 4) received all surgical procedures

except the fluid-percussion impact.
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3.2. Tissue preparation

The rats were sacrificed 79 days after status epilepticus or 6 months after TBI for ex vivo

imaging and histology. The animals were deeply anesthetized with an i.p. injection (7

ml/kg) of solution containing sodium pentobarbital (10 mg/ml), chloral hydrate (10

mg/ml), magnesium sulfate (21.2 mg/ml), propylene glycol (40%), and absolute ethanol

(10%) and perfused transcardially with saline for 5 minutes (30 ml/min) followed by 4

% paraformaldehyde in 0.1 M phosphate buffer, pH 7.4 (30 ml/min) for 25 minutes. The

brains were removed from the skull and post-fixed in 4% paraformaldehyde for 4 h.

3.3. Ex vivo diffusion tensor imaging

Prior to ex vivo MRI, the brains were washed and stored in 0.9% NaCl until imaging.

During ex vivo scanning, all the brains were immersed in perfluoropolyether (Solexis

Galden®, Solvay, USA) to avoid signal from the solution. Ex vivo DTI experiments were

carried out in a vertical 9.4 T magnet (Oxford Instruments PLC, Abingdon, UK)

interfaced  to  a  Varian  Direct  Drive  console  (Varian  Inc.,  Palo  Alto,  CA)  using  a

quadrature volume radiofrequency-coil (diameter 20 mm, Rapid Biomedical GmbH,

Rimpar, Germany) for transmitting and receiving. High-resolution 3D data sets were

acquired using a 3D spin echo sequence (TR = 1.0 s, TE = 30 ms, δ = 5 ms, Δ= 17 ms

and b-value = 1000 s/mm2) with 6 diffusion weighting directions and one without

diffusion weighting. The field-of-view (FOV) was 29.3 × 16.5 × 13.7 mm3 covered with

a 256 × 72 × 60 points (data resolution of 114 × 229 × 228 μm3) zero padded to 256 ×

144 × 120 points resulting in an interpolated spatial resolution of 114 × 114 × 114 μm3.

Total scan time was approximately 16 hours.

3.4. Histological procedures

After ex vivo imaging, the brains were washed out in 0.9% NaCl for at least for 2 h at

4°C, and then placed in a cryoprotective solution containing 20% glycerol in 0.02 M

potassium phosphate-buffered saline (KPBS; pH 7.4) for 36 h. The brains were frozen

in dry ice and stored at -70 °C until cutting. Sectioning was done in the horizontal plane

(30 µm thick sections into 1-in-5 series) using a sliding microtome. The first series of

sections was stored in 10% formalin at room temperature, and the remaining series in a

cryoprotectant tissue-collecting solution (30% ethylene glycol, 25% glycerol in 0.05 M

sodium phosphate buffer) at -20°C until processed.
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The second series of sections were stained for myelin. First, sections were mounted on

gelatin-coated slides and dried at 37°C. They were then incubated in a 0.2% gold

chloride solution (HAuCl4•3H2O, G-4022 Sigma) in 0.02 M sodium phosphate buffer

(pH 7.4) containing 0.09% NaCl for 11–14 h at room temperature in the dark. The slides

were then washed twice for 4 min in 0.02 M sodium phosphate buffer in 0.09% NaCl

and placed in a 2.5% sodium thiosulfate solution for 5 min. After three 10 min washes

in the buffer solution, sections were dehydrated through an ascending series of ethanol,

cleared in xylene and cover slipped with DePeX (BDH, Laboratory Supplies, Dorset,

UK).

Sections from the third series (3 sections per animal) were immunohistochemically

stained with astroglial marker, GFAP. Sections were washed three times with 0.02 M

KPBS (10 min each) and incubated for 15 min in 1% H2O2 in  KPBS  to  remove

endogenous peroxidase activity. Then, sections were rinsed 6 times with KPBS (5 min

each) and non-specific binding was blocked in a solution containing 10% NHS, 0.4%

Triton X-100, and KPBS at room temperature for 2 h. This was followed by incubation

at 4°C for 48 h with mouse anti-GFAP (1:4000; #814369; Boehringer Mannheim) in 1%

NHS and 0.4% Triton X-100 in KPBS. Sections were washed with KPBS (3 times 10

min)  and  incubated  for  2  h  at  room  temperature  in  a  secondary  antibody  solution

containing biotinylated horse anti-mouse IgG (1:200; BA-2000; Vector laboratories),

1% NHS, and 0.4% Triton X-100 in KPBS. Sections were washed 3 times with KPBS

(10 min each) and moved to 1% avidin-biotin (PK-4000; Vector Laboratories) in KPBS

for 1 h at room temperature. After washing, the sections were recycled back to the

secondary antibody solution for 45 min, and then to the avidin-biotin solution for 30

min. The secondary antibody was visualized with 0.05% DAB (Pierce Chemical)  and

0.04% H2O2 in KPBS. Finally, sections were washed with 0.1 M PB, and mounted on

gelatin-coated microscope slides, and then dried overnight at 37°C. The reaction product

was intensified with osmium tetroxide (OsO4; #19170; Electron Microscopy Sciences)

and thiocarbohydrazide (#21900; Electron Microscopy Sciences) according to the

method of Lewis et al. (1986).

3.5. Two-dimensional Fourier analysis

After ex vivo imaging, the myelin- and GFAP-stained sections were utilized for 2D

Fourier analysis from control and status epilepticus rats. Three regions of interest were
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analyzed including the corpus callosum, cortex and CA3b in the hippocampus. 2D

Fourier analysis was done in three consecutive sections from both stainings, myelin and

GFAP, for each animal.

Our 2D analysis followed the concept drawn in the previous works (Josso et al., 2005;

Marquez, 2006; Budde et al., 2011) with some modifications. The stages of two

dimensional analysis, quantitative histology are as follows (the Matlab codes are

presented to each relative step by the software-specific font):

a) A  region  of  interest  (ROI)  with  a  square  dimension  of 1020×1020 pixels was

applied to histological sections of control and status epilepticus animals. These

dimensions are approximately the same as a DTI voxel.  The ROIs were put in

place with reference from both vertical and horizontal pin points (Fig. 4). The

following shows the Matlab code used for this purpose:

ROI{1}.image = double(imadjust(rgb2gray(image)));

Fig. 4. Representation of the ROI positioning on a myelin-stained section of the corpus
callosum of a rat brain. The ROIs were placed continuously and in the same direction
from right to left. They were approximately within the same distance from the horizontal
reference region (the white dashed line) as well. The axonal orientation is clearly medio-
lateral. Vessels are shown by arrows. The region which was used as a vertical reference
is marked by the asterisk.

*
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ROI{1}.image = (image-255)*(-1);

clear image

magnitude = (1 - (mean(mean(ROI{1}.image)) / 256)) * 100;

if size(ROI{1}.image, 1) ~= size(ROI{1}.image, 2)
    clear all
    error('Image selected must be square')
end

b) In order to minimize the edge-spike effects in Fourier analysis (Ayres et al.,

2008), images were filtered (multiplied) by a circular Tukey window with a

tapering degree of 	ߙ = 	0.2 (Fig.  5),  with  the  center  of  each  image  being  the

reference point.

tukey2d =
tukeywin(size(ROI{1}.image,1),.2)*tukeywin(size(ROI{1}.image,2),
.2)';

The equation representing the Tukey window (߱଴):

Fig. 5. Visualization of a Tukey window imposed on an indexed image in the spatial
domain. The scale bar shows the intensities from 0 (dark blue) to 1 (red-brown). This
type of filter excludes the image edges by setting their intensities to 0. Consequently,
this filter is expected to eliminate the edge spike effects of the Fourier transformation.

Pixelindex
(Y

-axis)

Pixel index (X-axis)

Scale
bar(pixelintensities)
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Where

ܰ௠ = 	
ܰ + 1

2

c) Subsequently, a 2D-Fast Fourier Transformation (FFT) was applied to the above

mentioned filtered image;

ROI{1}.kspace = fftshift(log(abs(fft2(ROI{1}.image.*tukey2d))));
ffted = fftshift(abs(fft2(ROI{1}.image.*tukey2d)));
ffted = ROI{1}.kspace;

d) Then the Fourier image was indexed. Assuming the rectangular image has the
dimension of M×N pixels, the distance of each pixel in the image from the
center is:

ݎ = ඥ(ܺ௖௡)ଶ + ( ௖ܻ௡)ଶ

                       Where

௖ܻ௡ = ݕ −	൬
ܰ − 1

2 ൰

                        and

ܺ௖௡ = ݔ −	൬
ܯ − 1

2 ൰



19

e) A new function named as NRI was introduced that stands for ‘‘Negative-
regions´ Indicator’’. By means of a conditional code, NRI multiplies a minus to
the output angle of orientation for negative values of Y coordinates based on
having the rv. This leads to a unique angle for the pixels situated in negative
regions of the image regarding its center, see Fig.6.

As a result, the indexing of the Fourier image is:

ii_new = (1:size(ffted,1));

iind_new = ii_new - (size(ffted,1)+1)/2;

iind_all_t = repmat(iind_new,size(ffted,2),1);

iind_all = reshape(iind_all_t,1,[]);

jj_new = (1:size(ffted,2));

jind_new = jj_new - (size(ffted,2)+1)/2;

jind_all = repmat(jind_new,1,size(ffted,1));

NRI_NEW = ones(size(jind_all));

NRI_NEW(jind_all<0) = -1;

iind_all_sq = iind_all.*iind_all;

jind_all_sq = jind_all.*jind_all;

x

y

43

2 1

rv

Fig.6. Representation of a square image with four different regions (sub-squares
numbered 1-4). The cosine function range is within regions 1 and 2. As a result if
the vector representing a pixel sits in regions 3 or 4 (having negative Y values), it
returns a value mirrored towards the positive Y-axis.
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f) For the purpose of calculating the angle of orientation, the dot product approach

was utilized (Fig. 7). One reference vector (rv) with unit length was introduced

sitting on the X-axis of Cartesian coordinate system:

While the other vector represents each indexed pixel in the image.

g) The angle of orientation was calculated by the inverse cosine function of the dot

product of the two vectors divided by the multiplication of their absolute values :

ߠ = 	 ଵିݏ݋ܿ ൬
a. b

|a||b|൰

rv = [1;0];
im_vectors = [iind_all;jind_all];
rv_total = repmat(rv,1,size(im_vectors,2));
alfas = NRI_NEW .* acos(dot(im_vectors,rv_total,1)./norms);

h) A scatter matrix was formed from Fourier transformed image:

ܺ = ቎
ଵܣ ݏ݋ܿ ଵߠ 		…		 ௡ܣ ݏ݋ܿ 				௡ߠ
ଵܣ ݊݅ݏ ଵߠ 	… 			 ௡ܣ	 ݊݅ݏ ௡ߠ

	
቏

Where Ai and θi are the pixel intensities and angles respectively;

X(1,:)= FFTED .* cos(alfas);

X(2,:)= FFTED .* sin(alfas);

i) The covariance matrix formed from X:

ݒ݋ܥ = ்ܺܺ

a	. 	b = |a||b| cos θ
a

b

θ

Fig.  7.  Illustration  of  the  calculation  of  the  angle  between two vectors:  a
(green)  and  b  (red);  one  of  these  vectors  is rv and the other is the vector
representing each pixel of the image. The equation in the right side indicates
the dot product of two vectors a and b.
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j) Matlab´s singular value decomposition syntax applied to matrix Cov, that outputs

three matrices including the diagonal matrix S, in which non-zero arrays are the

eigenvalues. Singular value decomposition was then applied to the matrix Cov:

[ܷ, ܵ, ܸ] = (ݒ݋ܥ)ܦܸܵ

where U contains the eigenvectors, and

ܵ = 	 ൤ߣଵ 0
0 ଶߣ

൨

the eigenvalues of the matrix Cov.

C = X*X';
[U,S,V] = svd(C);
clear C;
lambda(1) = S(1,1);
lambda(2) = S(2,2);
clear tukey2d;

k) Anisotropy was calculated by the ratio of the two eigenvectors λ1 and λ2 which

resulted from the singular value decomposition (SVD) of the covariance matrix

Cov (Fig. 8):

ܫܣ = 1 −	൬
ଶߣ
ଵߣ
൰

ଵߣ
ଶߣ

Fig. 8. 2D anisotropy ellipse. An ellipse illustrating the visualization of the fiber orientation
built upon two orthogonal eigenvalues λ1and λ2 resulted from 2D-FT, in order to simulate the
diffusion ellipsoid (3D) in 2D. This image represents a highly anisotropic media, such as the
coherent fibers of the corpus callosum, where the magnitude of λ1 is significantly bigger
compared to λ2. FT, Fourier transformation, 2D, two dimensional, 3D, three dimensional.
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In order to compare the degree of orientation in DTI data, the Cartesian components of

diffusion eigenvectors were used to produce a 2D angle relative to 2D-FT´s direction of

reference. In other words, Z component representing the rostral-caudal dimension had been

excluded:

θ = 	 tanିଵ ൬
x
y൰

Fig. 9 exhibits an example of the ellipse formed in an ROI from crossing fibers in the
cortex.

3.6. Sample preparation and acquisition for SBEM

After ex vivo MRI, selected brains were sectioned into 1 mm-thick sections, and tissue blocks

of the areas of interest were cut into  ̴1 x 1 x 1 mm3,stained with heavy metals, embedded in

resin and trimmed to  ̴300 x 300 x 500 μm3. The trimmed specimen was further mounted on

a pin and imaged by means of 3D-EM. Data sets were acquired in a SEM microscope (Quanta

Fig. 9. 2D ellipse in grey matter with crossing fibers. The green ellipse shows visualization
of  the  anisotropy  and  orientation  of  the  dominant  fibers  (the  red  double  arrow),  by  the
ellipse in a ROI in the myelin stained cortex. The approximately circular shape of ellipse
indicates that the medium is highly isotropic. The dominant fibers with orientation agreeing
with the main axis of the ellipse (red double arrow) are marked with red dashed rectangles,
to indicate how principle component analysis of 2D-FT calculates the dominant fibers
compared to less affective contributors (fiber directionalities with the yellow dashed
rectangle) which are crossing the dominant fibers, almost in 90 degrees.
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250 Field Emission Gun; FEI, Hillsboro, OR) using a backscattered electron detector with

3View system (Gatan Inc.,  Pleasanton, CA, USA). Brain samples were imaged with 2 kV

beam voltage, spot size 4000, and 1.1e-5 Torr pressure. We collected up to 3000 images per

data set with a resolution of 50 x 50 x 50 nm3 of a volume at least of 150 x 150 x 200 μm3.

3.7.  Three dimensional analysis

The  correlation  among  the  regions  and  volumes  of  interest  for  2D-FT,  3D-FT  and  DTI

analysis is corroborated by Fig. 10. The Spherical coordinate system was used to index the

3D Fourier image due to its simpler concept for detecting the orientation angle. The benefit

Fig. 10. The precision in correlating DTI-2D-3D analyses. (A) ROI selection in the FA
map of the whole brain of the study animal. The grey scale at the right side of the image
indicates FA from 0 (isotropic diffusion) to 1 (anisotropic diffusion).  Three different ROIs
are further extended to their corresponding 2D histology images. Three consecutive voxels
are shown for cortex (dark blue), corpus callosum (red) and CA3b (green). (B) Myelin-
stained section of the cortex, the extension dashed lines (light-blue) show the
corresponding voxels analyzed in DTI (at the center) and the black dashed lines
correspond it to the SBEM. Note that the border between grey matter (crossing fibers) and
white matter (densely packed fibers) is clearly visible. (C) Myelin-stained section of the
corpus  callosum,  showing  the  distinct  right-left  directionality  of  the  axons.  (D)  SBEM
block from the contralateral cortex of a TBI rat. The darker area is the external capsule
(white matter) and the lighter grey area is the cortex (grey matter). (E) GFAP-
immunostaining section of the CA3b area in the hippocampus.

A

CB

D E
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of using the spherical coordinates instead of the Cartesian system was that each voxel´s

position in space (r) can be replaced with the power summation A(annulus).

 For a particular point ,ݔ)݌ ,ݕ being the input to Matlab’s syntax for Cartesian to spherical (ݖ

conversion, the output will be three spherical coordinates൫ݎ, ,ߠ	 	߮൯.  In appendix 1 we

provided an explanation for the compliance between conventional and Matlab elevation

angles.  The  tissues  processed  for  SBEM from normal  and  injured  rat  brain  was  used  as  a

model for TBI. A volume of interest (VOI) was introduced to the SBEM block with

dimensions approximately consistent to the resolution of 2D-ROIs.

The Matlab code written in the vectorized form was further optimized and hence, made faster

and more efficient. The spherical coordinate system had similarly been used for

characterization of anisotropy in diffusion weighted MRI (Frank, 2002).

Z

A

φ*

Fig. 11. 2D and 3D compatibility based on the directionality of the myelinated axons.
This is a schematic exhibition for the directional similarity of the SBEM block (white
rectangular cube) with the myelin-stained image of the corpus callosum (background).
The Z and A arrows respectively indicate the primary (dominant directionality) dimension
of the SBEM block and the overall direction of the axons (whether in 2D histology or in
3D) calculated by principal component analysis of Fourier transformation. In conclusion,
φ was the elevation angle between these two vectors calculated with regard to a reference
plane (marked by the asterisk). Thus, φ was expected to be the same angle drawn from
2DFT.
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The stages of 3D-FT analysis are as follows:

a) A VOI was chosen by first  defining (x,  y,  z)  of the corner point as its  reference point

(Fig.11). Subsequently, a fixed length to that point was added for building a cubic voxel

from  that  point  of  reference.  The  point  picking  was  done  by  the  help  of  ImageJ

visualization. For the corpus callosum for example, the image stack was investigate to

avoid placing the VOIs on the stack groups which contained distortions or edge defects.

For the cortex, it was tried to carefully inspect the block to avoid overlapping of the VOIs

and also to properly choose VOI coordinates in the cortex and external capsule. A

difference in the definition of the image in Matlab versus ImageJ was noticed in the way

that x and y coordinate of a point were assigned differently in either software. This is

obvious from the Matlab´s vertical and horizontal indexing system of axes of Fig.5.

b) A ball-like Tukey filter was applied to each VOI for conquering the edge spike effects,

similar to the circular Tukey filter used for 2D-FT analysis. To put it simply, instead of a

circle it had to be a volume Tukey in shape of a sphere:

function tukey3d = tukey3D(Xdim,Ydim,Zdim,alfa)
ii = (1:Xdim);
jj = (1:Ydim);
kk = (1:Zdim);
cub2 = Xdim*Ydim;
Icn = ii-(Xdim+1)/2;
Jcn = jj-(Ydim+1)/2;
Kcn = kk-(Zdim+1)/2;
Jind = repmat(Jcn,Ydim,1);
Jind_v = reshape(Jind,1,[]);
jind_al= repmat(Jind_v,1,Zdim);
iind_al = repmat(Icn,1,Zdim*Ydim);
kk_ny = repmat(Kcn,cub2,1);
kind_al = reshape(kk_ny,1,[]);
Nm = Xdim;
r = sqrt((iind_al.*iind_al)+ (jind_al.*jind_al)+
(kind_al.*kind_al));
alfa = 0.2;
hfsiz = (Nm+1)/2;
omega = 0.5*(1+cos(pi*((2*r-1)/(alfa*Nm)-(1/alfa)+1)));
omega (r < ((1-alfa)*hfsiz)) = 1;
omega(hfsiz <= r) =0;
tukey3d = reshape(omega,Xdim,Ydim,Zdim);
Ydim = size(B,2);
Xdim = size(B,1);
Zdim = size(B,3);
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alfa = 0.2;
tukey3d = tukey3D(Xdim,Ydim,Zdim,alfa);
img = B.*tukey3d;

c) The real part of the filtered image (absolute values) was then 3D Fourier transformed, by

applying the multidimensional (n-dimensional) fast Fourier transform:

fftd = fftshift((abs(fftn(img))));

d) Then, the 3 × N	scatter matrix was founded in the Cartesian form, while rephrased in the

spherical format:

X = 	 ቎
Aଵ cosφଵ	 cos θଵ	 … A୬ cosφ୬	 cos θ୬	
	Aଵ cosφଵ	 sin θଵ	 	… 	 A୬ cosφ୬	 sinθ୬	

	
	

Aଵ	 sinφଵ 																… A୬	 sinφ୬

቏

The first, second and third rows of the above matrix respectively represented x, y	and	z

values for all the voxels indexed inside the VOI. In order to get directionality, each

voxel´s distance was replaced with Fourier intensities (Aଵ … A୬):

[az,el,removevecs] = cart2sph(x,y,z);
maxdist = 100;
mindist = 11;
removevecs(removevecs>maxdist) = 0;
removevecs(removevecs<mindist) = 0;
removevecs(removevecs>=mindist) = 1;
el(removevecs==0) = [];
az(removevecs==0) = [];
fftd(removevecs==0)=[];
X(1,:) = fftd.*cos(el).*cos(az);
X(2,:) = fftd.*cos(el).*sin(az);
X(3,:) = fftd.*sin(el);
clear x y z
clear removevecs el az

e) Then similarly to 2D analysis, the covariance matrix C was formed by multiplying the

scatter matrix by its transpose:

ܥ = ்ܺܺ

f) The Matlab syntax used for applying the singular value decomposition to the covariance

matrix, so as to produce three eigenvalues:
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[ܷ, ܵ, ܸ] = (ܥ)ܦܸܵ

Where U contained the eigenvectors, and S the eigenvalues of the matrix C.

Finally, three eigenvectors constitute the three diameters of the ellipsoid, ଵ being the largestߣ

diameter, ଶbeing the medium andߣ .ଷ the smallest one, perpendicularly to one another (Figߣ

12). Since 3D-FT measures the density of membranes that restrict the water diffusion, the

minor eigenvalue reflects the least hindered orientation. This means that ଷ from 3D-FTߣ

corresponds to the diffusion tensor orientation:

Anisotropy was calculated upon the three eigenvalues (Basser and Pajevic, 2000):

ܫܣ = 	ඨ
ଵߣ) − ଶ)ଶߣ + ଶߣ) − ଷ)ଶߣ + ଵߣ) − ଷ)ଶߣ

ଵߣ)2 + ଶߣ + ଷ)ଶߣ

If  the  three  eigenvalues  did  not  vary  from one  another  it  would  result  in  a  more  isotropic

directionality. The elevation angle (φ) for the primary direction represented the tilted angle

of the fiber bundles throughout the main direction of image stacks (see Fig. 11).

C = X*X';

Fig. 12. Visualization of the ellipsoid indicating the directionality, formed upon the
three eigenvalues in three orthogonal directions. This figure is presumably
representing an anisotropic directionality, a characteristic of the coherent fiber
structures as in the white matter. The dominance of ଵ over the other two eigenvectorsߣ
is clearly visible, a phenomenon observed in diffusion tensor of the water molecules
in the corpus callosum.

ଷߣ

ଶߣ



28

[U,S,V] = svd(C);
[azu11,elu11,ru11] = cart2sph(U(1,1),U(1,2),U(1,3));
[azu12,elu12,ru12] = cart2sph(U(2,1),U(2,2),U(2,3));
[azu13,elu13,ru13] = cart2sph(U(3,1),U(3,2),U(3,3));

angl(1,:)=[azu11 elu11];
angl(2,:)=[azu12 elu12];
angl(3,:)=[azu13 elu13];
ld(1) = S(1,1);
ld(2) = S(2,2);
ld(3) = S(3,3);
p = ld(:,1);
q = ld(:,2);
d = ld(:,3);

AI= sqrt(((p-q)*(p-q)+(p-d)*(p-d)+(q-d)*(q-d))/(2*(p*p)+(q*q)+(d*d)));

4. STATISTICAL ANALYSIS
The comparison between groups was conducted using Mann Whitney T-test. Values are

represented as mean ± standard error of the means. Graphs were drawn by using Graph

Pad Prism (version 5.03).
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5. RESULTS
5.1. DTI and 2D-Fourier analysis of control and status epilepticus rats

Fig. 13 shows the location of the ROIs in DTI maps for control and status epilepticus brains

in corpus callosum, CA3b and cortex. For each of these three different areas of the brain,

Fig. 13. Regions of interests (ROI) in the FA maps (A, B) and directionally encoded colormap
(DEC) maps (C, D) of control (A, C) and status epilepticus (B, D) rats. The dashed rectangles
indicate the area of the corpus callosum (red), CA3b of the hippocampus (green) and the cortex
(blue) where the ROI is located (solid lines). FA maps: grey scale bar indicates the anisotropy
ranging from 0 (black) up to 1(white); DEC colors: red medial-lateral, green rostral-caudal and
blue dorsal–ventral.
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three voxels were manually picked and averaged. We analyzed the same locations in myelin

and GFAP stained sections using 2D-FT.

5.1.1. Corpus callosum

The corpus callosum showed slightly brighter voxels in status epilepticus animals (Fig. 13B)

as  compared  to  controls  (Fig.  13A),  indicating  that  FA  might  be  increased  in  the  corpus

callosum of pilocarpine animals.
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Fig. 14. Myelin (A, B) and GFAP (C, D) histological stainings of the corpus callosum of a
control (A, C) and a pilocarpine treated rat (B, D). This picture illustrates the microstructural
changes which occur after status epilepticus related to the myelinated axons and astrocytes.
The dashed rectangle in B shows altering directionalities of the myelinated axons. Arrows
in panel D indicate the activate astrocytes in the corpus callosum of a pilocarpine treated
animal. GFAP, glial fibrillary acidic protein. Scale bar: 50 µm.
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As it is shown in the above figure, histology revealed a slight change in the directionality of

both myelinated axons (Fig. 14B) and astrocytes (Fig. 14D) after status epilepticus as

compared to controls (Fig. 14A and 14C).

A

E F

DC

B

Fig. 15. Results for 2D-FT (A-D) and DTI (E, F) analyses of the corpus callosum.
In graphs E,F each dot is an average of three voxels in the ROIs.  AI, anisotropy
index; FA, fractional anisotropy; GFAP, glial fibrillary acidic protein.
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The myelinated axons in the corpus callosum from control brains appeared to be mainly

parallel (Fig. 14A) whereas axons in the same area in animals after status epilepticus showed

slightly different orientations (Fig. 14B). No difference in myelinated axonal density was

observed in animals treated with pilocarpine when compared to controls. GFAP staining

showed a distinct growth of astrocytes after status epilepticus with more extended processes

in comparison to controls (Fig. 14D). This was a sign of activated astrocytes in this area. It

was clearly visible that astrocyte morphologies in the corpus callosum were mostly

horizontally-oriented in controls. Albeit the activated astrocytes in status epilepticus animals

followed the same pattern, they exhibited numerous processes with a more random

orientation (Fig. 14D).

Although we observed these changes in the DTI maps and histological preparations, our

values from status epilepticus brains in the corpus callosum did not differ from those in

control brains neither in anisotropy nor orientation (Fig. 15). Nevertheless, we observed some

trends in the average values obtained from DTI and 2D-FT. 2D-FT showed a trend of

declined anisotropy for status epilepticus rats for both stainings (Fig. 15A and 15C). This is

in  contrast  to  DTI  showing  a  trend  of  elevated  FA  values  in  animals  after  pilocarpine

treatment than controls (Fig. 15E). The degree of orientation in the corpus callosum showed

a trend of increase after status epilepticus in both DTI and 2D-FT (Fig. 15B, 15D and 15F).

Finally, it is worth to mention that the values obtained from DTI were at the same order of

magnitude than the values obtained from 2D-FT analysis (Fig. 15). However, anisotropy

values obtained from 2D-FT in both stainings (Fig. 15A and 15C) were lower than DTI (Fig.

15E).

5.1.2. CA3b in the hippocampus

Fig. 16 shows myelin and GFAP stained sections of the CA3b area in the hippocampus of a

control and a status epilepticus rat. In this area, the myelinated axons changed their

orientation in a more organized pattern (Fig. 16B) as compared to controls (Fig. 16A).

Similarly, the processes of activated astrocytes were more oriented in status epilepticus rats

(Fig. 16D) than in controls (Fig. 16C). In some cases, the processes of axons and astrocytes

were in perpendicular orientation, as related to the pyramidal cell layer (lower dash line in

Fig. 16).
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Changes in anisotropy and orientation were found in both stainings by 2D-FT (Fig. 17).

Myelinated axons exhibited a significant increase in anisotropy (*p < 0.05) (Fig. 17A) and

orientation (**p < 0.01) (Fig. 17B) after status epilepticus as compared to controls. Likewise,

astrocyte processes exhibited a dramatic rise in anisotropy (**p < 0.01) (Fig. 17C) and

orientation (**p < 0.01) (Fig.  17D). DTI analysis in CA3b did not lead to a major change

between controls and status epilepticus animals neither for FA (Fig. 17E) nor orientation

(Fig. 17F). We also found that FA and orientation values calculated in DTI maps were more

dispersed than in 2D-FT. This might be attributed to the difficulty to manually pick a voxel

in the CA3b region.

Fig. 16. Organization of fibers in grey matter, hippocampus. Myelin (A, B) and
GFAP (C, D) stainings for the CA3b of a control (A,C) and a pilocarpine (B,D)
rat. A significant increase in the directionality of axons in the pilocarpine rat is
visible (black triangles in panel B). Triangles in panel D indicate the extended
processes of the reactive astrocytes in the CA3b of pilocarpine rats which
appeared to be more oriented than controls. The dashed line shows the extent of
the ROI selection in CA3b. Scale bar: 50 µm. GFAP, glial fibrillary acidic
protein
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Similar to corpus callosum, the values obtained from 2D-FT were in the same order of

magnitude with DTI. Only the orientation values acquired from GFAP-stained sections were

higher than DTI, albeit those from myelin stained sections were closer to it.
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Fig. 17. Result for 2DFT (A-D) and DTI (E, F) analysis of the corpus callosum. In
graphs E,F each dot is an average of three voxels in the ROIs. AI, anisotropy index;
FA, fractional anisotropy; GFAP, glial fibrillary acidic protein. ∗ ݌ < 0.05 and ∗∗ ݌ <
0.01.
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5.1.3. Cortex

We found diminished microstructural organization for both myelinated axons and astrocytic

processes in cortical layer VI among animals after status epilepticus (Fig. 18). Myelinated

axons from the external capsule appeared more coherently oriented in controls (Fig. 18A)

than  in  pilocarpine  rats  (Fig.  18B).  Slightly  less  density  of  myelinated  axons  was  also

observed among these areas in animals after pilocarpine treatment (Fig. 18B). Processes of

activated astrocytes were randomly oriented and also the presence of these cells was more

pronounced (Fig. 18D).

Similar to the corpus callosum, our DTI and 2D-FT values from status epilepticus brains in

the cortex did not differ prominently from those in control brains neither in anisotropy or

orientation (Fig. 19).

Myelin GFAP

Fig. 18. Organization of fibers in grey matter, layer VI in the cortex. Myelin (A,
B) and GFAP (C, D) of the. Arrows in panel A show the distinct pattern of axons
in controls. Arrows in panel D also show the prolonged processes of astrocytes
that are presumably responsible for increased anisotropy. The	 dashed	 lines	
show	the	area	selected	for	analysis.	Scale	bar:	50	µm.	GFAP, glial fibrillary
acidic protein
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We observed some trends in the average values obtained from DTI and 2D-FT. Our

histological findings could explain the trend to the decrease of anisotropy values in status

epilepticus animals amongst the myelin stained sections (Fig. 19A). The regrowth of reactive

astrocytes might justify a slight increase in the anisotropy (Fig. 19C) and orientation angle

(Fig. 19D). After status epilepticus, FA showed a trend to increase that seemed rather to be

along with the activated astrocytes in the cortex, than the findings in myelin. As though in

A

E F
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B

Fig. 19. Result for 2DFT (A-D) and DTI (E, F) analysis of the cortex. In graphs E,F each
dot is an average of three voxels in the ROIs. AI, anisotropy index; FA, fractional
anisotropy; GFAP, glial fibrillary acidic protein.
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CA3b, the difficulty to manually select a voxel in the cortical region might be the reason for

the differences in the results in DTI parameters (Fig. 19E and 19F).

5.2. Three-Dimensional Fourier Analysis of Electron Microscopy

5.2.1. Corpus callosum of a naïve rat

Fig. 20 illustrates the 3D block of the corpus callosum of a naïve (control) rat. Fig. 21 shows

anisotropy values for larger VOI (0.86 ± 0.01) (Fig. 21C) and smaller VOI had anisotropy

value of (0.83 ± 0.007) (Fig. 21A) which were close to that in DTI (0.87 ± 0.04). The small

difference between the larger VOI and the smaller VOI might come from the contribution of

vessels and cell bodies.

Regarding the differences between 2D-FT and 3D-FT values, we could compare those two

methods in the corpus callosum of controls in conventional histological preparations and in

the naïve animal used in SBEM. The anisotropy of control rats for myelin resulted from 2D-

FT was slightly lower than 3D-FT, explaining how the absence of bundles in the third

Fig.20. SBEM block of the
corpus callosum of a naïve rat in
3D view.

Magnification: 250x, Voltage:
2.1 keV, Resolution: 0.05 x 0.05
x 0.05 µm

3
, pressure (Torr):

1.13e
-005

,1021 slices. The
myelinated axons of the corpus
callosum are roughly along Z
axis.
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dimension may affect the results.  The fiber orientation in the larger VOIs (77.3 ± 0.7) (Fig.

21D) varied in comparison with the smaller VOIs (68.56 ± 1.6) (Fig. 21B). Again, the

difference between the larger VOI and the smaller VOI might come from the contribution

other tissue components, such as vessels and cell bodies in affecting the anisotropy.

Prior to this stage our presumption was that the angle which would be our result must have

been the elevation from the reference plane i.e. X-Y which amount around 90°. In order to

verify the compatibility of 3D-FT orientation in the corpus callosum with 2D-FT, the fiber

Fig. 21. Results of 3D-Fourier analysis for a naïve rat in the corpus callosum. Each red
dot represent one VOI cube that is square (isotropic) in A,B but rectangular (non-isotrpic)
in C,D.  DTI: diffusion tensor imaging, AI: anisotropy_3D, SBEM: serial block-face
electron microscopy, SBEM_L results from large VOI.
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organization was inspected by visualization of the block from other dimensions. Fig. 22 and

23 show the re-slicing function of the same block in Fig. 20 but with 90° rotation. The fiber

bundles were inspected through the Y-Z plane, a negligible number of them were found in

the opposite directionality with respect to the others as marked with dashed rectangles (Fig.

23).

Concerning 2D and 3D-FT angles we can observe a variance between the mean degree of

myelinated axons for controls hovering around 3° (Fig. 15 B) while for SBEM it is around

70° (Fig. 21 D). Nevertheless, by visually investigating the angle of axons through slices 1

to 500 it can be verified that 70° is true regarding the default reference plane in the SBEM

block. The way tissue was cut is absolutely the reason for the majority of fiber bundles not

to be parallel to the length of the block, as shown previously in Fig. 11.

In the graphs presented in Fig. 15, 17, and 19, the variability of the angular values was high

as compared to anisotropy values. This is evidence for the unreliability of 2D methods to

resolve certain orientations. The orientation degree derived from ignoring the third dimension

of the DTI for controls is almost 3º which is above the 77° of the SBEM. However it may

not be a fair comparison because numerous structures have been taken into account for 2D-

DTI angle. Also, it is worth notice that when we prepared the tissue samples for SBEM, the

cutting of the tissue might not be perfectly aligned with the DTI maps. The registration of

Plane of view

X-Z

X-Y

Fig. 22. Schematic SBEM-block and the location of five VOIs (red squares) with varying
angles through it. The arrow shows the field of view which was used to detect altering
fiber orientations.
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the SBEM and DTI was not included in this work, and it needs to be included in future studies

in order to correct the possible deviations between these two techniques.

Fig. 23. Four different images from the SBEM-block of the corpus callosum. Panels C and
D have axons in perpendicular direction to other ones, as indicated by the yellow dashed
rectangles. Abbreviations: a, astrocyte; ol, oligodendrocyte; V, vessel. Scale bar = 6.25 µm.
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5.2.2. Cortex of a rat after TBI

The figure above shows a schematic view of the location of the VOIs in the cortex and

external capsule. The analysis involved three VOIs on the cortex and three on the external

capsule, all with the same dimensions 200×200×200 voxels (Fig. 24). In Fig. 25, it is shown

the location of the VOIs in the DTI maps in the cortex and external capsule.

Fig. 24. Location of the VOIs on the X-Y plane of the SBEM blocks. Three
VOIs on the grey matter and three in the white matter were chosen. All VOIs
had the same 3D-dimensions. This placement of VOIs is in line with the
approach of ROIs in 2DFT. ec, external capsule, GM, grey matter, WM, white
matter.

cortex ec
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Fig. 25.DTI analysis for trauma rats. Each square element of these images are 3D-voxels
(as pixels in 2D images). The 0 to 1 scale bar in the left, indicates FA range by intensity,
meaning the higher (brighter) the voxel intensity is, the more anisotropic the dominant
fiber directionality will be.  A) FA map: the lesion site is marked with an arrow. B)
Contralateral VOIs including three voxels in the external capsule and three voxels in the
cortex. C) Ipsilateral VOIs in the vicinity of the lesion. D) Directionally encoded color
map of the same animal, showing the dominant fiber orientations by the specified colors
in each voxel. Color coding: red medial- lateral, green rostral-caudal and blue dorsal-
ventral. Abbreviations: cx, cortex; ec, external capsule; L, lesion.
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We observed differences in the morphology of the cellular structures in the 3D stacks of

SBEM  images  of  the  contralateral  (Fig.  26A)  and  ipsilateral  cortex  (Fig.  26B).  For  the

contralateral cortex, morphology of the neurons, axons and glial cells appeared normal.

Particularly, in the external capsule, it could be seen that axons were organized and the

myelin sheath was normal. Dendrites and axons in the cortex run perpendicularly to the

external capsule into the deep layers of the cortex throughout more superficial ones as

normally have been shown in healthy brain. In contrast, the ipsilateral block shows many

consequences of the injury.
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By looking at Fig. 26B, a huge decrease in the myelin sheath integrity and the number axons

in the external capsule is noticeable. This white matter area also showed a loss of

organization. In the cortex, more glial cells (presumably microglia) appeared to be present,

associated with the loss of organization among dendrites and axons.

Fig. 26. 3D view of the SBEM blocks from the contralateral (A) and ipsilateral (B) cortex
of  a  TBI  rat. Abbreviations: cx, cortex; d, dendrite; ec, external capsule; n, neuron; ol,
oligodendrocyte; v, vessel.
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Fig.  27 shows 3D-FT analysis results  from the cortex (Fig.  27A) and the external capsule

(Fig. 27C). We found a decrease in anisotropy in the ipsilateral hemisphere as compared to

contralateral hemisphere in both cortex and external capsule. These results matched with our

observations (Fig. 26). However, DTI results did not show these differences in these two

areas where values almost did not differ in the ipsilateral hemisphere as compared to

contralateral hemisphere (Fig. 27B and 27 D). These could be explained by the partial volume

effect when manually taking the voxels in the DTI maps. Those voxels might have contained

portions of the external capsule and cortex, or vice versa which might alter the values within

the voxel.  Fig. 28 illustrates how the SBEM blocks differ from DTI, concerning the variance

in the directionality in our data sources. When preparing tissue for SBEM, the brains were

cut in the coronal plane in the same way it is shown for DTI in Fig. 25A and 25B. Thus, the

data was obtained from DTI according to the same plane. However, the tissue´s reference in
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Fig. 27. Result for 3D-FT (A,C) and DTI (B,D) analyses of the cortex and external
capsule. Graphs A,C show result of the average of 3 VOIs from one TBI rat, shown
by a single dot. Each dot in graphs B,D represents the average of  three voxels per
each rat brain. Abbreviations: AI, anisotropy_3D; ec, external capsule; FA,
fractional anisotropy.
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the brain was lost during cutting further for SBEM preparation and staining (Fig. 28A). This

was taken into consideration when analyzed the data from these brain areas in 3D-FT.

For comparing the orientations between the SBEM and DTI the variance between their

Cartesian coordinates was used (Table 1).The following is an explanation of the presumptive

angles in space based on three Cartesian components. Here the selection of voxels in DTI

together with the challenge of describing the Cartesian angles are major limitations.

Fig. 28. The difference in directionality between SBEM and DTI indicated by the dashed red lines

in the external capsule. Double arrows show the extent of the external capsule (white matter) and

cortex (grey matter) (see Fig.24).  A) One image of the contralateral cortex of the TBI rat. Scale bar

= 36.8 µm. B) FA map of the same animal in the same side which is leaned regarding the above

image. Each square elements in this image is a voxel, that has a grey scale intensity to indicate the

overall anisotropy of all the numerous fibers included in that small voxel. The white square is

approximately the whole EM-image (A), however rotated approximately for 45 degrees. The VOIs

used for analysis are visible in blue squares in A,B. cx: cortex. ec: external capsule.
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DTI analysis in the TBI cortex appeared to have varying orientations and did not indicate a

distinct pattern in directionality as in SBEM.  As it is shown in the right side of table 1,the

orientation of animal 1 was slightly out of perpendicularity by the effect of the Y component

whereas in animal number 4, X component created this deviating effect. Animal number 3

had a negligible Y component with an orientation in X-Z plane slightly leaning towards X

direction. Animal number 2 had a major Y directionality but the secondary effect of Z made

its orientation tilted towards Z axis. However, for animal number 3, the directionality was

tilted toward the Z axis. The overall Z was  either  the  first  or  second  major  component

revealing a tilted orientation towards the reference plane X-Y (Table 1, right).

6. DISCUSSION
DTI is a remarkable tool for the detection of microstructural abnormalities during

pathological processes. Understanding the DTI contrast is still under investigation. Due to

being significantly sensitive to microstructural tissue changes, DTI has a great significance

in clinical research of human brain (Wedeen et al., 2005; Mac Donald et al., 2007; Sidaros et

al., 2008). There is also increasing demand in investigating the impact of pathological

conditions on DTI anisotropy and fiber orientation (Assaf et al., 2003; Concha et al., 2006;

Bartsch et al., 2012). The optimal purpose of analyses for determining the anisotropy is to

reveal the changes in tissue directionality which, in turn, originates from a dominant

orientation (Chetverikov and Haralick, 1995).

Table 1. Cartesian coordinates values obtained from the analyzed VOIs for cortex after TBI.
Left: contralateral hemisphere of SBEM for six volumes of interest from one animal. Right:
in DTI for five different brains (each row represents one rat).The bold numbers show the
dominance of a particular Cartesian component, exhibiting the variance in manual selection
of the voxels as volumes of interest. cl, contralateral, CX, cortex, DTI, diffusion tensor
imaging, TBI, traumatic brain injury.
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Anisotropic diffusion is caused by a higher molecular displacement of water along the

coherently-oriented cylindrical morphologies involving axons (Beaulieu, 2002). As brain

development completes, the lipid membranes of myelinated axons reach to their maximum

growth. Thus, the water diffusion orthogonal to these fibers is highly hindered (Nomura et

al., 1994). Some previous studies argued that myelinated membranes were not the

unequivocal factor in determining the anisotropy (Beaulieu and Allen, 1994). However,

among the more isotropically-orientend fibers of grey matter, DTI has been proved

insufficient to estimate the directionality.

The lack of third dimension has been the main obstacle among the majority of previous

efforts for the characterization of the three-dimensional DTI. Mostly, this has been done

using the conventional histological preparations in healthy brain and during pathology. In

this  project,  first  we  explored  the  possibilities  of  the  2D-FT  analysis  in  conventional

histological stainings. We investigated how two different components contributed to the

water diffusion in control and pilocarpine rats in the corpus callosum, cortex and CA3b of

the hippocampus. Then, we further developed 3D-FT and we hypothesized that Fourier

transformation can be applied to the stacks of SBEM in order to generate anisotropy and

orientation of the dominant fibers. In these stacks, all the microstructural components or

membranes responsible of the water diffusion could be taken into account. Our results

indicate that 2D-FT is an optimal method to analyze the conventional histological sections.

This could be used for the investigation of individual components affecting the water

diffusion. 3D-FT implemented in this work is a step forward in characterization of the DTI

contrast by adding the 3rd dimension. Our results demonstrate that Fourier analysis in SBEM

stacks of images provides fair values in 3D which can be directly correlated to DTI data and

the hypothesis is accepted.

Probabilistic algorithms and estimation methods for resolving the restrictions of

DTI

Since DTI is not reliable in determining the anisotropy of multiple fiber structures, several

attempts have been focused on elevating the voxel resolution. High angular resolution

diffusion imaging (HARDI) has been proposed to acquire diffusion measurements with fewer

voxels  that  contain  multiple  fiber  directions  (Alexander  et  al.,  2002).  By  the  use  of   a
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spherical coordinate system it was further optimized to reflect anisotropy of such voxels more

accurately (Frank, 2001, 2002). Spherical deconvolution is also been used to help generate

more efficient estimations of HARDI acquisitions without any primary assumptions about

the number of fiber orientations (Tournier et al., 2004).

A combination of the composite-hindered and restricted model of diffusion MRI was

theoretically developed to resolve the hindered and restricted diffusion of water molecules in

the white matter (Assaf et al., 2004).  It was further applied to human brain in vivo, aimed to

provide an unbiased 3D quantification of the diffusion measurements and revealed a superb

sensitivity to white matter abnormalities compared to DTI (Assaf and Basser, 2005).

Substantial efforts have been devoted to resolving the shortcomings of DTI by proposing q-

space and Q-ball imaging methods (Tuch, 2004; Hess et al., 2006; Khachaturian et al., 2007).

A contrast driven between uniaxial and planar models for diffusion tensor was performed by

Wiegel and coworkers, based on the variance of the medium and minor eigenvalues for

resolving  crossing  fiber  patterns  in  DTI  (Wiegel  et  al.,  2000).  To  elaborate  more,  if  the

absolute value of the subtraction of two smaller eigenvalues is not negligible, the diffusion

will be presented as planar in contrast to uniaxial. Nevertheless, neither of the two models

proved to be capable of resolving the heterogeneous fiber orientations.

Diffusion spectrum imaging (DSI) is a method capable of estimating the density spectra of

an incoherent organization within a voxel, a solution to the restrictions of DTI-based

tractography (Wedeen et al., 2008).  DSI is a powerful tool not only for the white matter´s

crossing fibers but also in the grey matter, as it was observed in the same work in the cerebral

cortex of the monkey ex vivo.   It  is  worth mentioning that  the Fourier transformation had

been used in this method for a reconstruction of the original fiber density gained from the

signal modulus (Wedeen et al., 2005).

Further steps in the characterization of DTI contrast

DTI assumes a Gaussian distribution of water displacement due to the diffusion. This creates

limitations when the intravoxel information is needed to be extracted. For this goal, more

advanced methods have been developed (as described in section 1.3.2). White et al., 2013,

developed restriction spectrum imaging (RSI) using the high b-value Cartesian q-space data

on a tissue sample from the rat brain. Their method comprised the extension of the spherical
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deconvolution model for HARDI acquisitions, in order to explore fiber orientations on a

spectrum of length scales. The diffusion orientation was restated as a linear mixture of the

symmetrical Gaussian response functions in a cylindrical exhibition. In other words, it is a

linear reconstruction and modelling framework for multidirectional and multi b-value

diffusion data. This helped resolving not only the length scale but the orientation information

of the tissue microstructure in biological media. Thus compared to DSI, RSI reconstructions

helped estimate a more detailed quantitative characterization in normal and pathological

conditions. It was demonstrated that RSI can make a distinction between the volume fraction

and orientation of the fine and coarse scale diffusion processes in the tissue of rat brain. This

originates from the restricted and hindered diffusions in the intraneurite and extraneurite

water compartments, respectively. The work done by Frank introduced a new transformation

for characterization of anisotropy in HARDI, in a way that it could be decomposed to multi-

fiber components. However, assuming the integral fibers as identical or non-existing

exchange among fibers were pitfalls of this method (Frank, 2002).

The neural fiber orientation distributions gained from ex vivo diffusion MRI was developed

by Leergaard et al., 2010, aiming to estimate the microstructural organization of fibers. They

were compared against histological measurements in the rat brain, by means of co-

registration with the affine transformations. This method involved tracing the myelin fiber

orientations as vectors. They utilized manual recordings of myelin stained tissues in the

mediolaterally oriented fibers of the corpus callosum and transversely oriented bundles of

the superior colliculus. Furthermore, they overlaid reconstructions on a gray scale FA map

derived from the diffusion tensor (DT) eigenvalues. They showed that low FA values and

disk-like DT profiles indicated the properties of crossing fibers, whereas high FA and

elongated DT profiles were typically regarded as characteristics of the coherent fibers.

2D-FT analysis in histological preparations

We successfully implemented, improved and tested 2D-FT analysis in 2D histological

preparations. We obtained significant differences only in one of our selected areas, CA3b in

the hippocampus after status epilepticus. In the corpus callosum and in layer VI of the cortex,

no differences were found between animals treated with pilocarpine and control animals,

even if we had visually observed some changes in the histological sections. Moreover, when
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we quantified anisotropy and orientation from those two areas using 2D-FT, we obtained

only minor differences which were not significantly different from the controls. This could

stem from the fact that the microstructural changes observed in the corpus callosum and the

cortex were within the detection level of our method. In addition, other possible factors might

be that some of these changes had opposite directions and they could have compensated each

other.

Clinical studies have already found significantly reduced FA in orthogonal direction to the

axons of epileptic patients in the external capsule and posterior corpus callosum (Arfanakis

et al., 2002 a). Eriksson and collaborators focused on the malformations during cortical

development as a contributor to epilepsy and discovered declined FAs among epilepsy

patients with agenesis of the corpus callosum (Eriksson et al., 2001). At the initial progress

of many CNS diseases, a change in the shape of astrocytes occurs involving a surge in GFAP

expression in their components (Oberheim et al., 2008). Detecting these alterations in

astrocytes following status epilepticus is very important for future therapeutic purposes.

According to the findings of Wilhemsson and collaborators, in the cortex and hippocampus,

reactive astrocytes increase the thickness of their molecular processes (Wilhelmsson et al.,

2006). The morphology of astrocytes has been perceived as isotropic so that their growth

would not be affecting or depressing the calculated anisotropy (Budde et al., 2011). However,

we observed a significant increase in anisotropy of the reactive astrocytes and myelinated

axons of CA3b by 52% and 46%, respectively. This was associated with a marked growth of

astrocytes and to a lesser extent, plastic changes in myelinated axons. However, astrocytes

appeared to have a greater role in increasing anisotropy after status epilepticus, presumably

due to a coherent growth of their processes. In this region, the orientation degree increased

by 29% in GFAP stained sections, and 137% in myelin stained sections. Budde and

collaborators who aimed to identify cellular morphologies involved in the elevated

anisotropy, found a similar pattern for GFAP in the cortex. Although DTI indicated increased

anisotropy  after  status  epilepticus  in  CA3b,  it  was  not  a  significant  change.  This  can  be

explained by the inability of DTI to detect complex fibers especially in the grey matter.

In the corpus callosum histology showed a decrease in anisotropy after status epilepticus both

for myelin and GFAP stained sections, whereas DTI showed a slight increase in FA. It bears



52

resemblance to the previous clinical studies of epilepsy patients that observed significant

reductions of FA in the corpus callosum (Arfanakis et al.,2002 a ; Thivard et al., 2005; Gross

et al., 2006; Concha et al., 2006; Liu et al., 2011; Andrade et al., 2014). The projection of

DTI eigenvectors through Z plane created a similar degree of orientation with histology in

the corpus callosum, but this phenomenon did not occur in CA3b or cortex. In other words,

DTI projection is not consistent with the 2D-FT orientations in grey matter. The consistency

of the DTI projected orientations with myelinated axons in the white matter seems to be due

to the distinct pattern of cohesively oriented fibers in a way that their projection creates the

same 2D left-right directionality.

An advanced method as an alternative to 2D-FT anisotropy was also introduced by Budde

and Frank, 2012 using the high resolution confocal microscopy. They argued that there was

not a specifically standard method available for the validation of local tissue structures

derived from the multi-fiber diffusion MRI. In order to find a solution, they developed an

automated and quantitative method named as structure tensor (ST) analysis for the Dil-

stained images of rat brain. Since ST is limited to 2D, the influence of through-plane fibers

on the resulting images was also examined. Their results showed the predominant orientation

of fibers in the rat cortex was perpendicular to the cortical surface. However, they argued

that ST analysis had one major restriction which was the 2D nature of the histological

sections.

3D-FT analysis in SBEM stacks

Owing  to  the  high  resolution  of  SBEM  (0.28  µm3) which is within the range of lipid

membranes of myelinated axons, we were able to infer the barriers of the water diffusion in

normal and in pathological conditions. The anisotropy generated from 3D-FT analysis of the

corpus  callosum  in  a  control  was  as  the  same  level  as  FA  in  DTI.  In  view  of  the  highly

anisotropic nature of the corpus callosum, it was expected to see a close correlation between

SBEM and DTI. We discovered that Fourier analysis in the corpus callosum creates more

precise results  with bigger VOI dimensions.   It  is  worth mentioning that  the estimation of

anisotropy from the power spectrum of the Fourier analysis is merely valid over large scales

(Germain et al., 2003).
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Previous  clinical  studies  on  patients  with  TBI  have  shown  reductions  in  FA  of  the  white

matter fibers (Edlow et al., 2016). One longitudinal study found a remarkable decrease in FA

among the body of the corpus callosum and external capsule of these patients compared to

controls, after 11 weeks of follow up scans (Sidaros et al., 2008). Mac Donald and coworkers

focused on traumatic axonal injury of mice and discovered a decrease in the relative

anisotropy of DTI in the corpus callosum and the external capsule. In addition, they

surprisingly discovered the presence of reactive astrocytes after the trauma by GFAP

immunostaining, which did not appear in white matter of control subjects (Mac Donald et

al., 2007). Arfanakis and colleagues found a significant decrease in FA of TBI patients in the

corpus callosum and the external capsule during the one month follow up (Arfanakis et al.,

2002 b).

We applied 3D-FT to cortex of a TBI rat and synonymous to Budde et.al, 2011, we found

that the decrease in anisotropy in the ipsilateral hemisphere was associated with axonal

degeneration and loss of myelin integrity. Moreover, we observed a decrease in anisotropy

in the ipsilateral cortex compared to contralateral, associated with a distinguishable increase

in the number of glial cells. The shape and the processes of these cells might be the reason

for the changes in the parameters obtained from both analyses. Although 3D-FT showed a

decrease in anisotropy on the ipsilateral cortex and external capsule, as compared to the

contralateral, FA from DTI in both areas did not show any differences. As mentioned earlier,

these could be explained by the partial volume effect of the voxels in the DTI maps (Vos et

al., 2011).

Further work is necessary to solve the problems we faced in this project. For instance, the

presence of geometric distortions due to tissue preparation, such as staining or cutting by the

microtome, cannot be avoided precisely (McCulloch, 1965; Towe and Hamilton, 1968).

Artifacts attributable to the non-homogeneous stainings that lead to an increased signal to

noise ratio should be avoided (Tsai et al., 2013). Anisotropy and orientation values for SBEM

analysis by Fourier transformation can result in great variance based on the magnitude of the

VOI block. Particularly in corpus callosum, the voxel magnitudes of our larger VOIs were

not symmetrical. Thus, it is necessary to analyze a square cubic VOI in order to evaluate the

differences it might make. Having cut the SBEM tissue inconsistently with the DTI reference,

http://www.sciencedirect.com.ezproxy.vasa.abo.fi/science/article/pii/S0022532065800879
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we observed a disparity between the resulted orientations. For future experiments,

registration methods between SBEM and DTI should be implemented to avoid this problem.

However, the findings in this project are significant for a precise and realistic approach in

DTI characterization and can further be expanded for other areas of brain research.

7. CONCLUSION
We efficaciously implemented a three-dimensional Fourier analysis to the 3D stacks of

SBEM. This is a significant breakthrough in the evolution of DTI characterization and will

contribute to a far better understanding of the DTI contrast. We also successfully applied 2D-

FT to myelin and GFAP stained micrographs of grey and white matter for the status

epilepticus rats to provide supplementary data for DTI characterization. Direct quantification

of SBEM stacked images helps determine the underlying microstructural components of the

brain tissues with cutting-edge resolution.
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Ø Appendix

A geometrical difference between default elevation angles Φ versus φ can be explained

simply by the rules in trigonometry (see Fig.15).

The elevation angle of the spherical coordinate system is Φ	however in Matlab it is defined

as φ by default. It was required to rephrase this angle so that it would be compatible with the

software:

φ +Φ =
π
2

In other words, Φand φ are supplementary angles:

Φ =
π
2 − φ

As a result it can be concluded that:

sin ቀ
π
2 −φቁ = 	 cosφ

Whereas:

cos ቀ
π
2 − φቁ = sinφ

The right triangle DOP:

sinΦ =
|DP|

r

And we will have:

|DP| = r sinΦ

Similarly:

cosΦ =
|OD|

r
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This is rephrased as:

|OD| = r cosΦ

In the right triangle ΔAOB:

sin θ = 	
|AB|
r୶୷

Where r୶୷ shown as a blue vector in Fig. 15, is the projection of r on x-y plane:

|AB| = 	r୶୷ sin θ

In the same way:

cosθ = 	
|OA|
r୶୷

And:

|OA| = 	 r୶୷ cosθ

Projection of r throughΦ towards the X axis forms the x component of the Cartesian system

stated with spherical components:

x = r	 sinΦ	 cosθ	

Which can be further restated with the φ:

	 	 		x = 	r	 cosφ	 cosθ

And similarly:

y = r	 sinΦ	 sin θ

That can be restated as:

	 		y = r	 cosφ	 sin θ

The projection of r to the z axis through the angle Φ:

z = r	 cosΦ			

With the same procedure z can be rephrased with the angle φ:
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	 	z = r	 sinφ
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