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Abstract 

 

Hybrid materials consisting of microporous aluminosilicate zeolites and the conducting polymer 

polypyrrole (PPy) were synthesized and characterized. The PPy/zeolite composites exhibit both 

the mechanical and chemical properties of the zeolites as well as the unique electrical and 

electrochemical properties of PPy, which are intended for new types of catalysts and sensors. 

The acid groups in the zeolites were expected to influence the properties of the PPy/zeolite 

composites. Therefore, the acidity of the selected zeolites was determined prior to synthesis of 

the composites. Because the synthetic reaction takes place in the aqueous phase, potentiometric 

acid-base titration was used here instead of the common gas-phase techniques. Analysis of the 

titration data was based on the Gran method. Various acid groups were found in the studied 

zeolites. Both the protonation constants and the concentrations of these acid groups were 

determined. The results also show that the potentiometric titration is a reliable and suitable 

method for characterizing the acidic properties of zeolites that are used in aqueous-phase catalytic 

reactions. 

PPy/zeolite composites were first synthesized by chemical polymerization of pyrrole in presence 

of zeolites using FeCl3 as the oxidizing agent. The protonated form of Beta zeolites with various 

SiO2/Al2O3 ratios were used as the host for PPy in this study. Both the anionic groups in the 

zeolite structures and the chloride ions from the FeCl3 oxidant functioned as the counter ion 

during the polymerization. Deposition of PPy inside the channels of the zeolite decreased the 

surface area of the zeolite. Some PPy/zeolite composites showed higher conductivity, compared 

with PPy(Cl-), which may be due to an increased alignment of the polymer chains in the 

PPy/zeolite composites. 

Electropolymerization of pyrrole in presence of zeolites was performed by using the method of 

constant potential, resulting in electrodeposition of PPy/zeolite composites on the electrode 

surface. The protonated forms of Beta zeolites and Y zeolites were used in this study. The results 

indicate that electropolymerization of pyrrole took place mainly on the outer surfaces of the 

zeolite crystals. PPy was observed on the crystal surface and also in the channels of the zeolites. 



 

The oxidized cationic PPy was charge-balanced by the anionic groups in the zeolite framework, 

and therefore the zeolite influenced the electrochemical behavior of PPy. 

The electrodeposited PPy/zeolite composites were tested as solid contact in an ion-selective 

electrode (ISE). For this purpose, the protonated forms of ZSM-5 zeolites were used as the host 

for PPy. The anionic groups in these zeolites functioned as the counter ions for PPy during the 

polymerization. The results indicated that microporous zeolites containing a high concentration 

of anionic groups are proper candidates to form composites with conducting polymers in order to 

generate a new type of solid contact for ion-selective electrodes. 

 

Referat (abstract in Swedish) 

 

Hybridmaterial bestående av mikroporösa aluminiumsilikat-zeoliter och den elektriskt ledande 

polymeren polypyrrol (PPy) framställdes och karakteriserades. PPy/zeolit-kompositerna uppvisar 

såväl zeoliternas mekaniska och kemiska egenskaper som de unika elektriska och elektrokemiska 

egenskaperna hos PPy, vilka är avsedda för nya typer av katalysatorer och sensorer. 

Zeoliternas syragrupper förväntades påverka egenskaperna hos PPy/zeolit-kompositerna. Därför 

bestämdes surheten hos de valda zeoliterna innan kompositerna tillverkades. Eftersom 

syntesreaktionen äger rum i vattenfas, användes potentiometrisk syra-bastitrering i stället för de 

allmänna gasfas-teknikerna. Analys av titrerdata baserades på Gran-metoden. Ett flertal 

syragrupper hittades i de studerade zeoliterna. Både syrakonstanterna och koncentrationerna av 

dessa syragrupper bestämdes. Resultaten visar också att potentiometrisk titrering är en pålitlig 

ock lämplig metod för karakterisering av syraegenskaperna hos zeoliter som används i katalytiska 

reaktioner som sker i vattenfas. 

PPy/zeolit-kompositer framställdes först genom kemisk polymerisering av pyrrol i närvaro av 

zeoliter genom att använda FeCl3 som oxidationsmedel. Den protoniserade formen av Beta-

zeoliter med ett antal olika SiO2/Al2O3 förhållanden användes som värd för PPy i denna studie. 

Både zeoliternas anjoniska grupper och kloridjoner från oxidationsmedlet FeCl3 fungerade som 

motjoner vid polymeriseringen. Bildning av PPy inne i zeolitens kanaler minskade zeolitens 



 

ytarea. Vissa PPy/zeolit-kompositer uppvisade högre konduktivitet, jämfört med PPy(Cl-), vilket 

tyder på att polymerkedjorna var mera välordnade i PPy/zeolit-kompositerna. 

Elektropolymerisering av pyrrol i närvaro av zeoliter utfördes med konstant-potentialmetoden, 

vilket resulterade i elektrokemisk beläggning av PPy/zeolit-kompositer på elektrodytan. De 

protoniserade formerna av Beta-zeoliter och Y-zeoliter användes för de elektrokemiskt 

framställda PPy/zeolit-kompositerna som studerades i detta arbete. Resultaten tyder på att 

elektropolymeriseringen av pyrrol företrädesvis skedde på ytan av zeolitkristallerna. PPy 

observerades på kristallytan och även i zeoliternas kanaler. Laddningen hos oxiderad katjonisk 

PPy balanserades av anjoniska grupper i zeolitens struktur, och därför påverkade zeoliten de 

elektrokemiska egenskaperna hos PPy. 

De elektrokemiskt framställda PPy/zeolit-kompositerna testades som fast kontakt i en jonselektiv 

elektrod (ISE). För detta ändamål användes de protoniserade formerna av ZSM-5-zeoliter som 

värd för PPy. De anjoniska grupperna i dessa zeoliter fungerade som motjoner för PPy under 

polymeriseringen. Resultaten tyder på att mikroporösa zeoliter med en hög koncentration av 

anjoniska grupper är lämpliga kandidater för att bilda kompositer med elektriskt ledande 

polymerer som kan ge upphov till en ny typ av fast kontakt för jonselektiva elektroder. 
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1. INTRODUCTION 
 

Combination of conducting polymers with organic/inorganic materials has been intensively 

studied for producing new types of hybrid materials. The organic materials can be polymers [1] 

or biologically active species [2]. The inorganic materials can be metals such as Ag, Au and Ti 

and their oxides [3-5], carbon-based materials including carbon nanotubes, graphene and 

graphene oxide [6, 7], and cellulose [8]. The synthesis methods are polymerization, dispersion, 

redox reaction, and electrostatic interaction [9]. Since the chemical and physical properties of the 

conducting polymer as well as the incorporated materials will be modified, the resulting 

composites may exhibit enhanced optical, electronic, chemical and mechanical properties as well 

as environmental stability. Hence, these composites are promising for applications in e.g. 

supercapacitors and chemical/biological sensing devices. 

Zeolites, an inorganic microporous/mesoporous solid, have gained the attention from 

electrochemical community in the past decades [10]. These aluminosilicates based materials 

consist of well-defined uniform cages and channels, and also have high degree of open porosity, 

physical and chemical stability as well as acidic property [11, 12], which make them of high 

interest in the design of new inorganic/organic composites. To date, functioning as the ‘modifier’ 

in a chemically modified electrode is the most commonly application of zeolites in the 

electroanalytical field. Such electrodes are also known as the zeolite modified electrodes, and the 

sensing material is general composed by zeolites and conducting polymers or zeolites and 

conducting matrix (e.g. carbon particles). The features of zeolites mentioned above are expected 

to favor the mass transport and/or the charge transfer at the electrode, and meanwhile improve its 

selectivity and long-term durability [13]. 

In this thesis work, the protonated forms of microporous zeolites were used as the inorganic 

matrix for the conducting polymer polypyrrole (PPy). Both chemical and electrochemical 

methods were applied for synthesizing the PPy/zeolite composites. Fundamental studies of 

PPy/zeolite composites can help us to choose the proper zeolite when synthesizing this type of 

material. In addition, the potentiometric acid-base titration instead of the traditional gas-phase 

methods was tested for characterizing the anionic groups in the zeolites. 
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2. ZEOLITES 

2.1. Zeolites in general 

Zeolites are crystalline aluminosilicates with a three-dimensional framework of porous structure. 

The word ‘zeolite’ stems from two Greek words ‘zeo’ and ‘lithos’, which mean boil and stone. 

This material occurs in nature and has been known for 250 years [14]. Today, there are about 40 

types of natural zeolites, which are mainly found in volcanic and sedimentary rocks, and nearly 

200 types of synthetic zeolites have been designed and fabricated for specific purposes. Zeolites 

are widely used in daily life and in industrial applications, e.g. as water softeners, animal food, 

adsorbents, and in industrial catalysis reactions, especially in the field of petroleum refining and 

synthesis of petrochemicals [15, 16]. In recent years, acidic and metal (include transition and 

noble) modified zeolite catalysts have found applications for synthesis of pharmaceuticals, 

specialty and fine chemicals [17]. 

The general chemical composition of both natural and synthetic zeolites can be represented by 

the following formula: 

௬/௡ܥ
௡ା ሾሺܱܵ݅ଶሻ௫ ∙ ሺܱ݈ܣଶሻ௬ሿ ∙  ଶܱܪݖ

where (x+y) is the number of tetrahedral per crystallographic unit cell, x/y is the molar ratio 

between silicon and aluminum in the zeolite framework, z is the amount of water which may be 

reversibly removed by heat, and C is a cation with the charge n, such as Na+, K+, NH4+, Mg2+ and 

Cu2+. Because the cation can readily be exchanged with other cations, zeolites are highly 

effective as ion exchanger and adsorbent. 

Meier and Olson classified the zeolitic materials based on their framework types in 1970, and the 

classification was then accepted by the zeolite community [18]. The rigid three-dimensional 

framework of zeolite consists of corner-sharing TO4 (T = Si, Al) tetrahedral building units, which 

are coordinated with each other by shared oxygen atoms [19]. This framework is relatively open 

due to the presence of various porous systems including channels, channel intersections and/or 

cavities. Pore openings are depending on the size of the ring, which is related to the number of T-

atoms/O-atoms in one ring. For example, an 8-ring is considered to be a small pore opening with 

the diameter of 0.41 nm, a 10-ring is a medium one (0.55 nm), and a 12-ring is a big one (0.74 
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Double 4-ring 

Cancrinite cage 

Double 6-ring Pentasil unit Four 5-ring unit 

Sodalite unit or ߚ-cage ߙ-Cavity 

nm). These rings connect with each other and form various subunits and cages. As a result, 

numerous types of zeolite frameworks can be produced. Some of the subunits and cages are 

shown in Fig. 1 [20]. As can be seen, a double 6-ring unit is composed by six 4-rings and two 6-

rings, while a sodalite unit is defined by six 4-rings and eight 6-rings. The exploitable properties 

of the zeolites are essentially determined by their framework structures, e.g. the ion-exchange 

selectivity depends on the number and nature of the acid groups and their accessibility, the 

sorption capacity depends on the pore opening size and the void volume, and the catalytic 

behavior upon the dimensionality of the porous system, the acid groups, and the space available 

for the catalytic reaction [21-23]. 

 

 

 

 

 

 

 

 

Fig. 1 Typical subunits and cages present in zeolite frameworks 

 

The studied zeolites in this research work are Beta, Ferrierite, Y, ZSM-5 with the framework type 

codes of BEA, FER, FAU, MFI, and a pristine silica mesoporous material Si-MCM-48 which has 

no aluminum in its framework. It should be noted that the three-letter codes are not the name of 

the zeolites, but indicate the structure of these materials. As can be seen in Fig. 2, different 
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subunits and cages compose the frameworks of these zeolites, resulting in various porous 

systems.  

 

 

 

 

 

 

Fig. 2 Frameworks of the studied zeolites, a) BEA, b) FER, c) Si-MCM-48, d) FAU and e) MFI 

 

The structural features of these zeolites are listed in Table 1. The three-dimensional structure of 

the Beta zeolite has two channel systems: one channel consists of 12-membered rings with 

dimensions of 5.6 × 5.6 Å and the other consists of 12-membered rings with dimensions of 6.6 × 

6.7 Å. The two-dimensional structure of the Ferrierite zeolite contains two types of channels as 

well: one channel composed by 8-membered rings with dimensions of 3.5 × 4.8 Å and the other 

composed by 10-membered rings with dimensions of 4.2 × 5.4 Å. The three-dimensional cubic 

structure of Si-MCM-48 consists of unconnected pore systems with dimensions of 20-80 Å [24-

26]. The three-dimensional pore system of Y zeolite contains one tetragonal crystal system: 

supercage, which shares a 12-membered ring with dimensions of 7.4 × 7.4 Å [27]. The ZSM-5 

zeolite has a three-dimensional network consisting of straight and sinusoidal 10-ring channels 

with pore diameters of 5.1 × 5.5 and 5.3 × 5.6 Å, and also has an intersection with dimension 9 Å 

[28]. 

 

c a  b

d  e 
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Table 1 Structural feature of the studied zeolites, and Si-MCM-48 mesoporous material 

Zeolites Framework 
type code Ring 

Pore 
aperture 
size (Å)* 

Dimensionality of 
pore system 

Connectivity 
between different 

pore system 

Beta BEA 12 5.6 ൈ 5.6I 3 Interconnected 12 6.6 ൈ 7.7II 

Ferrierite FER 8 3.5 × 4.8I 2 Interconnected 10 4.2 × 5.4I 
Si-MCM-48   20 ‒ 80 3  

Y FAU 12 7.4 × 7.4III 3  

ZSM-5 MFI 10 5.1 × 5.5I 3 Interconnected 10 5.3 × 5.6I 
*The superscript indicates that the channel is (I) one-, (II) two-, or (III) three-dimensional.  

 

2.2. Acidic property of zeolites 

As described above, the basic structural unit of zeolite framework is the SiO4 or AlO4 tetrahedra 

with O atoms connecting neighboring tetrahedral [29]. A heteroatom such as Al, B, Ga and Fe, 

which has a lower valency than Si, is introduced to the framework and the formal charge on that 

tetrahedron changes from neutral to negative. This negative charge is then balanced either with a 

proton to form a strong Brønsted acid group or with a metal cation to form a weak Lewis acid 

group [30], as shown in Fig. 3. 

 

 

 

Fig. 3 Schematic representation of the acid groups in zeolites, a) Brønsted acid group and b) 
Lewis acid group 
 

Due to the presence of the acid groups in the framework, the solid acid and metal modified 

zeolites are used as catalytic materials in several petro-chemical and oil refining processes, as 

well as in synthesis of fine and specialty chemicals [31, 32]. Acidic and metal modified zeolite 

a  b 
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Ion-exchange 

Heat-treatment 

catalysts are also used in environmental applications such as exhaust gas purification from mobile 

and stationary sources, pretreatment of industrial and municipal wastewater streams, agricultural 

soil contamination and nuclear waste treatment [33-36]. Since these acid groups play an 

important role in the catalytic and sorption properties of zeolites [37], better knowledge of them 

is important for successful industrial applications of zeolites as solid catalysts. 

 

2.2.1. Formation of acid groups in zeolites 

Brønsted acid groups dominate the catalytic properties of zeolites, thus the activity of zeolites is 

based on the concentration and the type of Brønsted acid groups in their frameworks. Three 

methods are mainly applied to generate the Brønsted acid groups/acidic OH groups in the 

synthetic zeolites. The most common method is to replace the alkali metal cations or 

alkylammonium cations in the zeolite framework with the protons to obtain the OH groups. For 

example, in this thesis the Beta zeolite that is initially in its Na-form is first converted into its 

ammonium form (NH4-Beta) by ion-exchange with ammonium nitrate. NH4-Beta is then 

converted into the protonated form (H-Beta) by decomposing NH4+ ions at 450 Ԩ for 4 hours. 

The transformation can be expressed as follows (Fig. 4): 

 

 

 

 

 

 

 

Fig. 4 Formation of acidic OH groups for zeolites by replacing the alkali metal ion with proton 
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The second way is by ion-exchange with multivalent cations, i.e. Ca2+, Mg2+, and La3+. As shown 

in Fig. 5, the introduced multivalent cations are coordinated with water molecules and are in the 

zeolite framework in the form of [Ca(H2O)]2+, [Mg(H2O)]2+, and [La(H2O)]3+. With heat 

treatment, the water molecule will be dissociated, thereby generating the acidic OH groups for 

the zeolite [38, 39]. It has been found that the amount of Brønsted acid group increases with 

decreasing size of multivalent cations: Ba/zeolite < Sr/zeolite < Ca/zeolite < Mg/zeolite. 

ሾCaሺHଶOሻሿଶା → ሾCaሺOHሻሿା ൅ Hା 

 

 

 

Fig. 5 Formation of acidic OH groups in zeolites by ion-exchange with multivalent cations 

 

In the third method, the acidic groups are formed by reduction of transition metal cations such as 

Cu2+ and Ag+. These cations are introduced to the zeolite framework via ion-exchange and then 

reduced by gaseous hydrogen. The generated protons are trapped by the framework oxygen, thus 

forming the acidic OH groups [40-42]. 

 

2.2.2. Factors affecting acid strength of acid groups 

The concentration of acidic OH groups is basically determined by the Si/Al molar ratio in the 

zeolite framework. A high Si/Al ratio diminishes the concentration of OH groups [43, 44]. 

However, the acid strength of the OH groups depends on various factors. Theoretical calculations 

show that the acidity of bridging hydroxyl groups is greatly influenced by the zeolite structures. 

The angle of the Si-O-Al bond as well as the length of the Si-O and Al-O bonds will be changed 

when the proton is removed from the bridging hydroxyl groups, indicating that the deprotonation 

Heat-treatment 
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energy is determined by the local structure of the zeolite. Carson et al. noted that increase in the 

Si-O-Al angle can decrease the deprotonation energy of the bridging hydroxyl groups, and thus 

enhance the acidic strength of the OH groups [45]. Katada et al. found that a shorter distance of 

the Al-O bond gives a stronger interaction between Al and the OH, resulting in a smaller charge 

and a higher acid strength of the OH group. This has been confirmed by the acid strength order 

MFI 	൐	BEA 	൐ FAU [46]. The acidic properties of zeolites can be changed by isomorphous 

substitution of Al in the framework with Be, B, Ti, Cr, Fe, Zn, Ge, Ga and V. These elements are 

introduced to replace the aluminum by adding the metal salts in the starting gel solution when 

synthesizing the zeolites. Both the acidic and the redox properties of the zeolites are thus 

modified with the new elements. For example, Chu et al found that the acid strength of the OH 

groups in various metallosilicates with MFI structure decreases as follows [47]: 

[Al]-ZSM-5	൐ [Ga]-ZSM-5	൐ [Fe]-ZSM-5	൐ [B]-ZSM-5 

 

2.2.3. Traditional acidity characterization methods for zeolites 

Numerous gas phase methods and techniques have been published to quantify and characterize 

the acidity of zeolites. One of the methods uses Fourier Transform Infrared (FTIR) spectroscopy 

of various probe molecules (ammonia, pyridine) adsorption to study the fundamental stretching 

vibrations of hydroxyl groups at varying temperatures to determine the Brønsted and Lewis acid 

groups [48, 49]. Another commonly used method is the temperature-programmed desorption 

(TPD) technique to measure the reacted amount of a gaseous base (ammonia) with zeolites for 

characterizing the density and strength of the acid groups [50]. Both FTIR-pyridine and TPD-

ammonia methods are performed in the gas phase at high temperature (100 ‒ 450 Ԩ). However, 

many catalytic reactions, especially those related to valorization of biomass, are carried out in 

aqueous solutions at room or somewhat elevated temperature [51, 52]. Therefore, the catalytic 

properties based on the acidity of the zeolites determined with FTIR-pyridine and TPD may not 

be relevant. Additionally, the goal of this research work is that the acid groups on the zeolites’ 

framework will function as the counter ions for PPy when synthesizing the PPy/zeolite 
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composites in water solution. A technique which can be used to characterize the acidic properties 

of the zeolites in the aqueous phase is therefore necessary. 

Acid-base titration of zeolites in non-aqueous solvents has been used earlier to study the acidity 

of zeolites. The method was introduced by Benesi in the 1950s [53] and then modified by other 

researchers [54]. In that method, the surface of zeolite was titrated with amine, i.e. n-butylamine, 

in a non-aqueous solvent. A series of Hammett indicators with various acidity constant values, 

i.e. benzeneazodiphenylamine (pKa = 1.5) and phenylazonaphthylamine (pKa = 3.3), were used to 

characterize the acid groups [55]. However, it was demonstrated later that the additional 

indicators in the non-aqueous solvent could disturb the equilibrium state of the zeolite system 

during the titration [56, 57]. Another drawback of using the Hammett indicators is their 

molecular size, which is too large for the indicator molecules to enter the channels and cages of 

some zeolites [58]. Due to these fundamental limitations and the long time of the experiments, 

the titration using indicators did not become a popular technique in characterizing the acid groups 

of zeolites. 

 

2.2.4. Potentiometric acid-base titration method 

In this research, a specific potentiometric acid-base titration method developed from the 

traditional titration method was tested to characterize the acidity of zeolites. This method has a 

high resolution in determining the various acid groups present in the samples. Moreover, it is not 

necessary to use any indicators to monitor the acid-base reaction. During the titration, pH of the 

solution is measured as a function of the volume of a strong base added and the obtained titration 

curve is used to analyze the samples. In addition, the small OH- ions can penetrate deep inside the 

zeolite channels and the acid groups in those channels can therefore also be determined. 

The acid-base properties of zeolites in aqueous solutions can best be described by considering 

that the material contains several different acid groups with different strengths, i.e. different 

protonation constants, according to the following equilibria and constants: 
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where R denotes the anionic part of the acid group,	 Kn is the protonation constant of the acid 

group. It should be pointed out that the concentrations of the different R (R1,	 R2,	 …,	 Rn), i.e. acid 

groups, are also different. 

The Gran method, which is based on SØrensen’s [59] earlier work and described by Gran in 1950 

[60], was selected for the titration data analysis in this work (Table 2). The common sigmoidal 

potentiometric titration curve is transformed to a linear form with the Gran functions, which 

allows calculation of the equivalence volume (Veq) by a standard linear regression method using 

several points on the titration curve. The Gran functions used in this work and their derivations 

are shown in the supplementary information (S). Ingman and Still have derived a more accurate 

equation than (S14) in the supplement to describe the titration of a weak acid with strong base 

[61]. Ivaska and Wänninen have developed that method further for simultaneous determination of 

both Veq and K by an iterative computing method [62]. The Gran function can be used when the 

electrode system has a Nernstian response and the activity coefficients of the species in the 

solution remain constant during the potentiometric titration. 
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Table 2 Gran functions (from the Supplement) used for analysis of the potentiometric titration 
data. V0 is the initial volume of the sample solution, V is the volume of titrant added, COH is the 
concentration of the titrant and K is the protonation constant of the acid (Table 1, Paper I) 
 Gran Functions 

Substance 
titrated 

 
On the acid side of the equivalence 

point 
 

On the alkaline side of the equivalence 
point 

Strong acid  ଵ݂ሺܸሻ ൌ
ሺ ଴ܸ ൅ ܸሻ
ைுܥ

∙ 10ି௣ு  ଶ݂ሺܸሻ ൌ
ሺ ଴ܸ ൅ ܸሻ
ைுܥ

∙ 10ሺ௣ுିଵସሻ 

Weak acid  ଷ݂ሺܸሻ ൌ ܭ ∙ 10ି௣ு ∙ ܸ  ଶ݂ሺܸሻ ൌ
ሺ ଴ܸ ൅ ܸሻ
ைுܥ

∙ 10ሺ௣ுିଵସሻ 

 

A conventional titration curve, i.e. pH as function of V (volume of added base), for titration of the 

strong acid HNO3 with the strong base NaOH is shown in Fig. 6. When the same experimental 

data (pH vs. V) are processed with the Gran functions f1(V) and f2(V), the two straight lines in Fig. 

6 are obtained. The numerical scales for f1(V) and f2(V) are different and not shown in the figure. 

The lines intersect each other on the V-axis at Veq, which is known as the equivalence volume of 

the titration and can be used in calculating the concentration of HNO3. Both lines can be used in 

determination of Veq. 
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Fig. 6 Titration of 4 mL of 0.5 M HNO3 with 0.1 M NaOH. The ▬ line is pH vs. V (volume of 
added base). The linear Gran curves obtained with f1(V) and f2(V) have the same intersection 
point on the V-axis and the point is the equivalence volume (Veq). The ● and ▲ on curves f1(V) 
and f2(V) show the positioning of the data points used for evaluating the Veq (Fig. 2, Paper I) 
 

The computer program FITEQL is also used to calculate the protonation constants and the 

concentrations of the acid groups in the studied zeolites. This method is based on the equations of 

chemical equilibria [63]. The experimental data includes the concentration of the titrant, pH, 

dilution factor, and ionic strength of the solution, which are entered as input parameters to the 

program. Both the protonation constants ݈݃ܭுோ
ு,ோ and the concentrations of the acid groups are 

first guessed for the equilibrium calculation, and the two values are then optimized by an iterative 

procedure on the adjustable parameters in the FITEQL program. The program is running with the 

following steps [64]: 

1. Definition and input of the chemical equilibrium model 

2. Input of free concentration, total concentrations and ܭுோ
ு,ோ values of known species 

3. Input of the initial guesses for the concentrations and ܭுோ
ு,ோ values of unknown species 

4. Input of the experimental titration data, i.e. COH, pH, dilution factor, and the ionic strength 

of the solution 
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5. Start the calculation 

6. The initial guesses are set to the equilibrium values by proceeding the iterations on the 

adjustable parameters in the program 

7. Output of optimum values for the concentrations and the protonation constants (݈݃ܭுோ
ு,ோ) 
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3. CONDUCTIING POLYMERS 
 

A conducting polymer (CP) is an organic polymeric molecule that can possess intrinsic electrical 

conductivity after doping. The modern CP research is considered to start from doping of 

polyacetylene with bromine. Hideki Shirakawa found that the conductivity of the doped 

polyacetylene was 10 million times higher than the undoped state. Because of this important 

discovery, Shirakawa won the Nobel Prize in Chemistry together with Alan J. Heeger and Alain 

G. MacDiarmid in the year of 2000 [65]. The CP backbone consists of alternating single and 

double bonds (conjugated double bonds) that are responsible for the unusual electronic property 

of such material [66]. Some commonly studied CPs with their molecular structures (in their 

neutral, undoped state) are shown in Fig. 7. The specific bond network and also the heteroatoms, 

i.e. N and S, in the polymer chain give the CPs various electronic properties. 

 

                                                    

                                               

                                                   

                                        

 

Fig. 7 Molecular structures of some conducting polymers 
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3.1. Chemical and electrochemical synthesis 

CPs can be prepared either by chemical and/or by electrochemical polymerization. In chemical 

polymerization, the chain growth of the CP is due to the oxidation of the CP monomer by using 

catalysts or reagents, and the mechanism is similar to that of electrochemical polymerization. The 

CP is commonly obtained in an oxidized state, and the counter ions existing on the polymer chain 

are from the electrolyte salt used in the reaction. Chemical polymerization is recommended for 

producing bulk quantities of CPs [67]. However, the electrochemical polymerization is preferable 

if the CPs is intended to be a thin-layer film or in micro scale. The experimental setup for the 

electrochemical polymerization is either two electrodes (working and counter) or three electrodes 

(working, counter and reference), which are mounted in an electrolysis cell. CP films are 

deposited on the surface of the working electrode, and the commonly used materials for this 

electrode are gold, platinum, glassy carbon as well as transparent indium-tin oxide-coated glass 

[68]. 

Electrochemical polymerization of CPs can be performed by using the potentiodynamic method 

(cyclic voltammetry: continuous variation of potential), the potentiostatic method (application of 

a constant potential), and the galvanostatic method (application of a constant current) [69]. The 

potentiodynamic method is used particularly when studying the growth rate of CPs and generally 

results in high-quality films with good substrate adhesion [70]. In the galvanostatic method the 

polymerization rate is constant, but some unwanted side reactions may occur if the potential 

increases as the CP film grows. The potentiostatic method allows to avoid the side reactions 

because of the applied constant potential. Compared with the potentiodynamic way, the CPs are 

obtained in their doped state when synthesized by the potentiostatic or the galvanostatic method 

[69, 70]. 

The electropolymerization mechanism of a CP starts with oxidation of the CP monomers 

generating radical cations (see Fig. 11). Propagation via a) dimerization reaction in which two 

radical cations form a dimer; b) electrochemical oxidation of the dimer giving an oligomeric 

radical; c) combination of this oligomeric radical with radical cations, and repetition of steps a 

and b can thus build up the polymer [71, 72]. However, the chain growth may also proceed by 

dimers coupling with dimers to form tetramers that generate octamers and further polymers [70, 
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73]. The physical and electrochemical properties of the prepared CP are depending on the 

experimental conditions, e.g. the composition of the solution, the defined potential window or the 

rate of the potential change in potentiodynamic polymerization, the galvanostatic current density, 

the material of the electrode, the initial state of the electrode surface, and even the reaction 

temperature [70]. 

When using electrochemical polymerization, the thickness of the conducting polymer film can be 

controlled by varying the potential or current with time. In addition, the electrochemical method 

can provide an in-situ way to investigate the polymerization process and also the properties of the 

resulting conducting polymer. 

 

3.2. Doping 

Depending on the ‘width’ of the band gap or energy gap (Eg), materials are divided into three 

groups, i.e. metals, semiconductors and insulators. As shown in Fig. 8, the energy difference 

between the conduction band and the valence band determines the ‘width’ of the gap. There is no 

gap in a metal due to the overlapping of the two bands. Both semiconductors and insulators have 

a band gap between the conduction and valence bands. 

 

 

 

 

 

 

Fig. 8 Schematic presentation of band gap (Eg) in: a) metal, b) semiconductor and c) insulator 
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A neutral CP belongs to the category of semiconductors or even insulators. However, the 

electronic state of the CP can be changed from insulator to conductor with doping. Both chemical 

and electrochemical methods can be used for this purpose [74]. The chemical way includes p-

doping and n-doping, and the principles can be presented schematically by the following 

reactions: 

                         Chemical p-doping:       ܥ ൅ ܣ →  Eq. 1                               ିܣାܥ

                         Chemical n-doping:       ܥ ൅ ܦ →  ା                              Eq. 2ܦିܥ

where C (electrically neutral sate of CP) is oxidized by A (electron acceptor) in the chemical p-

doping (Eq. 1), or reduced by D (electron donor) in the chemical n-doping (Eq. 2). 

Electrochemical doping is achieved by changing the voltage applied to the working electrode, 

which has the CP film on its surface. As shown in Eq. 3 and Eq. 4, electrons are either removed 

from (oxidation, p-doping) or added to (reduction, n-doping) the chain of CP during the doping 

process. Thus, the charge carrier in p-type CP is a hole while in n-type CP it is an electron. In 

order to maintain the electroneutrality the created charge on the polymer chain needs to be 

balanced by the counter ion (or dopant) [71]. The counter ion will move into the CP during the 

oxidation and out from the CP during the reduction [73]. The doping level refers to the number of 

charges per monomer unit that are created in the polymer chain [75]. 

                   Electrochemical p-doping:        ܥ ൅ିܯ → ିܯାܥ ൅ ݁ି                Eq. 3 

                   Electrochemical n-doping:        ܥ ൅ ݁ି ൅ ܰା →  ା                 Eq. 4ܰିܥ

where C (electrically neutral sate of CP) is oxidized and balanced by counter ion (M-) in the 

electrochemical p-doping (Eq. 3), or reduced and balanced by counter ion (N+) in the 

electrochemical n-doping (Eq. 4). 

To date, the range of the conductivity of CPs is found from 104 to 10-10 S/cm, which is 

determined by the polymer itself, the dopants and the doping level [76]. 
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3.3. Applications of conducting polymers 

The specific properties such as electrical conductivity, magnetic, optical, wettability, mechanical 

and microwave absorbing properties of conducting polymers can give them an extensive range of 

applications [77]. Fig. 9 illustrates important applications of such materials, i.e. nonvolatile 

memory devices, microwave absorption and EMI shielding, biomedical applications, 

electrorheological fluids, energy storage, catalysis, sensors, and electronic nanodevices [78]. 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Applications of conducting polymers 
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3.4. Polypyrrole 

Polypyrrole (PPy) (molecular structure shown in Fig. 7) is one of the CPs that has been most 

intensively studied due to its inherent advantages such as tunable electrical conductivity, good 

environmental and thermal stability, good mechanical properties, and easy and flexible way to 

synthesis [79-82]. The pyrrole monomer exhibits good solubility in aqueous and non-aqueous 

solvents. Since pyrrole has a lower oxidation potential than water, it can be synthesized in 

aqueous solution (as well as in non-aqueous solutions) [83]. Importantly, the monomer size of 

pyrrole is small enough to enter the pores and channels of the zeolites studied in this work (Fig. 

10) [84]. 

 

 

 

Fig. 10 Molecular size of pyrrole monomer 

 

PPy can be prepared either by chemical or by electrochemical polymerization [85-87]. The 

chemical way will generate a fine powder of PPy, and using FeCl3 as the oxidizing agent and 

water as the solvent can give PPy a high conductivity [88].  The chain growth of PPy in the 

electrochemical polymerization is shown Fig. 11, which is based on the E (CE)n mechanism. It 

starts with electron transfer (E), and is followed by chemical reaction (C) and electron transfer 

reaction (E) [89]. According to this mechanism, the pyrrole monomer is first oxidized on the 

surface of the working electrode to form a radical cation. Two radical cations are then coupled at 

the α-positions (the highest spin density position on the resonance structures of the radical cation) 

to form a dihydromer dication. A neutral aromatic dimer is obtained after the loss of two 

hydrogen ions from the dihydromer dication, the driving force for this step being the return to 

aromaticity. Compared with the monomer the dimer has a lower oxidation potential, so the 

polymerization is thus continued via oxidation of the dimer. Trimer formation follows the 
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monomer radical cation and dimer radical cation coupling and hydrogen ions releasing 

(deprotonation). Propagation continues by repeating the oxidation, radical coupling, and 

deprotonation until the final insoluble polymer (PPy) film is obtained on the electrode [90, 91].  

  

 

 

 

 

 

 

 

 

Fig. 11 Schematic representation of electrochemical polymerization of pyrrole [92] 
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4. ANALYTICAL TECHNIQUES AND METHODS 
 

The experimental techniques and the instruments including potentiometric titration, cyclic 

voltammetry, Fourier transformed infrared attenuated total reflection spectroscopy used for 

characterizing the anionic groups in the zeolites, as well as the physical and electrochemical 

properties of PPy/zeolite composites, are briefly described in this chapter. 

 

4. 1. Potentiometric acid-base titration 

Potentiometric acid-base titration of the zeolites was carried out with an automatic titration 

system Mettler Toledo DL 50, Schwerzenbach, Switzerland (Fig. 12). The titrator is 

microprocessor controlled and the potential (pH) is measured with a combined pH glass-

reference electrode with a ground sleeve junction (DG111-SC, Mettler Toledo). 

 

 

 

 

 

 

 

 

 

Fig. 12 Automatic potentiometric acid-base titration system 

 

Standard sodium hydroxide (NaOH) solution was prepared as the titrant and stored in a sealed 

bottle under argon environment. Special care is taken to prevent contamination by atmospheric 
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carbon dioxide. During the titration, the titrant will be first pumped from the bottle to a burette, 

and then pushed into the sample suspension. A defined program records the potential change 

within a preset time, including a given waiting time up to the next NaOH addition. Also, the 

volume of the added titrant within a defined potential difference is controlled during the whole 

titration procedure. Both the equilibrium potential and the volume of consumed titrant are 

recorded at the same time, which were then used to calculate the concentrations of the anionic 

groups in the zeolite sample. The potentiometric pH electrode was calibrated by using standard 

buffer solutions of pH 4.00, 7.00 and 10.00 prior to the measurement, and the ionic strength of 

the titrant as well as the sample suspension were maintained at the same level by having the same 

concentration of sodium nitrate (NaNO3).  

In Paper I, II, III and IV potentiometric acid-base titration was used to characterize the acidity of 

the studied zeolites. 

 

4. 2. Cyclic voltammetry 

Cyclic voltammetry (CV) has been extensively used to synthesize CPs and study their redox 

behaviors. This method is generally performed in a three-electrode electrochemical cell where the 

potential is cycled between two values (from E1 to E2) at a certain scan rate. The scan is reversed 

when the potential reached E2, and then cycled back to E1. The potential is measured between the 

working electrode and reference electrode, whereas the current caused by the redox reaction is 

recorded between the working electrode and the counter electrode. This procedure can be 

repeated continuously. Plotting of the current (I) versus the applied potential (E) results in a 

cyclic voltammogram [93]. An example of a cyclic voltammogram of PPy/H-Beta-25 composite 

film recorded in 0.1 M NaCl solution is shown in Fig. 13. Both oxidation and reduction peaks 

exist on this cyclic voltammogram indicating the redox property of this material. The shape of the 

voltammogram depends on the electrolyte salt and solvent, potential scan rate, and film thickness 

etc. [67, 94]. Beside the redox behavior, other information can also be obtained from the CV, i.e. 

the rate of the film growth, charging capacity, charge transfer, and charge transport processes and 

mechanism [95]. 
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Fig. 13 Cyclic voltammogram of PPy/H-Beta-25 composite film recorded in 0.1 M NaCl solution 
(Fig. 3a, Paper III) 
 

4. 3. Fourier transformed infrared attenuated total reflection spectroscopy 

Infrared radiation (IR) can be absorbed when it passes through a sample while the transition 

between quantized vibrational states of the molecules in this material is measured. IR absorption 

occurs only when the vibration mode of the molecule is associated with a change in the 

permanent dipole moment. Each material is a unique combination of atoms and therefore results 

in a unique IR spectrum. During Fourier transformed infrared spectroscopy (FTIR) measurement 

the signal from a sample is decomposed into its component wavelengths with an interferometer 

and the spectrum of this sample can be obtained with the calculation of these interferograms by 

Fourier analysis [96]. The spectrum is a plot of absorption intensity vs. wavenumber and the 

peaks of the spectrum are due to the vibrations of molecular excitations [97, 98]. 

There are three operation modes of FTIR: transmission, reflection and attenuated total reflection 

(ATR) [99]. Since FTIR by attenuated total reflection is available for all types of samples (e.g. 

solids, liquids, powders and fibers), it has been selected to characterize the molecular structures 

of the pristine zeolites and the PPy/zeolite composites in this thesis. Compared with the 



24 
 

Infrared Beam 
ATR Crystal 

Sample in contact with evanescent wave 

To Detector 

transmission and reflection spectroscopy, the infrared radiation is not transmitted through the 

sample in ATR measurement. Therefore, the thickness of the sample does not have to be thin 

enough to allow the transmission of the infrared beam when using the ATR technique. 

The basic principle of ATR measurement is shown in Fig. 14. The sample to be studied is placed 

on the ATR crystal, which is also known as the sensing element. The materials of the ATR 

crystal include zinc selenide, germanium and diamond. The IR beam enters the ATR crystal at a 

certain angle (approx. 45°) and is totally reflected at the interface of the sample. The fraction of 

the IR beam that penetrates into the sample is called evanescent wave. This wave will be 

attenuated when the sample absorbs energy in some spectral regions. After one or several internal 

reflections, the IR beam exits the ATR crystal and is collected by the IR-detector. 

 

 

 

 

 

 

Fig. 14 Graphical representation of attenuated total reflection set-up 
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5. RESULTS AND DISCUSSION 
 

This chapter summarizes the main results from the experimental work of Paper I-IV, and some 

additional data are also presented. More detailed experimental conditions and discussions related 

to the results can be found at the end of this thesis in Paper I-IV. 

 

5.1. Acid-base characterization of zeolites 

5.1.1. Potentiometric acid-base titration 

A specific potentiometric acid-base titration method was used to characterize the acidity of 

zeolites in aqueous solution. This research can help us to have a better understanding of the 

catalytic property of zeolites in aqueous phase reactions and also the role of the acid groups in 

electrochemical synthesis of PPy/zeolite composites.  

Except the silica mesoporous material Si-MCM-48, the other titrated zeolites are in the 

protonated form. Accurately weighed zeolite powder (approximately 0.85 g) suspended in 150 

mL of 0.1 M NaNO3 solution was titrated by stepwise additions of the titrant (0.1 NaOH + 0.1 

NaNO3) under argon atmosphere. The obtained titration curves (pH vs. VOH-, volume of added 

NaOH) of the zeolites in Paper I, III and IV are shown in Fig. 15. From the shapes of these 

curves it can be seen that all the titrated zeolites are acidic materials and contain various acid 

groups in their frameworks. It should be noted that due to some side reactions observed on the 

titration curve of H-Beta-300 in the alkaline range (pH ൐ 10), it is suggested to stop the titration 

when the pH of the titrated suspension reaches ca pH 10. 

 

 



26 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15 Potentiometric titration curves of the studied pristine zeolites in a) Paper I, Fig. 3, b) 
Paper III, Fig. 2, and c) Paper IV, Fig. 1 
 

The protonation constants as well as the concentrations of the acid groups in the zeolites are 

given after evaluation of the titration data by the Gran method. Due to the weak acidity of the 

zeolites, the function ଷ݂ሺܸሻ ൌ ܭ ∙ 10ି௣ு ∙ ܸ  in Table 2 was used in the calculations. Only the 

results from Paper I are presented in Table 3. Depending on the lgK values, these acid groups are 

separated into two categories: moderate acid group and weak acid group. The moderate acid 

group, defined when its lgK ≤ 6.0, is formed due to OH bridging of a framework silicon to a 

framework aluminum. The weak acid group, defined when its lgK > 6.0, is formed due to the 

dehydroxylation of alumina hydrates into transition alumina generating coordinately unsaturated 

sites [100]. In other words, the moderate and weak acid groups can be viewed as the Brønsted 

and Lewis acid groups, respectively. It can be seen in Table 3 that both H-Beta-25 and H-Beta-

300 contain one moderate acid group (ܴଵିܪା) and two weak acid groups (ܴଶିܪା and ܴଷିܪା), 

while H-Ferrierite-20 has two moderate acid groups (ܴଵିܪା  and ܴଶିܪା ) and two weak acid 
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groups (ܴଷିܪା and ܴସିܪା). Due to the absence of aluminum in Si-MCM-48, only one weak acid 

group (ܴଷିܪା) was found in its framework. The strongest acid group is found in H-Ferrierite-20 

with the lgK value of 3.1 and concentration of 580 µmol/g. H-Ferrierite-20 also contains another 

type of moderate acid group ܴଶିܪା (lgK = 5.3 and concentration = 130 µmol/g), indicating that 

another tetrahedrally coordinated aluminum species exists in this zeolite. Similar lgK values of 

ܴଵ
 ା are found in both H-Beta-25 and H-Beta-300 zeolites, meaning that these acid groups areܪି

identical. On the other hand, the different lgK values of ܴଵିܪା in the Beta zeolites and in the H-

Ferrierite-20 zeolite is the sign that the aluminum atoms creating these two moderate acid groups 

are in different frameworks. In their classical paper on the acid properties of silicates, Schinler 

and Kamber give lgK value of 6.8 for silicate [101]. Iler gives additional lgK values for silicate 

structures: 8.0 − 10.7 [102]. Similar values for the materials studied in this work were found in 

Table 3 and it can be concluded that these acid groups are due to the silicate structure in the 

materials and can be referred as the Lewis acid groups. 

Table 3 also presents the results obtained by using the computer program FITEQL. A model with 

three acid groups gave the best fit to the experimental data for the H-Beta-25 and H-Beta-300, 

and a model with one acid group was the best for Si-MCM-48. For H-Ferrierite-20, however, the 

result with a four acid group model was more accurate. As can be seen, the Gran method gives 

similar results as the FITEQL program, indicating the reliability of these values and both methods 

can be used to evaluate the potentiometric titration data of the zeolites. 
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Table 3 Protonation constants (lgK) and concentrations (c µmol/g) of acid groups in the pristine 
zeolites H-Beta-25, H-Beta-300, H-Ferrierite-20, and Si-MCM-48 determined by the FITEQL 
and Gran methods (Table 2, Paper I) 

 H-Beta-25  H-Beta-300 

 FITEQL Gran  FITEQL Gran 

Acid groups lgK c 
(µmol/g) lgK c 

(µmol/g)  lgK c 
(µmol/g) lgK c 

(µmol/g) 
ܴଵିܪା 4.5 570 4.6 520  4.1 90 4.0 110 

ܴଶ
 ା 6.3 230 6.1 230  6.9 180 6.8 190ܪି

ܴଷ
 ା 8.2 270 8.0 290  8.3 380 8.2 370ܪି

Total  1070  1040   650  670 

 H-Ferrierite-20  Si-MCM-48 

 FITEQL Gran  FITEQL Gran 

Acid groups lgK c 
(µmol/g) lgK c 

(µmol/g)  lgK c 
(µmol/g) lgK c 

(µmol/g) 
ܴଵିܪା 3.0 600 3.1 580      

ܴଶ
      ା 5.5 120 5.3 130ܪି

ܴଷ
 ା 6.7 170 6.6 180  8.1 270 8.0 280ܪି

ܴସିܪା 8.5 200 8.4 210      

Total  1090  1100   270  280 

 

5.1.2. Characterization of the titrated zeolites 

At the same time, the acidity of H-Beta-25, H-Beta-300, H-Ferrierite-20 and Si-MCM-48 were 

studied by FTIR using pyridine as the test molecule, and the results are compared with their 

pristine forms [103, 104]. As can be seen in Table 4, the concentration of the acid groups 

determined by the FTIR-pyridine method is much lower in the same zeolite than when 

determined by the potentiometric titration method (Table 3). Since the potentiometric titration 

was done in an aqueous solution at 25 Ԩ compared with the FTIR-pyridine method done in 

gaseous phase at elevated temperatures (250 – 450Ԩ), it is obvious that different values are 

obtained. In addition, some of the acid groups in the Ferrierite-20 framework may not be 

accessible to the large pyridine molecules during the FTIR experiments. However, the small size 

of OH- ions makes it easy for them to penetrate into the small pores of Ferrierite-20. 
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In the titrated zeolites, the Brønsted acid groups were neutralized during the titration, and 

therefore the FTIR pyridine method did not show any of these sites. Lewis acid groups, however, 

were detected in the titrated H-Beta-25 but at lower concentrations than in the pristine zeolites. In 

the other titrated zeolites, all the Lewis sites were neutralized. 

Table 4 Concentrations of Brønsted acid groups (BAS) and Lewis acid groups (LAS) in the 
pristine and the titrated zeolites determined by FTIR-pyridine method (Table 3, Paper I) 

 cBAS 
(µmol/g)  cLAS 

(µmol/g)  Total concentration 
(µmol/g) Zeolites 250 Ԩ 350 Ԩ 450 Ԩ  250 Ԩ 350 Ԩ 450 Ԩ  

Pristine H-Beta-25 [36] 219 187 125  82 43 25  301 
Titrated H-Beta-25 0 0 0  55 11 9  55 

Pristine H-Beta-300 [36] 54 49 23  28 9 4  82 
Titrated H-Beta-300 0 0 0  0 0 0  0 

Pristine H-Ferrierite-20 [37] 349 339 275  8 4 2  357 
Titrated H-Ferrierite-20 0 0 0  0 0 0  0 

Pristine Si-MCM-48 0 0 0  12 3 0  12 
Titrated Si-MCM-48 0 0 0  3 0 0  3 

 

The X-ray diffraction (XRD) patterns of the pristine zeolites as well as the titrated ones are 

shown in Fig. 16. As can be seen, all the titrated zeolites kept the main structural integrity intact 

compared with their pristine state, indicating that the base (NaOH) used in the titration did not 

destroy the main crystal structure of the zeolites. The interaction of H2O molecules with the 

Brønsted and Lewis acid groups have been studied in detail in refs [105, 106] 
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Fig. 16 XRD patterns of the pristine and titrated a) H-Beta-25, b) H-Beta-300, c) H-Ferrierite-20, 
and d) Si-MCM-48 (Fig. 5, Paper I) 

 

Since aluminum (Al) and silicon (Si) are the key components in forming the Brønsted and Lewis 

acid groups, the ICP-OES technique was used to determine their concentrations in the pristine as 

well as in the titrated zeolites. Table 5 only gives the results for Al. Assuming that every Al atom 

in the tetrahedral framework creates a Brønsted acid group, the theoretical concentration of the 

Brønsted acid groups in the pristine zeolites should be the same as the concentration of Al in 

them as given in Table 5. The experimentally determined total concentration of the Brønsted acid 

groups can be calculated by combining the concentrations of the acid groups whose lgK values 

are < 6.0 from Table 3. Those values are also included in Table 5. As can be seen, the theoretical 

and the experimentally observed concentrations of the Brønsted acid groups in the pristine 

zeolites differ from each other to some extent: 1000 μmol/g vs. 520 μmol/g (H-Beta-25), 150 

μmol/g vs. 110 μmol/g (H-Beta-300), and 1260 μmol/g vs. 710 μmol/g (H-Ferrierite-20). This 
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indicates that most of the Al in H-Beta-300 contributes to the Brønsted acid groups, but 

approximately 48% of Al in H-Beta-25 and 44% of aluminum in H-Ferrierite-20 are located in 

the extra framework. Concentrations of the Brønsted acid groups determined by the FTIR-

pyridine method from Table 4 are also included in Table 5. In general, the proposed titration 

method gives the results that are ca 50-55% higher than the values obtained with the FTIR-

pyridine method, and this can be explained by restricted accessibility of pyridine.  

Table 5 Concentrations of Al in pristine and titrated zeolites determined by ICP-OES, and 
concentrations of Brønsted acid groups (BAS) determined by titration and FTIR-pyridine 
methods (Table 4, Paper I) 

 

Also in Table 5, the titrated zeolites contain a lower concentration of Al than their pristine states, 

meaning that some aluminum was dissolved from zeolite during the titration. Approximately 260 

µmol/g of Al dissolved from H-Ferriertie-20 during the titration, and this amount is higher than 

H-Beta-25 (140 µmol/g) and H-Beta-300 (40 µmol/g). However, the cause of this release is 

unknown. Therefore, additional ICP-OES measurement has been done in order to determine the 

dissolved Al and Si when the zeolite was dispersed in deionized water. The results are shown in 

Fig. 17 (observe the different scales in Fig. 17). The amount of dissolved Al and Si only slightly 

increased with the stirring time for the three zeolites. More Al is found than Si, implying that part 

of the Al may not have been bonded in the framework or part of the Al framework is not stable in 

water. H-Beta-25 solution contains a higher concentration of Al compared with that of H-Beta-

300 due to the high content of Al in H-Beta-25 (Table 5). However, although H-Ferrierite-20 

contains more Al than that of H-Beta-25, a lower concentration of Al and Si is detected in H-

Ferrierite-20 solution. This study indicates that the structure of the zeolite can influence the 

Zeolites 
cAl 

by ICP-OES 
(µmol/g) 

cBAS 
by titration 

(µmol/g) 

cBAS 
by FTIR-pyridine 

(µmol/g) 

cBASFTIR-pyridine
cBASTitration  

Pristine H-Beta-25 1000 520 291 55% Titrated H-Beta-25 860 0 0 
Pristine H-Beta-300 150 110 54 49% Titrated H-Beta-300 110 0 0 

Pristine H-Ferrierite-20 1260 710 349 49% Titrated H-Ferrierite-20 1000 0 0 
Pristine Si-MCM-48 0 0 0  Titrated Si-MCM-48 0   
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stability of the Al and Si framework, but the acid-base reaction can cause more Al to dissolve 

from zeolites, especially when the zeolite contains a high concentration of Al, e.g. H-Ferrierite-

20. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Fig. 17 Concentrations of dissolved aluminum and silicon determined by the ICP-OES technique 
in various zeolites suspensions, a) H-Beta-25, b) H-Beta-300, and c) H-Ferrierite-20. ◆ is 
attributed to the dissolved aluminum and ▲ is the dissolved silicon 
 

27Al MAS NMR spectroscopy was used to characterize the coordination states of aluminum in 

both pristine and titrated zeolites. As shown in Fig. 18, two representative NMR peaks around 55 

(AlIV) and 0 (AlVI) ppm are observed on the 27Al NMR spectra of pristine H-Beta-25, H-Beta-300 

and H-Ferrierite-20 in Fig. 18a, b and c, respectively. The resonance peak at 55 ppm with very 

strong intensity is attributed to the Al sites on the tetrahedral framework, and the peak at 0 ppm 

with very low intensity is assigned to the octahedral non-framework Al sites [107, 108]. Only the 

AlIV peak can be found in the 27Al NMR spectra of the titrated H-Beta-25, H-Beta-300 and H-

Ferrierite-20, indicating that the tetrahedral Al sites attributed to the zeolite framework are 

maintained while the octahedral Al sites are broken after the titration. In other words, the 
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tetrahedral framework Al is much more stable than the octahedral non-framework Al in the 

alkaline environment. There is no Al peak observed in the 27Al NMR spectra of Si-MCM-48 in 

Fig. 18d due to the absence of aluminum in this zeolite. 

 

 

 

 

 

 

 

 

 

 

Fig. 18 27Al MAS NMR spectra of the pristine and titrated zeolites a) H-Beta-25, b) H-Beta-300, 
c) H-Ferrierite-20 and d) Si-MCM-48 (Fig. 6, Paper I) 

 

As the results mentioned above, the acidic OH groups in the studied zeolites were completely 

neutralized after the potentiometric titration. Although a small amount of aluminum and silicon 

were found to leach out from the zeolite during the titration, the structures of the titrated zeolites 

are still maintained. This is also indicating that the titrant is mainly contributing to the acid-base 

reaction instead of to other unexpected reactions. The Al remains in the titrated zeolites is 

attributed to the tetrahedral framework AlIV. 
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5.2. Synthesis and characterization of polypyrrole/zeolite composites 

5.2.1. Chemical synthesis and characterization of polypyrrole/zeolite composites 

In this thesis work, the polypyrrole/zeolite (PPy/zeolite) composites were first synthesized by 

using chemical polymerization. The protonated form of Beta zeolites with Si/Al ratios of 25, 150 

and 300 were selected as the host materials. Various amounts of pyrrole monomer, 1.0, 2.0 and 

3.0 mL, were polymerized with 1.0 g zeolite powder suspended in 100 mL water. FeCl3 was used 

as the oxidizing agent in the reaction and the exact amount of FeCl3 selected for the reaction can 

be found in Table 1, Paper II. The schematic presentation of the formation of the nanocomposite 

PPy/H-Beta-zeolite is given in Eq. 5, where PPy is doped both with Cl- and the anionic groups 

(SiOAl)- in the zeolite framework. The composites synthesized were filtrated and washed, and are 

denoted as 1, 2, 3 mL PPy/H-Beta zeolites. 

 

H-Beta zeolites belong to microporous materials which have high surface area and micropore 

volume. However, incorporation of PPy significantly decreased their surface area and the 

micropore volume (Table 6). With increasing amount of pyrrole monomer in the synthesis 

reaction, the surface area and the micropore volume of the Beta zeolites decreased. Therefore, the 

channels of H-Beta zeolite are considered to be occupied by PPy and the outer surface of the 

zeolite powder can be regarded to be covered by the PPy layer. 

Also in Table 6, the electrical conductivities of PPy/H-Beta-25, PPy/H-Beta-150 and PPy/H-

Beta-300 are compared with the pristine ones as well as with the PPy(Cl-) which was synthesized 

in the same way. Obviously, the H-Beta zeolite is an insulator. When PPy was introduced into the 

zeolite framework, the conductivity of the zeolite was changed from insulator to conductor and 

further to semiconductor. The conductivities of the composites with 1 mL loading are 

approximately the same as the conductivity of PPy(Cl-). Composites with 2 mL loading, however, 

exhibit about ten times higher conductivity, indicating better alignment of the polymer chains in 

Eq. 5 
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the composites than in PPy(Cl-). When the loading is further increased to 3 mL, conductivity 

drops, as can also be seen in 3 mL PPy(Cl-), and such a low electrical conductivity may be e.g. 

due to a high degree of cross linking in the polymer. However, 3 mL PPy/H-Beta composites 

show a much higher conductivity than those of 3 mL PPy(Cl-). This may be due to the well-

ordered framework structure of the zeolites, where PPy is located inside or on the surface, 

thereby decreasing the cross-linking of the PPy chain. 

With the same loading amount of pyrrole monomer, PPy/H-Beta-300 composite exhibits slightly 

lower electrical conductivity than the composites with H-Beta-25 and H-Beta-150, indicating that 

a high Si/Al ratio of the host zeolite seems to have a negative effect on the electrical conductivity 

of the polymer/zeolite composite. 

Table 6 Surface area, micropore volume and electrical conductivity of pristine H-Beta zeolites, 
the PPy/H-Beta composites and the PPy(Cl-) (Table 2, Paper II) 

Sample Surface area 
(m2/g) 

Micropore volume 
(× 10-3 cm3/g) 

Conductivity 
(S/cm) 

H-Beta-25 520 185 5.4ൈ10-9 
1 mL PPy/H-Beta-25 94 33 8.2ൈ10-1 
2 mL PPy/H-Beta-25 45 16 1.2ൈ100 
3 mL PPy/H-Beta-25 25 9 2.0ൈ10-1 

H-Beta-150 509 181 5.0ൈ10-9 
1 mL PPy/H-Beta-150 134 48 1.3ൈ100 
2 mL PPy/H-Beta-150 21 6 1.1ൈ100 
3 mL PPy/H-Beta-150 28 6 1.4ൈ10-2 

H-Beta-300 460 163 7.1ൈ10-9 
1 mL PPy/H-Beta-300 52 19 6.7ൈ10-1 
2 mL PPy/H-Beta-300 24 9 7.7ൈ10-1 
3 mL PPy/H-Beta-300 26 9 6.2ൈ10-6 

1 mL pure PPy(Cl-)   9.7ൈ10-1 
2 mL pure PPy(Cl-)   1.0ൈ10-1 
3 mL pure PPy(Cl-)   6.1ൈ10-8 

 

The distribution of PPy in the host zeolite was studied by Transmission Electron Microscopy 

(TEM). The channels in the H-Beta-25 structure are observed in Fig. 19a, and the morphology of 

the PPy/H-Beta-25 composite with different magnifications is shown in Fig. 19b and c. No 

separate zeolite nanoparticles or separate PPy clusters are observable, but the host zeolite 

nanoparticles are rather entrapped inside the PPy clusters. The black dots, marked by the arrows 
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in Fig. 19c and d, belong to the PPy chains that may have been formed inside the channels of H-

Beta-25. Furthermore, the decreased surface area and the micropore volume obtained for PPy/H-

Beta-25, PPy/H-Beta-150 and PPy/H-Beta-300 compared with pristine H-Beta-25, H-Beta-150 

and H-Beta-300 (Table 6) can be taken as a confirmation of the formation of PPy in the channels 

of the H-Beta zeolites. In addition, the well-ordered uniform porous structure indicates that 

introduction of PPy into the channels will not destroy the zeolite structure. 

 

 

 

 

 

 

 

 

 

Fig. 19 Transmission electron micrographs of a) H-Beta-25, b), c) and d) 1 mL PPy/H-Beta-25 
composite (Fig. 3, Paper II) 
 

5.2.2. Electrochemical synthesis and characterization of polypyrrole/zeolite composites 

In addition to chemical synthesis, polypyrrole/zeolite (PPy/zeolite) composites were also 

obtained by using electrochemical polymerization. Potential cycling as well as the method of 

constant potential were used for electrodeposition. It was, however, found that the PPy/zeolite 

composites can only be obtained by applying a constant potential to the electrode. The protonated 

form of Beta zeolites with SiO2/Al2O3 ratios of 25 and 300 and Y zeolites with SiO2/Al2O3 ratios 

of 12 and 80 were used for this research. The reaction was performed in aqueous solution 
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containing pyrrole monomer and zeolite powders. The anionic groups in the zeolites framework 

functioned as the counter ions for PPy, as indicated in Eq. 6.  

 

Prior to the electrochemical synthesis, the concentrations and the protonation constants of the 

anionic groups in these zeolites were determined by potentiometric titration and the Gran method. 

The titration curves have been shown in Fig. 15b. From the results one can find that Beta and Y 

zeolites contain various anionic groups and, thus, influence the electrochemical properties of the 

PPy/zeolite composite. 

The electrochemical behaviors of PPy/zeolite composites deposited on platinum (Pt) were studied 

by cyclic voltammetry in 0.1 M NaCl electrolyte solution containing 1 mM Ru(NH3)6Cl3 as redox 

couple. The obtained cyclic voltammograms were compared with that of PPy doped with chloride 

(PPy(Cl-)) and the bare Pt electrode. The cyclic voltammograms of the redox system 

[Ru(NH3)6]2+/[Ru(NH3)6]3+ in Fig. 20 show well-developed redox peaks at all electrodes under 

investigation. The peak separation ∆ܧ௉ (difference between oxidation and reduction peak) of the 

redox couple at the PPy/H-Beta-25, PPy/H-12, and PPy/H-Y-80 composite electrodes are 

approximately the same. However, at the PPy/H-Beta-300, the ∆ܧ௉  is three times larger 

indicating a slow electron transfer at that substrate. The PPy/H-Beta-300 composite contains also 

the lowest amount of PPy, which definitely affects the electrochemical behavior of the redox 

couple at that substrate. In addition, the cyclic voltammograms in Fig. 20 clearly show that the 

charge transfer reaction combined with the redox couple during potential cycling takes place at 

the surface of the composite and not at the underlying Pt substrate indicating a full coverage of 

the Pt substrate by the composites. 

 
 
 
 
 

Eq. 6 
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Fig. 20 Cyclic voltammograms of a) PPy(Cl-) and b) Bare Pt electrode, c) PPy/zeolite composite 
films on Pt electrode in 1 mM Ru(NH3)63+ and 0.1 M NaCl solution in the potential range -0.7 to 
+0.8 V with scan rate of 5 mV/s (Fig. 5, Paper III) 
 

The electrochemical behavior of the PPy/zeolite composites synthesized on indium tin oxide 

glass (ITO) were characterized in 0.1 M NaCl solution and the cyclic voltammograms are shown 

in Fig. 21. The following reaction (Eq. 7) may be proposed to describe the electrochemical 

behavior of PPy/zeolite composites, i.e. the doping/dedoping reaction: 

 

 

where PPyାeି denotes the electrically neutral polymer. Z- is the anionic group in the zeolite 

framework and C+ is a cation required to balance the electroneutrality. Z- is immobile and the 

electron transfer is balanced by the movement of the cation C+. 

Eq. 7 
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As can be seen in Fig. 21, PPy/H-Beta composites show cyclic voltammograms that are very 

similar to PPy(Cl-) in the same electrolyte. The PPy/H-Y composites, however, show outdrawn 

cyclic voltammograms indicating a slow electron transfer during the redox reaction of the 

polymer. 

 

 

 

 

 

 

 

 

 
Fig. 21 Cyclic voltammograms of a) PPy/H-Beta-25, b) PPy/H-Beta-300, c) PPy/H-Y-12 and d) 
PPy/H-Y-80 composite films on ITO electrode in 0.1 M NaCl solution at potential range -0.85 to 
+0.7 V with scan rates of 5, 50, 100, 200 and 250 mV s-1 (Fig. 3, Paper III) 
 

The morphology of the PPy/zeolite composites and PPy(Cl-) synthesized on the Pt electrode as 

well as the host zeolites were observed with scanning electron microscopy (SEM). The images of 

PPy(Cl-) and the H-Y-12 zeolite, together with the composite PPy/H-Y-12, are shown in Fig. 22. 

Typical images for PPy(Cl-) and the H-Y-12 zeolite can be seen in Fig. 22a and Fig. 22b, 

respectively. Fig. 22c shows that the PPy/H-Y-12 composite film is composed of zeolite particles 

and PPy. The zeolite particles are observable on the surface of the composite but are obviously 

also embedded in the layer of PPy, resulting in an uneven surface of the composite. A 

magnification image of PPy/H-Y-12 composite (Fig. 22d) indicates that zeolite particles are 

covered by PPy. 
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Fig. 22 Scanning electron micrographs of a) PPy(Cl-) film (200 nm), b) H-Y-12 zeolite (200 nm), 
c) PPy/H-Y-12 (10 μm) and d) PPy/H-Y-12 (200 nm) composite film synthesized on Pt electrode 
by constant potential method (Fig. 7, Paper III)  
 

The thickness of the PPy/zeolite composite films deposited on the ITO substrate was measured 

by SEM as well. The cross-section images of the composite films are shown in Fig. 23. A distinct 

layer of the composite, marked with a green line, is evident in each micrograph. It can clearly be 

seen that the zeolite particles are not only present on the surface of the composite film but also 

embedded in the PPy. Due to the fact that the anionic groups in the zeolite functioned as counter 

ion during electropolymerization, PPy was thus formed on the zeolite particles. The film 

thickness decreases in the sequence of PPy/H-Y-12 (1720 nm) > PPy/H-Beta-25 (840 nm) > 

PPy/H-Y-80 (410 nm) > PPy/H-Beta-300 (150 nm). The charges consumed in the polymerization 

reaction, naturally, also follow the same sequence: PPy/H-Y-12 (351 mC)>PPy/H-Beta-25 (215 

mC) > PPy/H-Y-80 (86 mC) > PPy/H-Beta-300 (42 mC). Since each composite was prepared 

with exactly the same reaction parameters, i.e. the applied potential, reaction time and particle 

size of zeolite, the sequence is determined by the concentration of the anionic groups of the host 

zeolite (see Table 2 in Paper III). This indicates that the electropolymerization of PPy 
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propagated more efficiently with the zeolite which contains higher concentration of anionic 

groups, and therefore generating a thicker composite film. However, the magnitudes of the 

recorded currents (Fig. 21) show that the electropolymerization did not follow the patterns of the 

thickness of the composite film PPy/H-Y-12 > PPy/H-Beta-25 > PPy/H-Beta-300 > PPy/H-Y-80, 

indicating that the physical-chemical and structural properties of the host zeolite also influenced 

the electrochemical behavior of the PPy/zeolite composite. 

 

 

 

 

 

 

 

 

 

 
Fig. 23 Scanning electron micrographs of the cross-section of a) PPy/H-Beta-25 (200 nm), b) 
PPy/H-Beta-300 (200 nm), c) PPy/H-Y-12 (1 μm) and d) PPy/H-Y-80 (200 nm) composite film 
synthesized on ITO electrode by constant potential method. The film is marked with the green 
line (Fig. 6, Paper III) 
 

The FTIR-ATR reflection spectrum in the region from 1800 to 700 cm-1 for PPy(Cl-) and the 

PPy/zeolite composites on Pt substrate, and also the spectrum of the pristine zeolites are shown in 

Fig. 24. In the H-Beta-25 zeolite spectrum in Fig. 24a, the peaks at 1228, 1068 and 796 cm-1 are 

assigned to the typical asymmetric and symmetric Si-O stretching vibrations [109]. On the other 

hand, the spectrum of PPy(Cl-) exhibits the characteristic absorption band of PPy at 1505 cm-1 (C-

C and C=C stretching vibrations), 1408 cm-1 (C-N stretching vibration), 1255 cm-1 (C-H or C-N 

in-plane vibration) and 1073 cm-1 (C-H and N-H in-plane deformation vibrations) [110, 111]. 
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These typical spectral features of PPy are also observable in the spectrum of the PPy/H-Beta-25 

composite at slightly higher wavenumbers 1569, 1463, 1285 and 1078 cm-1. Generally, the C-C 

band tends to shift to lower wavenumber as the conjugated length of the polymer is increased 

[112]. Thus, the conjugation length in the PPy/H-Beta-25 composite can be considered to be 

shorter than those in the PPy(Cl-). In addition, the absorption peaks at 1220 and 795 cm-1 of the 

composite spectrum are attributed to the Si-O band from H-Beta-25 and another Si-O band at 

1068 cm-1 is overlapping with the C-H and N-H in-plane deformation vibrations (1073 cm-1) of 

PPy. In the case of the PPy/H-Beta-300, PPy/H-Y-12 and PPy/H-Y-80 composites, both PPy 

bands and the bands of the zeolite can be observed in their respective FTIR-ATR reflection 

spectra. However, the various anionic groups present in the different zeolites cause the observed 

shift differences in the PPy absorption peaks. 

 

 

 

 

 

 

 

 

 

 

Fig. 24 FTIR-ATR spectra of a) PPy/H-Beta-25 composite, b) PPy/H-Beta-300 composite, c) 
PPy/H-Y-12 composite and d) PPy/H-Y-80 composite synthesized on Pt substrate (Fig. 10, 
Paper III) 
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5.3. Polypyrrole/zeolite composites as the solid contact in potassium ion-selective electrode 

The polypyrrole/zeolite (PPy/zeolite) composites electrodeposited on the Pt substrate were 

applied and tested as the solid contact (SC) in a potassium ion-selective electrode (K+-ISE). The 

selected host zeolites for PPy in this research include H-ZSM-5-23, H-ZSM-5-80 and H-ZSM-5-

280. Polypyrrole/H-ZSM-5 solid-state potassium ion-selective electrodes were prepared by 

adding 40 µl of the potassium ion-selective-membrane (ISM) cocktail on the top of the 

composite. 

The impedance measurements for the PPy(Cl-) and PPy/H-ZSM-5 composites were performed at 

the open-circuit dc-potential in 0.1 M KCl solution (frequency range = 10 mHz ‒ 100 kHz, ∆ܧ௔௖ 

= 5 mV). As shown in Fig. 25, the imaginary part of the impedance (-Z´´) at low frequencies is ca 

four times higher in the spectrum of the PPy/zeolite composites film than in the spectrum of the 

PPy(Cl-) film, indicating that the redox capacitance of the composites is ca four times lower than 

that of PPy(Cl-). The inset window in Fig. 25 shows the high-frequency part of the impedance 

spectra of the PPy(Cl-) and the composite films, indicating that the PPy/zeolite composites have a 

higher resistance than PPy(Cl-). The poor redox capacitance and conductivity of the PPy/zeolite 

is obviously due to the insulating property and porosity of the zeolites, which decrease the 

electron/hole movement in such materials. The resistance of the composites increases in the order 

of PPy/H-ZSM-5-23 ൏ PPy/H-ZSM-5-80 ൏ PPy/H-ZSM-5-280, meaning that the zeolite which 

contains higher concentration of anionic groups can attract more PPy deposit on its framework 

and, thus, increase the conductivity of the composite. 

 

 

 

 

 



44 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 25 Impedance spectra of PPy(Cl-) and PPy/zeolite film recorded at the open-circuit dc-
potential in 0.1 M KCl solution, frequency range = 10 mHz ‒ 100 kHz, ΔEac = 5 mV (Fig. 6, 
Paper IV) 
 

A thin aqueous layer may be formed at the interface between the ISM and the SC regardless of 

the construction process, and thus counteract all the benefits of the SC [113]. Pretsch et al. 

proposed the potentiometric aqueous layer test to investigate the accumulation of such a layer 

[114]. In this research, all the electrodes were first exposed to a relatively high concentration (0.1 

M) of the primary ion (K+) for 1 hour, then to the same concentration of the interfering ion (Na+) 

for 4 hours, and finally back to the primary ion solution for 4 hours. As can be seen in Fig. 26, the 

four prepared K+-SC-ISEs show only a slight positive potential drift in the interfering ion (Na+) 

solution and also when switched to the primary ion (K+) solution, indicating that no aqueous 

layer was formed in the test. This implies that the PPy/zeolite composite has a similar 

hydrophobicity as PPy(Cl-). Hence, the hydrophobicity of the composite is determined mainly by 

PPy, rather than by the zeolite. 
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Fig. 26 Potentiometric aqueous layer test of a) PPy(Cl-), b) PPy/H-ZSM-5-23, c) PPy/H-ZSM-5-
80 and d) PPy/H-ZSM-5-280 based K+-ISEs (Fig. 8, Paper IV) 
 

After equilibration in 10-3 M KCl solution for 2 days, the PPy(Cl-) and PPy/zeolite composite-

based K+-ISEs were calibrated in 10-2 ‒ 10-7 M KCl solutions then back to 10-2 M. The obtained 

calibration curves are marked with A in Fig. 27. The low detection limit was determined by the 

intersection point of the extrapolated linear range and low concentration level segments of the 

calibration plot (IUPAC Recommendations) [115]. All the electrodes are sensitive to potassium 

ion with linear response in the activity range of 10-2 – 10-5 M. The slopes of the linear part on the 

calibration curves are 52.3 ± 0.3, 54.2 ± 0.4, 51.4 ± 0.2 and 52.8 ± 0.5 mV/decade for PPy(Cl-), 

PPy/H-ZSM-5-23, PPy/H-ZSM-5-80 and PPy/H-ZSM-5-280 based ISEs, respectively. The 

estimated low detection limit of the electrodes for K+ ion is in the following order: PPy(Cl-) ((6.3 

± 0.7) × 10-6 M) < PPy/H-ZSM-5-23 ((7.1 ± 0.5) × 10-6 M) < PPy/H-ZSM-5-280 ((8.9 ± 0.9) × 

10-6 M) < PPy/H-ZSM-5-80 ((9.7 ± 0.8) × 10-6 M). The standard deviation of the standard 
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potential values (E0) of the K+-ISE for PPy(Cl-) is ±2.2 mV, PPy/H-ZSM-5-23 is ±5.6 mV, 

PPy/H-ZSM-5-80 is ±10.6 mV, and PPy/H-ZSM-5-280 is ±17.7 mV. 

After being conditioned in 10-3 M KCl solution for an additional 6 days, the same electrodes were 

calibrated again in the same way. The obtained calibration curves are marked with B in Fig. 27. 

As can be seen, the potentials of these electrodes were shifted to more positive values, which is 

39 mV for PPy(Cl-), 45 mV for PPy/H-ZSM-5-23, 46 mV for PPy/H-ZSM-5-80 and 45 mV for 

PPy/H-ZSM-5-280. PPy(Cl-)-ISE exhibits the same linear activity range of 10-2 – 10-5 M. 

However, the PPy/zeolite-based ISEs show a linear response to K+ in a broader activity range, i.e. 

10-2 – 10-6 M. The slopes of the new linear part of the composite-based ISEs are 53.1 ± 0.2 

mV/decade (PPy/H-ZSM-5-23), 52.1 ± 0.3 mV/decade (PPy/H-ZSM-5-80) and 52.7 ± 0.1 

mV/decade (PPy/H-ZSM-5-280). The calculated low detection limit for the K+ ion is as follows: 

PPy/H-ZSM-5-280 (1.0 ± 0.4) × 10-6 M < PPy/H-ZSM-5-80 (1.0 ± 0.6) × 10-6 M < PPy/H-ZSM-

5-23 (2.1 ± 0.3) × 10-6 M < PPy(Cl-) (7.9 ± 0.5) × 10-6 M. The new standard deviation of E0 

values for the electrodes are ±2.0 mV (PPy(Cl-)), ±5.7 mV (PPy/H-ZSM-5-23), ±10.6 mV 

(PPy/H-ZSM-5-23) and ±17.6 mV (PPy/H-ZSM-5-23), respectively. Variations in the standard 

deviation of standard potential values between individual composite based ISEs is obviously due 

to the different zeolites in the composites. PPy/H-ZSM-5-23 has the highest amounts of anionic 

groups, contributing to the lowest standard deviation, whereas PPy/H-ZSM-5-280 contains the 

lowest amounts of anionic groups, contributing to the highest standard deviation. Additionally, 

the anionic groups are not homogeneously distributed in the structure of the zeolite, which may 

influence the PPy growth evenly on the zeolite frameworks, and thus influence the homogeneity 

of the composite and hence the performance of the electrode. 
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Fig. 27 Calibration plots of a) PPy(Cl-), b) PPy/H-ZSM-5-23, c) PPy/H-ZSM-5-80 and d) PPy/H-
ZSM-5-280 base ISEs recorded in 10-2 to 10-7 M KCl solutions and then back to 10-2 M KCl 
solution. The curve marked with A is the calibration plots obtained after conditioning in 10-3 M 
KCl solution for 2 days, and the one with B is after conditioning in 10-3 M KCl for additional 6 
days after the 2 days (Fig. 9, Paper IV) 
 

The impedance spectra of the PPy(Cl-)/ISM and PPy/H-ZSM-5/ISM electrodes were recorded at 

the open-circuit dc-potential in 0.1 M KCl solution (frequency range = 10 mHz ‒ 100 kHz, ∆ܧ௔௖ 

= 5 mV) after the long-term potentiometric test, and the results are compared with the same 

electrodes when they were freshly prepared. As can be seen in Fig. 28, PPy(Cl-)/ISM as well as 

the PPy/H-ZSM-5/ISM electrodes show a high-frequency semicircle (1.1 – 1.5 MΩ), which is 

due to the bulk resistance (in parallel with the geometric capacitance) of the PVC-based ion-

selective membrane placed on top of the solid contact. After the long-term potentiometric test, 

the increase of the bulk resistance of PPy(Cl-)/ISM, PPy/H-ZSM-5-23/ISM, PPy/H-ZSM-5-

80/ISM and PPy/H-ZSM-5-280/ISM is ca 0.20, 0.17, 0.06 and 0.11 MΩ. Such an increase in the 

bulk resistance upon conditioning is common for plasticized PVC-based ion-selective membranes 
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and can be related to e.g. water uptake by the membrane. The high-frequency semicircle is 

followed by a low-frequency tail which can be related to the ion-to-electron transduction process 

at the solid contact [116]. It is particularly interesting to note that the lowest-frequency 

impedance (-Z’’) is lower for all PPy/H-ZSM-5/ISMs compared to the PPy(Cl-)/ISM, although 

the opposite was observed for the bare solid contacts (without ISM) in 0.1 M KCl solution (Fig. 

25). This indicates that the redox capacitance of the PPy/zeolite composites can be better utilized 

than that of PPy(Cl-) when they are coated with a plasticized PVC membrane. 

 

 

 

 

 

 

 

 

 

 
 
 
Fig. 28 Impedance spectra of a) PPy(Cl-)/ISM, b) PPy/H-ZSM-5-23/ISM, c) PPy/H-ZSM-5-
80/ISM and d) PPy/H-ZSM-5-280/ISM. The spectra marked with I were obtained for a freshly 
prepared electrode and II were obtained after the long-term potentiometric test (ca 8 days). The 
spectra were recorded at the open-circuit dc-potential in 0.1 M KCl solution, frequency range = 
10 mHz − 100 kHz, ∆ܧ௔௖ = 5 mV (Fig. 11. Paper IV) 
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6. CONCLUSIONS 
 

In this thesis, a potentiometric titration method was developed to characterize the anionic groups 

in the zeolite framework. These anionic groups functioned as the counter ions for PPy in the 

following chemical and electrochemical synthesis of PPy/zeolite composites. The 

electrodeposited PPy/zeolite films were tested as a solid contact in K+-ISEs. 

Potentiometric titration of zeolites with a strong base in aqueous solutions at room temperature is 

proved to be a useful method to characterize the anionic groups in microporous and mesoporous 

materials. The Brønsted and Lewis acid groups can be distinguished based on the data analysis by 

the Gran method as well as the FITEQL program. The concentrations of the acid groups in the 

zeolite frameworks, determined by potentiometric titration, are much higher than when 

determined with the FTIR-pyridine method. The higher concentrations observed are attributed to 

the small size of the OH- ions used in the potentiometric titration. These small ions can penetrate 

deep into the zeolite channels and therefore the acid groups even in those channels can be 

determined. Although small amounts of aluminum and silicon were found to break away from the 

studied zeolite during titration, the basic frameworks of the titrated zeolites were still maintained. 

The Al remains in the titrated zeolites are attributed to the tetrahedral framework AlIV. 

According to the chemically prepared PPy/H-Beta composites, the decreased surface area and 

micropore volume of H-Beta zeolites is due to the PPy formed inside the zeolite channels as well 

as on the surface of the zeolite particles. However, the zeolite framework is maintained in the 

synthesis reaction. The surface area of the composite can be modified from hundreds of m2/g to 

tens of m2/g by varying the loaded amount of PPy to the zeolite structure. The absorption peaks 

in the FTIR spectrum of the PPy(Cl-) are also observed in the spectrum of the PPy/H-Beta zeolite 

composites but at slightly lower wavenumbers. The increase in the conductivities of PPy/zeolite 

compared with PPy(Cl-) may be attributed to the enhanced alignment of the polymer chains on 

the well-ordered zeolite framework. A high SiO2/Al2O3 ratio, i.e. low concentration of Brønsted 

acid groups of the host zeolite, seems to have a negative effect on the electrical conductivity of 

the polymer/zeolite composite. 
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During the electrochemical synthesis of PPy/zeolites composites, the anionic groups in the zeolite 

framework functioned as the counter ions for PPy. All the composites deposited on the Pt 

electrode exhibited well-defined voltammetric responses for the redox system of 

[Ru(NH3)6]2+/[Ru(NH3)6]3+, indicating a full coverage of the Pt substrate by the composite. 

Variations in the cyclic voltammograms of the different composites can be related to the different 

concentrations of the anionic groups and also the structural properties of the host zeolites. 

PPy/zeolite composite films had an uneven surface which was composed of PPy and zeolite 

particles. The thickness of the composite film depended on the concentration of the anionic 

groups in the host zeolite, i.e. the polymerization of pyrrole propagated more efficiently with the 

zeolites that contained more anionic groups. PPy was formed on the particle surface and also in 

the channels of the zeolite, and this process did not influence the zeolite framework. 

Although the H-ZSM-5 zeolites are known to be hydrophobic materials, the hydrophobicity of 

the PPy/H-ZSM-5 composite was determined mainly by PPy. There was no aqueous layer formed 

between the composite film and the ISM even when the membrane has notoriously high water 

uptake behavior. All the K+-ISEs using PPy/H-ZSM-5 as SC were sensitive to K+ in the 

concentration range 10-2 – 10-5 M with sub-Nernstian slopes. Compared with the PPy(Cl-)-based 

ISE, the detection limits of the PPy/H-ZSM-5-ISEs were found to be enhanced with an additional 

6 days conditioning in 10-3 M KCl solution. The standard deviation of the E0 value of the 

composite ISE increased as the acidity of the combined zeolite decreased. Importantly, 

impedance spectra showed that the redox capacitance of the PPy/zeolite composite was better 

utilized than that of PPy(Cl-) after they were coated with a plasticized PVC membrane. 
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SUPPLEMENTARY INFORMATION 
 

Derivation of a linear potentiometric titration curve 
Strong acid–strong base 

A strong acid HRis completely dissociated:  

ܴܪ → ାܪ ൅ ܴି                                      (S1) 

and the total concentration of the acid HRC is: 

ுோܥ ൌ ሾܪାሿ                                             (S2)  

The titration reaction can be described by the following equation: 

ାܪ ൅ ିܪܱ →  ଶܱ                                  (S3)ܪ

The initial volume of the acid is ଴ܸ, the volume of added base is ܸ and its concentration ܥைு. At 

each titration point the following mass balance is valid: 

଴ܸܥுோ ൌ ሾܪାሿ ∙ ሺ ଴ܸ ൅ ܸሻ ൅ ܸ ∙  ைு        (S4)ܥ

If the consumption of the strong base at the equivalence point is denoted by ௘ܸ௤ the following 

equation is valid at the equivalence point: 

଴ܸ ∙ ுோܥ ൌ ௘ܸ௤ ∙  ைு                                 (S5)ܥ

Combination of equations S4 and S5 gives: 

௘ܸ௤ െ ܸ ൌ
ሺ௏బା௏ሻ

஼ೀಹ
∙ ሾܪାሿ                            (S6) 

When ሺ௏బା௏ሻ
஼ೀಹ

∙ ሾܪାሿ is plotted as a function of 	ܸ a straight line is obtained intersecting the ܸ-axis 

at ௘ܸ௤. Equation (S6) is valid for the titration points before the equivalence point. With the same 

analogy, the equation valid for points after the equivalence point can be derived: 

ܸ െ ௘ܸ௤ ൌ
ሺ௏బା௏ሻ

஼ೀಹ
∙ ሾܱିܪሿ                          (S7) 

If the titration data from a potentiometric titration of strong acid with strong base is evaluated two 

straight lines will be obtained intersecting each other on the ܸ-axis at the equivalence point ௘ܸ௤. 
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Weak acid–strong base 

When a weak acid ܴܪ is titrated with a strong base the following reaction takes place: 

ܴܪ ൅ ିܪܱ → ܴି ൅  ଶܱ                       (S8)ܪ

The acid takes also part in the following equilibrium: 

ܴܪ ⇌ ାܪ ൅ ܴି                                      (S9) 

with the protonation constant:  

ܭ ൌ
ሾுோሿ

ሾுశሿሾோషሿ
                                            (S10) 

The total concentration of the acid, ܥுோ, is: 

ுோܥ ൌ ሾܴܪሿ ൅ ሾܴିሿ                              (S11) 

The following mass balance is valid at each titration point: 

଴ܸ ∙ ுோܥ ൌ ሺ ଴ܸ ൅ ܸሻ ∙ ሺሾܴܪሿ ൅ ሾܴିሿሻ   (S12) 

and according to reaction (S8) the following equation can be written after each addition of the 

strong base: 

଴ܸ ∙ ுோܥ ൌ ሺ ଴ܸ ൅ ܸሻ ∙ ሾܴିሿ                    (S13) 

Combination of equations (S10), (S12), (S13) and (S5) gives: 

௘ܸ௤ െ ܸ ൌ ܭ ∙ ሾܪାሿ ∙ ܸ                          (S14) 

When the term ሾܪାሿ ∙ ܸ is plotted as a function of 	ܸ a straight line is obtained and it intersects 

the ܸ-axis at ௘ܸ௤. The slope of the line is ଵ
௄

. This method allows simultaneous determination of 

both ௘ܸ௤ and ܭ. It should be pointed out that equation (S14) is valid so far the acid HR does not 

take part in any other equilibrium reaction than (S9). When the material, as zeolites in this study, 

having several acid groups with different strengths is titrated, the entire titration curve when 

processed with the equation (S14) will consists of linear sections with different slopes, i.e. ܭ. 

When one linear section is converted to the following some curvature will appear on the line. In 

the evaluation of the titration values for both ௘ܸ௤ and ܭ, and for each equilibrium only the linear 

parts should be used. 
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