
O
tto N

issfolk 
B

inary Q
uadratic O

ptim
ization 

2016

 
Binary Quadratic Optimization

Otto Nissfolk

PhD Thesis in Process Design and Systems Engineering
Faculty of Science and Engineering

Åbo Akademi University

Åbo, Finland 2016

ISBN 978-952-12-3366-1

Painosalama Oy
Åbo 2016



Binary Quadratic Optimization

Otto Nissfolk

PhD Thesis in Process Design and Systems Engineering
Faculty of Science and Engineering

Åbo Akademi University

Åbo, Finland 2016



ISBN 978-952-12-3366-1
Painosalama Oy

Åbo 2016



Preface

The work on this thesis began in April 2010 when I started my Master’s Thesis. I officially
began my PhD research in November 2010 at the Center of Excellence in Optimization
and Systems Engineering at Åbo Akademi University. I am very grateful for all help I
have gotten from my adviser, professor Tapio Westerlund. A big thank you goes to Ray
Pörn, without your mathematical understanding and formulations that you have tried to
explain to me this thesis would not exist. Thank you Axel Nyberg for your comments on
my thesis, they have been of much help. I also want to thank everyone at the Process
Design and Systems Engineering Laboratory for a great working/coffee environment. I
also want to thank all the followers of the "Matdiktator", for our wonderful and often
long lunches, I do not know how I would have finished this thesis without you. Finally, I
want to thank Jonna for always being there for me.

Åbo, June 2016
Otto Nissfolk





Contribution of the author

Paper I: The Coulomb Glass - Modeling and Computational Experience with a Large
Scale 0-1 QP Problem
Paper I is written by Ray Pörn and I am responsible for the optimization and result
presentation. Other co-authors are Fredrik Jansson and Tapio Westerlund. In this paper
the 0-1 formulation for the Coulomb glass problem is introduced.

Paper II: A Mixed Integer Quadratic Reformulation of the Quadratic Assignment
Problem with Rank-1 Matrix
Paper II is written by me and I am responsible for implementing the models and solving
of the optimization problem. The co-authors are Ray Pörn, Tapio Westerlund and Fredrik
Jansson. In this paper we introduce a formulation for Rank-1 QAP problems.

Paper III: A Metaheuristic Optimization Algorithm for Binary Quadratic Problems
Paper III is written by me with guidance from my supervisor Tapio Westerlund. In this
paper we tried a new metaheuristic method in order to acquire good solutions to binary
quadratic problems.

Paper IV: Reformulation of 0-1 Quadratic Programs using Non-diagonal Perturba-
tions
Paper IV is mainly written by Ray Pörn and I am responsible for the implementation of
the mathematical models, the optimization and the presentation of the results. Other
co-authors are Anders Skjäl and Tapio Westerlund.

Paper V: Testing the non-diagonal quadratic convex reformulation technique
Paper V is written by me and I am responsible for the implementations as well as the
computations. The mathematical background and formulations are from Papers II and IV.
The co-authors are Ray Pörn and Tapio Westerlund. In this paper we test how different
numbers of non-diagonal elements included in the NDQCR affect the solution times.





Svensk sammanfattning

Optimering är ett viktigt verktyg vid beslutsfattande och speciellt då man undersöker
och förbättrar produktionen i en fabrik. Matematiskt inbegriper lösningen av ett opti-
meringsproblem att hitta den bästa lösningen av alla tillåtna lösningar till problemställ-
ningen. Ett optimeringsproblem består av en objektsfunktion, variabler och bivillkor.
Objektsfunktionen är ett matematiskt uttryck vilket man vanligen vill minimera eller
maximera. Till exempel inom en fabrik vill man maximera vinsten eller minimera pro-
duktionskostnader. Variablerna beskriver till exempel hur mycket av en viss sorts resurs
som behövs eller hur mycket tid som går åt i olika produktionssteg. Binära variabler kan
vara beslutsvariabler som till exempel bestämmer ifall en fabrik skall placeras på en ort
eller inte. Bivillkorena är funktioner som begränsar de tillåtna värdena för variablerna,
till exempel att mängden använda resurser inte kan överstiga mängden tillgängliga
resurser.

Denna doktorsavhandling är baserad på de fem artiklar som finns bifogade i slutet
av avhandlingen. Avhandlingens huvudtema är binärkvadratisk optimering. Det vill
säga att objektfunktionen innehåller kvadratiska och bilinjära delar samt linjära delar.
Huvudproblemet som granskats är Coulombglas-problemet. Coulombglas är en modell
för en lätt dopad halvledare vid mycket låga temperaturer (några K) där elektronerna
är belägna på vissa orenheter och elektronerna växelverkar kraftigt med varandra.
Optimeringsproblemet är att placera ut elektronerna för att minimera totalenergin
för systemet och då hitta grundtillståndet för materialet. En uppsättning testproblem
med koppling till digital färganalys som jag även undersökt är de så kallade taixxxc
problemen. Dessa så kallade gråskalaproblem är problemställningar där man har ett
rutmönster och skall fylla en del av rutorna med svart färg och en del med vit färg, målet
är att den gråa färg som ögat uppfattar skall vara så jämn som möjligt.
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CHAPTER 1
Introduction

Optimization is an important activity in decision making, in analyzing and in improving
production in a factory. In mathematical terms, an optimization problem is the problem
of finding the best solution out of all feasible solutions. An optimization problem
consists of an objective function, variables and constraints. The objective function
is a mathematical function expressing what we want to maximize or minimize. For
example, in manufacturing we may want to maximize the profits or minimize the cost
of production. The variables can express how much resources are needed or the time
spent in various production steps. Binary variables can be decision variables expressing
whether a factory should be built at a location or not. The constraints are functions that
define the boundaries for the variables, e.g. the amount of resources used cannot exceed
the available resources.

1.1 Optimization

In order to solve a problem to optimality, the problem often needs to be convex, that
means that a local minimum is also the global one. If the problem is not convex it can be
convexified. In this thesis, we work with quadratic problems and in order to obtain a
convex problem the quadratic matrix needs to be positive-semidefinite, that is that all
eigenvalues of the matrix are in the positive half-space of the complex plane.

If the optimal solution cannot be obtained we can still obtain indications on how
good the solution is with a upper bound (UB) and a lower bound (LB). A upper bound
is a solution that fulfills all constraints and is therefore a feasible solution. The lower
bound is a relaxed solution where some of the constraints may not be active. When the
upper and the lower bound are alike, the problem is solved to optimality. The gap is a
measure of the quality of the solution, it is calculated as:

gap =
UB−LB
UB

∗ 100%.
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2 CHAPTER 1. INTRODUCTION

A linear program (LP) is a problem formulation including only continuous variables
and linear constraints. When introducing integer variables, the problem goes from LP to
mixed integer linear programming (MILP). If there are quadratic terms in the objective
function, the problem is called quadratic program (QP) and if there are as well quadratic
constraints, it is a quadratically constrained quadratic program (QCQP).

One can use heuristic methods in order to obtain good solutions in a short amount of
time. However, the solution is neither guaranteed to be the optimal solution, nor can any
bounds for the solution be obtained.

1.2 Scope of work

This thesis is about new convexification and solution methods for binary quadratic prob-
lems. This thesis is organized as follows: In chapter 2, binary quadratic programming
is introduced. In chapter 3, the relaxation and convexification using Quadratic Convex
Reformulation and Non-Diagonal Quadratic Convex Reformulation is described. In
chapter 4, the main problem looked at, the Coulomb glass problem, is presented. In
chapter 5, the connection to a special case of Quadratic Assignment Problem is presented.
In chapter 6, the contents of my papers and the main ideas are summarized. Chapter 7
concludes this thesis.

1.3 List of publications

This thesis is based on the following papers:

• Paper I: Ray Pörn, Otto Nissfolk, Fredrik Jansson and Tapio Westerlund. The
coulomb glass - modeling and computational experience with a large scale 0-1 QP
problem. 21st European Symposium on Computer Aided Process Engineering,
volume 29 of Computer Aided Chemical Engineering, pages 658-662. Elsevier,
2011. doi: http://dx.doi.org/10.1016/B978-0-444-53711-9.50132-2

• Paper II: Otto Nissfolk, Ray Pörn, Tapio Westerlund and Fredrik Jansson. A mixed
integer quadratic reformulation of the quadratic assignment problem with rank-1
matrix. 11th International Symposium on Process Systems Engineering, volume
31 of Computer Aided Chemical Engineering, pages 360-364. Elsevier, 2012. doi:
http://dx.doi.org/10.1016/B978-0-444-59507-2.50064-0

• Paper III: Otto Nissfolk and Tapio Westerlund. A metaheuristic optimization
algorithm for binary quadratic problems. 23rd European Symposium on Computer
Aided Process Engineering, volume 32 of Computer Aided Chemical Engineering,
pages 469-474. Elsevier, 2013. doi: http://dx.doi.org/10.1016/B978-0-444-63234-
0.50079-8

• Paper IV: Ray Pörn, Otto Nissfolk, Anders Skjäl and Tapio Westerlund. Reformula-
tion of 0-1 quadratic programs using non-diagonal perturbations. Submitted to
Journal of Optimization Theory and Applications, February 2016.
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• Paper V: Otto Nissfolk, Ray Pörn and Tapio Westerlund. Testing the Non-Diagonal
Quadratic Convex Reformulation Technique. Accepted to 26th European Sympo-
sium on Computer Aided Process Engineering.





CHAPTER 2
Binary Quadratic Programming

Quadratic Programming (QP) is the optimization of a quadratic objective function (e.g.
6x2

1 + 3x2
2 − 5x1x2 + 7x3) subject to linear constraints. The quadratic objective function

means that it can include squared, bi-linear and linear terms. The quadratic program
can be represented as:

minimize
1
2
xTQx+ cT x,

subject to Ax = a,

Bx ≤ b, x ∈ Rn,

(2.1)

where Q is a symmetric n×n matrix, A an m×n matrix, c an n-dimensional vector, a
an m-dimensional vector and x is an n-dimensional vector with variables. The example
problem would be:

min
1
2

(x1 x2 x3

)
12 −5 0
−5 6 0
0 0 0



x1
x2
x3


+

(
0 0 7

)
x1
x2
x3

 .
Binary Quadratic Programming (BQP) is a QP with binary variables. A general binary

quadratic programming problem can be written as follows:

minimize
1
2
xTQx+ cT x,

subject to Ax = a,

Bx ≤ b,

x ∈ {0,1}n,

(2.2)

the dimensions are the same as the corresponding matrices and vectors in formulation
2.1.
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CHAPTER 3
Quadratic Convex Reformulation

and Non-Diagonal Quadratic
Convex Reformulation

Ji et al. [2013] introduced a variant of the QCR that included non-diagonal elements.
Ji et al. did not name the method, so we named it Non-Diagonal Quadratic Convex
Reformulation (NDQCR). NDQCR can be used to convexify 0-1 QP problems. A general
BQP is given by:

minimize xTQx+ cT x,

subject to Ax = a,

Bx ≤ b,

x ∈ {0,1}.

(3.1)

The standard semidefinite relaxation of the problem 3.1 is:

minimize Q •X+ cT x,

subject to Ax = a,

Bx ≤ b,

diag(X) = x,[
1 xT

x X

]
� 0,

x ∈ Rn,X ∈ Sn,

(3.2)

where Q •X denotes the scalar product of the matrices i.e. the sum of the products of
the corresponding elements in the matrices Q and X respectively. � 0 indicate that the
matrix on the left hand side should be positive semidefinite. The 3.2 formulation can

7
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CHAPTER 3. QUADRATIC CONVEX REFORMULATION AND NON-DIAGONAL QUADRATIC

CONVEX REFORMULATION

be strengthened by adding squared norm constraints [Faye and Roupin, 2007] and RLT
inequalities [Roupin, 2004] to the formulation. These constraints are given by:

‖Ax− a‖2 = xTATAx− 2aT Ax︸︷︷︸
a

+aT a = xTATAx− aT a = 0,

and
xixj ≤ xi ∀ i , j,

xixj ≤ xj ∀ i , j,

xixj ≥ xi + xj − 1 ∀ i , j,

xixj ≥ 0 ∀ i , j.

(RLT)

The formulation has the following form:

min xTQx+ cT x,

s.t. Ax = a,

Bx ≤ b,

xTATAx = aT a,

xixj ≥ xi + xj − 1 ∀ i , j,

xixj ≥ 0 ∀ i , j,

xixj ≤ xi ∀ i , j,

xixj ≤ xj ∀ i , j,

x ∈ {0,1} .

(3.3)

The NDQCR strengthened semidefinite relaxation of the problem is

min Q •X+ cT x,

s.t. Ax = a, : λ

Bx ≤ b, : µ

x2
i = xi ∀ i, : δ

diag(X) = x,

ATA •X = aT a, : α

Xij ≥ 0 ∀ i , j, : S

Xij ≥ xi + xj − 1 ∀ i , j, : T

Xij ≤ xi ∀ i , j, : U

Xij ≤ xj ∀ i , j, : V[
1 xT

x X

]
� 0,

x ∈ Rn, X ∈ Sn.

(3.4)



9

The optimal set of Lagrangian multipliers are extracted from the solution of formulation
3.4. Continuous variables yij and zij (i < j) coupled with the RLT constraints

yij ≥ 0, yij ≥ x
i
+ xj − 1, zij ≤ xi , zij ≤ xj

are included in the problem. This linearization procedure gives rise to the following
convex mixed integer reformulated problem:

min xTQ
∗
x+ c∗T x+q∗ + 2

n∑
i=1

n∑
j=i+1

(S∗ij + T ∗ij )yij − 2
n∑
i=1

n∑
j=i+1

(U ∗ij +V ∗ij )zij ,

s.t. Ax = a,

Bx ≤ b,

yij ≥ 0, yij ≥ xi + xj − 1,

zij ≤ xi , zij ≤ xj ,

x ∈ {0,1} ,
yij , zij ∈ R+ (i < j),

(NDQCR)

where
Q̄∗ = Q+ Diag(δ∗) +α∗ATA−S∗ −T∗ +U∗ +V∗,

c̄∗ = q+ATλ∗ +BT µ∗ − δ∗,
q̄∗ = −λ∗T a−µ∗T −α∗aT a.

The convexification using the QCR method is done by adding the δ∗-vector to the
diagonal of Q and the subtracting it with the c-vector as follows:

min
1
2

(xT (Q−Diag(δ∗))x) + (c− δ∗)x,

s.t. Ax = a,

Bx ≤ b,

x ∈ {0,1} .

(QCR)

The NDQCR method can be described as a four-step procedure:

• strengthen the 0-1 QP SDP-relaxation by including a set of redundant RLT inequal-
ities

• solve the semidefinite relaxation

• MIQP problem is formed by using multipliers from the SDP solution

• the reformulated MIQP problem is solved with any suitable solver.

Examples for the usage of the QCR and NDQCR reformulation can be found in
chapter 4.3.





CHAPTER 4
The Coulomb glass Problem

4.1 Theory

Coulomb glass is a model for disordered materials in physics; the electrons are situated
on impurities in the material and interact strongly with each other [Ortuño et al., 2008,
Shklovskii and Efros, 1984, Tsigankov et al., 2003]. This can be observed in lightly
doped semiconductors; this means that impurities are added into an extremely pure
semiconductor, at very low temperatures, near 0 K. Typical for glass-like materials is
that the dynamics for the material is very slow meaning that if cooled rapidly it takes a
long time until the electrons reach equilibrium. It is presumed [Shklovskii and Efros,
1984] that the impurities are fixed to certain positions and that the electrons can move
freely from one impurity to another and thus reach equilibrium.

Coulomb’s law explains the electrostatic force between two electrons as follows
[Benson, 1995]:

F =
kqQ

r2 , (4.1)

where q and Q are two distinct electrons, r the distance between the electrons and k is
Coulomb’s constant. This constant is defined as:

k =
1

4πε0ε
, (4.2)

where ε0 is the permittivity constant for vacuum and ε the material specific permit-
tivity constant. If we calculate the force between two impurities in a disordered material,
the charges q and Q are equal to the elementary charge e. By integrating the force in
equation 4.1, the energy between two impurities is obtained according to:

11



12 CHAPTER 4. THE COULOMB GLASS PROBLEM

dW = −F(r)dr

W =
∫ rij

∞
−F(r)dr =

∫ rij

∞
−
kqQ

r2 dr

= −kqQ
∫ rij

∞

1
r2 dr = kqQ

1
rij

(4.3)

A Coulomb-gap can be seen when plotting the density of states versus the energy.
The density of states gives how many impurities have an energy within a certain energy
interval [Shklovskii and Efros, 1984]. When a Coulomb-gap appears, certain conditions
must be met, these conditions are:

1.
xi = 1 if ei < εF
xj = 0 if ej > εF

where εF is the so called Fermi-energy.

2.
∆E = ej − ei︸︷︷︸

>0

− 1
rij
> 0

ei =
∑
j

xj
rij

+ εi

assume that ej = εF + a and ei = εF − a

which leads to: rij >
1
2a

4.2 Optimization of the Coulomb glass

The objective is to minimize the total energy of the Coulomb glass in order to find the
ground state. The ground state for the system is defined as the electron configuration
that has the lowest total energy. If one can find the ground state for a Coulomb glass, it
is possible to model the properties for the semiconductor, for example how they conduct
electricity and which excitations to higher energies are possible.

There will only be a force between two impurities if both are occupied. This is
modeled using binary variables. These binary variables xi and xj tell whether or not the
impurities i and j are occupied. By combining equation 4.2 with equation 4.3 and taking
into account that both charges are electrons, the following equation is obtained:

Eij =
e2

4πε0ε

xixj
rij

Assume that the system contains N impurities and that n of these are filled with
electrons. Also, assuming that the empty impurities are neutral the total energy for the
system can be defined as [Tsigankov et al., 2003]:
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i

j

rij

Figure 4.1: Figure that describes the distance between impurities i and j.

E =
e2

4πε0ε
1
2

N∑
i

N∑
j,i

xixj
rij

+
N∑
i

εixi (4.4)

where rij is the distance between impurities i and j (illustrated in figure 4.1), εi is the
energy for impurity i and xi is a binary variable stating if impurity i is occupied or not.
If n impurities are occupied then

∑N
i xi = n. Equation 4.4 can be reformulated using

matrices and vectors to the following form:

E =
1
2
xTQx+ cTx (4.5)

where element Qij = 1
rij

and ci = εi .

Minimizing equation 4.5 with the constraint that all xi are binary variables and
that exactly n of those have to be equal to 1, gives us a binary quadratic optimization
problem, BQP. One can search for the ground state using heuristic methods, i.e. simulated
annealing [Díaz-Sánchez et al., 2000]. This method gives good solutions with low energy
configurations fast but the solution found cannot be guaranteed to be the optimal solution
and no lower bounds are obtained. By solving the problem as a BQP the problem can
be solved to global optimality or at least an upper bound and a lower bound can be
obtained. A drawback with the BQP formulation is that the systems being solved are vast
which leads to a huge combinatorial problem. In order to obtain physically significant
results the number of impurities should be very large, at least many thousand impurities.
However, systems of that size are difficult to optimize. When generating the problems it
is good to use periodic boundary conditions that is that every impurity sees the nearest
copy of the impurities which is illustrated in figure 4.2. When using periodic boundary
conditions there is no border in the system. If one is interested in how material behaves
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far from the edge, but only small-scale simulations are possible, then periodic boundary
conditions can help.

Figure 4.2: Figure describing the periodic boundary conditions.

The problem formulation that describes the system mathematically is defined as:

minimize
1
2
xTQx+ cT x,

subject to
N∑
i=1

xi = n,

xi ∈ {0,1}.

(4.6)

If Q is not positive semidefinite one can, because the variables in x are binary,
rewrite and convexify the problem into quadratic form by substituting Q with Q̄ so
that Q̄ = Q + diag(α) where α ≥ −λmin and λmin is the smallest eigenvalue for Q. c is
substituted with c̄ = c− α2 e where e is a column vector with all element equal to 1. The
convexification can also be made according to the formulations presented in chapter 3.

minimize
1
2

(xTQ̄x) + c̄Tx,

subject to
N∑
i=1

xi = n,

xi ∈ {0,1}.

(4.7)

Formulation 4.7 gives the optimal solution to the problem formulated in 4.6 as long
as α ≥ −λmin.
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4.3 CGP Examples

In figure 4.3 an example of a CGP with 4 electron sites is shown.

0 1 2
0

1

2

x

y

Figure 4.3: A CGP example.

The Q-matrix and c-vector from figure 4.3 is:

Q =


0 0.9688 0.6065 0.6493

0.9688 0 1.2741 0.5280
0.6065 1.2741 0 0.5508
0.6493 0.5280 0.5508 0

 , (4.8)

c =


0
0
0
0

 . (4.9)

The matrix 4.8 is not positive semidefinite because of the zeros in the diagonal. By
checking the eigenvalues of the matrix 4.8 it is found that the smallest eigenvalue, λmin,
is: -1.36. This is added with changed signs to the diagonal of the matrix 4.8:

Q̄ =


1.36 0.9688 0.6065 0.6493

0.9688 1.36 1.2741 0.5280
0.6065 1.2741 1.36 0.5508
0.6493 0.5280 0.5508 1.36

 . (4.10)

The terms added to the diagonal are then subtracted from the c̄-vector:

c̄ =


−0.68
−0.68
−0.68
−0.68

 . (4.11)
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The problem formulation 1
2x

TQ̄x+ c̄Tx with matrix 4.10 as Q̄ and vector 4.11 as c̄ is
written as:

min
1
2


(
x1 x2 x3 x4

)
1.36 0.9688 0.6065 0.6493

0.9688 1.36 1.2741 0.5280
0.6065 1.2741 1.36 0.5508
0.6493 0.5280 0.5508 1.36



x1
x2
x3
x4


 ,

+
(
−0.68 −0.68 −0.68 −0.68

)
x1
x2
x3
x4

 ,
s.t.

x1 + x2 + x3 + x4 = 2,

x1,x2,x3,x4 ∈ {0,1}.

The optimal solution for this problem is 0.528. The solution is illustrated in figure
4.4. The root node solution for this formulation is 0.3481 that means that the root node
solution gap to the optimum is 34.1%.

0 1 2
0

1

2

x

y

Figure 4.4: The solution to the CGP example.

When the same example is convexified using QCR we obtain the following optimal
u-vector to be added to the diagonal:

u =


0.7803
1.8902
1.0248
1.0700

 .
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That gives us the following formulation:

min
1
2


(
x1 x2 x3 x4

)
0.7803 0.9688 0.6065 0.6493
0.9688 1.8902 1.2741 0.5280
0.6065 1.2741 1.0248 0.5508
0.6493 0.5280 0.5508 1.0700



x1
x2
x3
x4


 ,

+
(
0.39015 0.9451 0.5124 0.535

)
x1
x2
x3
x4

 ,
s.t.

x1 + x2 + x3 + x4 = 2,

x1,x2,x3,x4 ∈ {0,1}.

The solution is of course the same as above and the root node value is 0.476 and the root
node gap is 9.8%.

When solving the CG problem with NDQCR only the lower bounding triangle
inequalities are included because all elements in the Q matrix are positive. The lower
bounding inequalities are

xixj ≥ 0,

xixj ≥ xi + xj − 1.

The example with NDQCR gives the following matrices and vectors:

λ =


0.51
1.00
0.72
0.11

 ,S =


0.00 0.24 0.03 0.04
0.24 0.00 0.38 0.00
0.03 0.38 0.00 0.01
0.04 0.00 0.01 0.00

 ,T =


0.00 0.01 0.00 0.32
0.01 0.00 0.05 0.03
0.00 0.05 0.00 0.18
0.32 0.03 0.18 0.00

 ,α = 14.92.

Using the λ-vector, S-matrix, T -matrix and α-value we are able to create a convex
problem as follows:

Q̄∗ = Q+Diag(λ∗) +α ∗ATA−S∗ −T∗ =


15.43 15.64 15.50 15.20
15.64 15.90 15.77 15.42
15.50 15.77 15.64 15.28
15.20 15.40 15.28 15.03

 ,

c̄∗ = c−λ∗ =


−0.26
−0.50
−0.36
−0.05

 ,
q̄∗ = −α∗aT a = −29.84.
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The reformulated problem is:

minimize
1
2

(xT Q̄∗x) + c̄∗T x+ q̄∗ +
N∑
i>j

S∗ijyij +
N∑
i>j

T ∗ijyij ,

subject to x1 + x2 + x3 + x4 = 2,

yij ≥ 0 ∀ i > j,

yij ≥ xi + xj − 1 ∀ i > j,

x1,x2,x3,x4 ∈ {0,1}.

(4.12)

The solution is, of course, the same as for the other two examples, however, the optimal
solution is already acquired in solution of the SDP problem (root node solution).



CHAPTER 5
Connections to special cases of

the Quadratic Assignment
Problem

5.1 Introduction

The quadratic assignment problem (QAP) is a well-known combinatorial optimization
problem introduced by Koopmans and Beckmann [1957]. The QAP is a problem where
n facilities and n locations are given with specified flows and distances between the
facilities and locations. The objective is to minimize the total cost of placing a facility at
every location. The total cost derives from the distances and flows between the facilities
and also additional costs for placing a facility at a certain location may be used. In its
basic form the QAP is a non-convex 0-1 quadratic problem. The problem formulation
looks as follows:

minimize
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

fikdjlxijxkl +
n∑
i=1

n∑
j=1

cijxij ,

subject to
n∑
j=1

xij = 1 ∀ i ∈N,

n∑
i=1

xij = 1 ∀ j ∈N,

xij ∈ {0,1} ∀ i, j ∈N.

(5.1)

where fik is the flow between facilities i and k, djl is the distance between locations j
and l, and cij is the cost of placing facility i at location j. The variable xij = 1 if facility i
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is assigned to location j, otherwise, xij = 0 and N = {1,2, . . . ,n}. With no loss of generality
we can assume that cij = 0 and omit the linear term in (5.1).

5.2 Solving specially structured QAP using CGP-formulations

The taixxxc problems formulated by Taillard [1995] that can be found in the QAPLIB
[2013] are gray-scale pattern problems with rank-1. Gray-scale problems are similar to
CGP, the objective is to place black squares on a white grid in order to make the resulting
color as gray as possible. The taixxxc problems can be formulated as QP problems. The
taixxxc distance and flow matrices are defined as:

Trstu = max
v,w∈{−1,0,1}

1
(r − t +nv)2 + (s −u +nw)2

fij =
{

1 if i ≤m and j ≤m
0 otherwise

,dij = dn(r−1)+s n(t−1)+u = Trstu

(5.2)

where (r, s) are the coordinates for i, (t,u) are the coordinates for j, n is the dimension of
the problem and m is the amount of black squares.

The QAP can also be expressed using the trace-operator Edwards [1980], Nyberg
[2014].

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

fikdjlxijxkl = tr(DXFXT),

where, in the special case of Rank-1 F-matrix,

F = qqT ,

that leads to
= tr(DXqqTXT ),

= tr(qTXTDXq),

= tr((Xq)TDXq),

then

Xq = y,

= tr(yTDy),

= yTDy.

The QP formulation [Nissfolk et al., 2012], for the special case of Rank-1 QAP, is very
similar to CGP:
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Figure 5.1: Solution times for tai36c

minimize yTDy,

subject to
n∑
j=1

xij = 1 ∀ i ∈N,

n∑
i=1

xij = 1 ∀ j ∈N,

yi =
n∑
j=1

xijqj ∀i ∈N,

n∑
i=1

yi =
n∑
j=1

qj ,

xij ∈ {0,1} ∀ i, j ∈N.

(5.3)

From the figure 5.1 one can clearly see that the NDQCR is better than the QCR, only
in the case where we only have one black square or half the board is black is the problem
convexified with QCR faster overall this is because the time spent in the NDQCR SDP
part is longer.

From the QAP Library (2013), we found that nobody has yet been able to solve the
problem tai256c to optimality and the previous tightest lower bound reported in QAPLIB
is 43849646, obtained by Peng et al. [2010]. Further, the previous best known solution
of tai256c reported in QAPLIB is 44759294, obtained by Ant colony technique.

When testing our NDQCR method on tai64c and tai256c we solved tai64c to optimal-
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ity in 529 seconds and obtained a new best lower bound to tai256c. Our lower bound of
43849789 is also the root node for the MIQP and after solving for 8 months we have a
lower bound of 44095200.



CHAPTER 6
Results and notes on the papers

6.1 Paper I

In this paper, the BQP formulation for the Coulomb glass problem is introduced. We
looked at different ways to solve the problems, one was to obtain a lower bound using
semidefinite programming and an upper bound from a heuristic algorithm based on
randomized solutions using the covariance matrix from the SDP. Another was to extract
Lagrangian multipliers from the SDP and use them in the MIQP solver in order to obtain
tight lower bounds and solve the problems using a MIQP solver. Problem formulation
4.7 is the one that is called CG-QP in this paper.

6.2 Paper II

In this paper, we introduced a formulation for rank-1 QAPs. The only QAP that truly are
Rank-1 are the taixxxc problems by Taillard [1995]. The generated test problems were
rank-1 and convexified using the QCR method and then solved using a MIQP solver.

6.3 Paper III

In this paper, we tried a new metaheuristic method in order to find good solutions to
binary quadratic problems. However, the method used did not perform as good as we
had hoped. When testing on the tai64c problem we found the optimal solution in only
30 s.

6.4 Paper IV

In this paper, we use a method by Ji et al. [2013] to convexify and solve binary quadratic
problems. The method is an improvement of the QCR method and also makes use of
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non-diagonal elements in order to obtain tighter lower bounding. It can be seen that,
for larger test problems, the overall solution time is shorter with the NDQCR method
than the QCR. However, for small test problems the overall solution time is longer due
to the fact that much time is spent in the SDP solver. The lower bounds acquired using
the NDQCR method are tighter than with the QCR.

Table 6.1: Average results for CG with QCR

MIQP SDP Total
Size (n) Gap Time Gap Time time

50 0.00 % 3.4 3.75 % 1.0 4.4
100 0.07 % 1456.2 1.55 % 3.6 1459.8
150 0.69 % 3600.1 1.51 % 6.9 3607.0
200 1.01 % 3600.5 1.05 % 6.9 3607.4

Table 6.2: Average results for CG with NDQCR

MIQP SDP Total
Size (n) Gap Time Gap Time time

50 0.00 % 1.6 0.01 % 12.6 14.2
100 0.00 % 17.8 0.03 % 18.7 36.6
150 0.00 % 122.4 0.03 % 19.4 141.7
200 0.00 % 687.0 0.02 % 25.0 712.0

Table 6.1 (Table 5 in the paper) and table 6.2 (Table 7 in the paper) show the benefit
of the NDQCR method for the larger problems, however, for the smallest problem of
size 50 the time spent in the SDP solver is so long that the total solution time is longer
for the NDQCR method. It can clearly be seen that the lower bounds from NDQCR are
much tighter than the ones obtained from the QCR method.

In this paper, we present a new lower bound for the largest problem in the QAPLIB,
tai256c. Our new best lower bound from the solution of the SDP relaxation (which is
also the solution of the root node of the reformulated quadratic programming problem
using diagonal and non-diagonal elements obtained from the solution of the SDP) is
43849789 and the best lower bound in the QAPLIB is 43849646.

6.5 Paper V

In this continued work from Paper IV, we test how different numbers of non-diagonal
elements affect the total solution time. It seems that when including more non-diagonal
elements the lower bounding becomes tighter and also the solution time in the MIQP
solver improves. However, the time spent in the SDP solver is longer.



CHAPTER 7
Conclusions

The main goal of this thesis is to find new and improved solution strategies to the
Coulomb glass problem. In particular, the non-diagonal quadratic convex reformulation
technique presented in paper IV yields very good results in both lower bounds and
solution times. The NDQCR method was also tested on binary least squares problems
and on gray-scale problems because their problem formulation is very similar to the CGP.
In this thesis, the choice of elements to include in the NDQCR is based on choosing the
largest absolute values first. How to choose which elements to include in the NDQCR
should be investigated further, one idea would be to first solve an SDP in order to
determine which elements impact the MIQP model the most.
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